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Abstract: Arsenic is an abundant, highly toxic element that is a global health concern due to
damage from acute and chronic exposure and the potential for high local concentrations in heavily
populated areas. In Florida, arsenic has been used heavily in agricultural, commercial, and industrial
applications for decades. While studies have identified and quantified the contributions of arsenic to
the state, there are fewer studies that have attempted to index to identify spatial distribution patterns.
The aim of this study was to develop representative indices that would identify and estimate the
distribution of arsenic from historic and present usage for the state of Florida at the county-level.
Eight variables are summarized and categorized into two different types of arsenic indices that
represent the arsenic distribution from natural occurrence and anthropogenic practices in Florida.
The anthropogenic index had distributions scores that ranged from 0.20 to 1.60 with a mean of
0.61 (SD = 0.34). The natural index had distribution scores that ranged from 1.00 to 3.00 and a mean
of 1.47 (SD = 0.43). Our finding noticed comparability between high arsenic distributions mainly
occur in counties located in the northwestern and southwestern regions in both the anthropogenic
and natural indices with diverse arsenic sources contributions.

Keywords: arsenic; anthropogenic sources; natural sources; agriculture; indexing; geographic
information systems; Florida; environment

1. Introduction

Anthropogenic use of arsenic in Florida has been found to contribute to the environmental
contamination of water sources and surface soil [1]. Historically, arsenic has been used extensively as
a pesticide, insecticide, herbicide, and crop desiccant in the forms of arsenic trioxide, lead arsenate,
calcium arsenate and copper (II) acetoarsenite. Lead arsenate was widely used as a pesticide for apple
and cherry orchards when applied as a foliar spray as it adhered well to plant surfaces, so the effects
were longer lasting [2]. Arsenic trioxide was used to create arsenical dips to kill ticks that carried the
parasite responsible for cattle fever and other tick-borne diseases [3,4]. Organic arsenic-containing
chemicals, such as the herbicides Monosodium methanearsonate have been used to maintain the
attractiveness of golf courses and turf [5,6]. Solo-Gabriele et al (2003) report that arsenic has been used
extensively and in many forms within the state of Florida for the purpose of manufacturing goods
such as fossil fuels, glass, and batteries as well as food products like animal feed and seafood [7].
Other sources of arsenic chemicals include chromate copper arsenate (CCA) wood, both treated in
state and imported from other states. These CCA-treated wood products could be found in many areas
of the state including homes, decks, utility poles, parks, playgrounds, and wood treatment plants [8].
Phosphate mining also released arsenic for use in fertilizers in and out of state [9].

Naturally occurring arsenic has been found in sedimentary, igneous, and metamorphic rocks,
primarily associated with sulfide minerals such as orpiment, realgar (AsS), and arsenopyrite [9].
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When rocks and minerals weather, arsenic may mobilize as arsenic salt compounds that can accumulate
in the soil and plants [8,9]. This leads to low concentrations of arsenic in various water sources as
a by-product of rock weathering as well as physical and chemical processes that break down soil
containing mineral arsenic, which then leaches into water [10].

Groundwater is usually the main source of arsenic contamination due to its high accumulation
of arsenic from weathering parent rock material and proximity to arsenic-containing minerals and
contaminated sites from anthropogenic use. Previous studies (e.g., Solo-Gabriele et al. 2003 and
Missimer et al., 2018) have estimated the total amount of arsenic released into Florida from multiple
natural and anthropogenic sources and its consequence on environmental and public health [7,11].
Yet, we have found no studies that examined and visualized the distribution of arsenic from past and
present arsenic usage in Florida. The aim of this study was to create representative indices that would
identify and estimate the spatial distribution of arsenic from historic and present usage at the county
level in the state of Florida. These indices are the first step to identifying counties with higher arsenic
concentrations that may have health implications to residents of these areas.

2. Materials and Methods

2.1. Overview

The 67 counties in the state of Florida, United States are the focus of this analysis. Data were
identified pertaining to eight arsenic sources and processed to provide comparable county-level
values of arsenic distribution potential. The eight sources include cattle dipping vats, monosodium
methanearsonate, disodium methanearsonate, lead arsenate, phosphate mining, groundwater,
and surface soils. These eight variables are summarized and categorized into two different types
of arsenic indices that represent the arsenic distribution from natural occurrence and anthropogenic
practices in Florida. Index ranking, spatial data processing, and mapping analysis were performed
using SPSS 24 (IBM Corp, Armonk, NY, USA) and ESRI ArcMap 10.4 (Redlands, CA, USA).

2.2. Source Identification and Arsenic Calculations

2.2.1. Cattle Dipping Vats

The Florida Department of Health (FOH) and Florida Department of Environmental Protection
(FDEP) assembled and maintain a list of the facility names of cattle dipping vats (CDV) and the county
in which they were located based on state livestock records and permits. The list comprised 3241 total
vats [12]. The United States Department of Agriculture and Livestock Sanitation Board regulated the
amount of arsenic in the final solution [13,14], set at 8 lbs (2.2 lbs is equivalent to 1 kg) per 500 gal (1 gal
(US gal) is equivalent to 3.78 L). Cattle dipping vats typically held up to 2000 gallons of arsenic dip [15].
To estimate how many pounds of arsenic were associated with dipping vats solutions for each county,
(lbCDV

As , 1), the federally-regulated amount of arsenic trioxide in pounds was multiplied by its arsenic
fraction and divided it by the 500 gallons needed to create the arsenical solution to get the pounds of
arsenic per gallon. The total gallons needed to fill a cattle-dipping vat, 2000 gallons, was multiplied by
the pound of arsenic per gallon. The resulting product was multiplied by the total number of vats in
each county, CDVCounty. The arsenic fractions associated with lbAs were determined by dividing the
molecular weights of arsenic trioxide (MWArsenicTrioxide) by the molecular weight of arsenic (MWAs).

lbCDV
As =

 (8 lbsArsenic Trioxide x
(

MWArsenic Trioxide
MWAs

))
500 gal

x 2000 gal

 x CDVcounty (1)

2.2.2. Monosodium Methanearsonate (MSMA) and Disodium Methanearsonate (DSMA)

MSMA and DSMA, two forms of organic arsenical herbicides, were used for cotton, turf, and near
industrial sites [16]. The use of these organic herbicides in Florida has been reported from the 1950s
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(DSMA) and the 1960s (MSMA) until 2009 and used mainly for weed control along cotton fields,
golf courses, and highways [17]. To estimate the arsenic distribution potential from DSMA and
MSMA usage on cotton and citrus, we extracted county-level data on peak acreage in citrus and
cotton production per decade between 1960 to 2010 from the United States Department of Agriculture
National Agricultural Statistics Service (USDA NASS) database. According to the Environmental
Protection Agency (EPA), the recommended amount of active ingredients of MSMA and DSMA
to be administered in cotton and citrus fields is 2.0 to 2.25 pounds of active ingredients per acres,
respectively [18]. According to Solo-Gabriele et al., 2003, the mean concentration of MSMA and DSMA
herbicides active ingredients were roughly 0.50% of MSMA and 0.24% of DSMA [7]. To calculate
the total pounds of arsenic from MSMA and DSMA usage,(lbMSMA

As , 2; lbDSMA
As , 3), for each county,

the EPA recommended rate of each herbicide was divided by the percent active ingredient to attain the
pounds of MSMA and DSMA per acre, which was then multiplied by the arsenic fraction of MSMA
and DSMA respectively. This number was then multiplied by the total number of acres associated
with peak cotton production per county (TAcotton). The arsenic fractions were determined by dividing
the molecular weights of MSMA and DSMA (MWMSMA) by the molecular weight of arsenic (MWAs).

lbMSMA
As =

((
lba.i.

A
% a.i.

)
x
(

MWMSMA
MWAs

))
x TAcotton (2)

lbDSMA
As =

((
lba.i.

A
% a.i.

)
x
(

MWDSMA
MWAs

))
x TAcotton (3)

2.2.3. Lead Arsenate

Lead arsenate was the most common form of inorganic arsenical insecticide used for citrus
crops [16]. The peak use of lead arsenate in Florida has been reported from the 1930s to the
1940s [19]. According to the EPA, the recommended amount of active ingredients of lead arsenate to be
administered to citrus fields is 1.7 pounds of active ingredients per acres. The common concentration
of active ingredients was roughly 0.70% of lead arsenate [20]. To calculate the pounds of arsenic from
lead arsenate use (lbLA

As ), the EPA recommended rate of lead arsenate was divided by the percent
active ingredient to attain the pounds of lead arsenate per acres, which was then multiplied by the
arsenic fraction associated with lead arsenate. The pounds of arsenic per acre were then multiplied
the total number of acres associated with citrus production from the 1960s to the 1980s by county
(TAcitrus). The arsenic fractions were determined by dividing the molecular weights of lead arsenate
(MWLeadArsenate) by the molecular weight of arsenic (MWAs).

lbLA
As =

((
lba.i.

A
% a.i.

)
x
(

MWLead Arsenate
MWAs

))
x TAcitrus (4)

2.2.4. Phosphate Mining

Based on a digital map of phosphate mining sites and reclamation efforts in Florida [21],
we determined that five counties participated in phosphate mining activities. Phosphate rocks in
Florida contain an average concentration of 7 mg/kg of arsenic [22]. Many of the sites were established
in the 1970s; their current operational status is either still active, permanently shut down, or unknown.
We calculated the total amount of acres that were associated with phosphate mining practices by
county using ArcGIS. Data regarding the total number of phosphate rocks (in metric tons) mined from
the years of 1970 to 2000 within the state of Florida were obtained in a report by Solo-Gabrielle et al.,
2003 [7]. To calculate the total pounds of arsenic from phosphate mining activities for each county
(lbPR

As ), the total number of phosphate rocks mined in metric tons was converted into kg, ∑ PR1970−2000

and multiplied by the mean concentration of arsenic found in phosphate rocks then converted into
pounds. The total pounds of arsenic were divided by the total acreage of mining sites within each
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county, (Atotal), to calculate the total pounds of arsenic per acre in all counties. Finally, the pounds of
arsenic per acre was multiplied by the total phosphate mining area for each individual county (Acounty)
to calculate the pound of arsenic associated with phosphate rock mining by county.

lbPR
As =


(

∑ PR1970−2000(kg)x 7 mg
kg

)
x 10−6 kg

mg x 2.204624 lb
1 kg

Atotal

 x Acounty (5)

2.2.5. Background Groundwater Levels

Point-level well data was extracted using ArcGIS from the United States Geological Survey (USGS)
database on arsenic in 585 groundwater samples from public and domestic water supplies, industrial,
research, and agricultural wells in the state of Florida [23,24]. Inverse distance weighted interpolation
was used to estimate the arsenic levels across the state, depicted as a GIS raster grid, from the arsenic
level data points. For each county, the mean of the arsenic estimates was calculated using zonal
statistics. Results are reported in parts per million (ppm).

2.2.6. Background Surface Soil Levels

Similarly, 89 samples from the soil surface layer (Organic Matter, or O horizon, if present) across
Florida between 2007 to 2010 have been tested to estimate arsenic concentrations as part of the North
American Soil Geochemical Landscapes project [25]. Inverse distance weighted interpolation was used
to estimate the arsenic levels across the state for each of the three horizon levels as GIS raster grids
based on the arsenic levels from the sample points in Florida. The mean of the arsenic estimates was
calculated for each county using zonal statistics. Results are reported in ppm.

2.3. Indexing Approach

The sources were classified into either natural or anthropogenic group based on their primary
or secondary source and usage. For this study, two types of indices were created: a natural source
arsenic distribution index and an anthropogenic source arsenic distribution index. Using SPSS,
these counties were given a distribution score (DS) between 1 and 3, representing low to high
distribution. The distribution scores were created by identifying the natural breaks by grouping
each individual anthropogenic and natural source with corresponding pounds of arsenic or arsenic
concentrations, respectively by counties (Figure S1). In cases where a specific arsenic source did not
occur in a county, the county received a distribution score of zero (0) to represent no distribution from
that source. To create the Florida arsenic distribution indices (FADI), the individual arsenic sources
pertaining to either anthropogenic or natural sources were averaged, resulting in a final distribution
source that ranges from 0 to 3, representing absence to high distribution. Dataset is available as
supplementary material (FADI Dataset).

FADIAnthropogenic =

(
DSCDV x DSMSMS x DSDSMA x DSLA x DSPR

5

)
(6)

FADINatural =

(DSGW x DSTopsoil

2

)
(7)

3. Results and Discussion

For the anthropogenic FADI, values ranged from 0.20 to 1.60 with a mean of 0.61 (SD = 0.34).
The anthropogenic FADI had a group of 28 counties within the low arsenic distribution (the minimum
distributions from contributing sources), 28 counties considered moderate (the averaged distributions
from contributing factors), and 11 counties with higher arsenic distribution (the highest distributions
from contributing sources), comparatively (Figure 1a). The natural FADI had values that ranged from
1.00 to 3.00 and a mean of 1.47 (SD = 0.43). The natural FADI had a group of 20 counties within the
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low arsenic distribution, 36 counties considered moderate, and 11 counties within the higher arsenic
distribution category (Figure 1b). These indices were created with the specific purpose of quantifying
comparable means of past arsenic distribution from various sources that can be used for understanding
the use of arsenic in Florida.

Figure 1. The Florida Arsenic Distribution Indices (FADIs): (a) anthropogenic source FADI; (b) natural
source FADI.

The counties with the lowest arsenic distribution from anthropogenic practices were in the
Northeast, northwestern, southeastern, and the southern regions of Florida. In the southern regions,
fewer cattle dipping vats (CDVs) have been identified meaning that less arsenic is distributed from this
source. No mining activities took place in these areas except for one county in the northeastern region
(Hamilton). Since cotton was grown mainly in certain northern counties, MSMA and DSMA were not
commonly used in the Southern region leading to the absence or low arsenic distribution from these
arsenicals. Lead arsenate was rarely used in northern counties because citrus production took place
mainly in the central and southern regions. Thus, leading to minimal (none reported to low) arsenic
distribution of lead arsenate in northern counties. The regions with the highest anthropogenic arsenic
distribution were in the northwestern part of the state outside the panhandle and the Southwest.
In the northwestern region, these counties have more arsenic distribution from agricultural practices
such as CDVs, MSMA, and DSMA usage. Counties in the southwestern region have more CDVs, lead
arsenate, and phosphate mining activities and practices.

The highest arsenic distributions from natural sources were in the northwestern, southwestern,
and southeastern counties near Miami. Counties identified as high in the northwestern region were
found to have moderate to high groundwater arsenic distribution. Counties in the southern and
southeastern regions had low to moderate arsenic distribution while surface soils were identified
as having an arsenic distribution that was moderate to high. Northeastern and central regions had
no high arsenic distribution. Counties in these regions had low to moderate arsenic distribution in
groundwater and surface soils. This pattern was noticed in other regions as well. Comparing the
arsenic distribution of the anthropogenic arsenic sources to natural arsenic sources, we find similarities
of high distribution mainly occurring in counties located in the northwestern and southwestern regions.
These counties had moderate to high arsenic distributions in most sources with the exception being
groundwater. Surface soils arsenic distributions in many of these areas were found to be moderate
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to high which may be related to the moderate to high arsenic distributions found from agricultural
activities such as CDVs, arsenicals, and phosphate mining practices.

We recognize several limitations to our study. There are many anthropogenic sources of arsenic that
have not been accounted for in the indices. In the case of cattle dipping vats, many vats are unaccounted
for due to the deconstruction of vats or misplacement of records pertaining to vat locations. According
to the Florida Department of Health (FDOH) and the FDEP, there are approximately 3400 cattle dipping
vats located in the state of Florida; yet we only have records for 3241 vats [26,27]. This means that the
database used to create our dipping vat arsenic contribution can be updated as more cattle dipping vats
are discovered. Other arsenical chemicals used in agricultural practices also were not included in our
anthropogenic index. We chose to include the most commonly used and well-documented inorganic and
organic arsenic-containing chemical used for agricultural practices—MSMA, DSMA, and lead arsenate.
In the future, we hope to include other arsenicals such as calcium arsenate, sodium arsenite, copper
(II) acetate triarsenite (Paris Green), and roxarsone (in chicken feed and litter) when more information,
including the amount of solution used and the years used, become available.

Chromated Copper Arsenate (CCA) treated wood was not included in this index. Different types of
CCA-treated wood have been used for the construction of residential properties, commercial properties,
gardening and farming spaces, and parks/recreational areas [28]. The use of CCA-treated wood was
clearly widespread in Florida, but the actual number of land parcels affected by the arsenic-containing
compound was not recorded. Studies that evaluate the extent of arsenic release from CCA-treated
wood are limited; however, Khan et al., 2006a found inorganic arsenic (III) and arsenic (V) in runoff
and infiltrated water below CCA-treated decks [29]. After disposal of CCA-treated wood in landfills,
the arsenic can leach into the disposal site which can affect groundwater arsenic concentrations [30,31].
Incineration of CCA-treated wood can also cause arsenic and the other chemicals to be admitted into
the air along with the ash from the burnt wood which can leach into the environment and be breathed
in by humans as a particulate [28]. However, quantification of the use of CCA across Florida proved
to be beyond the scope of this study. When assessing natural sources of arsenic from surface soil and
groundwater, we were unable to separate the natural baseline concentrations of arsenic and the added
concentrations from anthropogenic activities. Partitioning these differences in concentrations from the
natural sources is complicated due to only secondary data being available. Our indices can be modified
in the future to include input from quantification of such other sources of arsenic.

4. Conclusions

The FADIs that we developed can help raise awareness of the complex overlapping spatial
patterns of arsenic in Florida. The indices present comparable quantifications for arsenic with combined
arsenic distributions from multiple sources within each county. Our findings show that high arsenic
distributions are found in counties residing in the northern and southern regions of Florida with
diverse arsenic sources contributions. These county-level arsenic indices are an important step to
developing spatial risk analyses at a scale that can be used to better identify and prioritize areas of the
population-level risk of arsenic exposure. These broad-scale characterizations of arsenic across the
state must be followed by more thorough studies at both the local and community levels in Florida.
More detailed investigations of arsenic and evaluation of local human exposure will be useful to
investigate both acute and chronic arsenic exposure.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/5/744/s1,
Figure S1: The frequency of individual arsenic scored using the Florida Arsenic Distribution indexing approach.
Dataset: FADI Dataset.
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