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Abstract
The automatic recognition and classification of speech under
stress has applications in behavioural and mental health sci-
ences, human to machine communication and robotics. The
majority of recent studies are based on a linear model of the
speech signal. In this study, the nonlinear Teager Energy Opera-
tor (TEO) analysis was used to derive the classification features.
Moreover, the TEO analysis was combined with the Discrete
Wavelet Transform, Wavelet Packet and Perceptual Wavelet
Packet transforms to produce the Normalised TEO Autocor-
relation Envelope Area coefficients for the classification pro-
cess. The classification was performed using a Gaussian Mix-
ture Model under speaker-independent conditions. The speech
was classified into two classes: neutral and stressed. The best
overall performance was observed for the features extracted us-
ing TEO analysis in combination with the Perceptual Wavelet
Packet method. The accuracy in this case ranges from 94% to
96% depending on the type of mother wavelet.

Index Terms: stress in speech detection, Teager Energy Oper-
ator, wavelet analysis

1. Introduction
Prosodic features of speech produced under stress vary from
features under the neutral condition. The most often observed
changes include changes in the utterance duration, decrease or
increase of pitch, and shift of formant frequencies. The pres-
ence of stress in speech makes the implementation of speech
recognition algorithms more complicated compared to neutral
speech. Stress recognition and classification is aimed to auto-
matically detect stress in speech signals. It can be used to im-
prove the robustness of speech and speaker recognition systems.
Moreover, by assessing speaker’s stress level, stress classifica-
tion could support the automatic assessment of the mental state
of people working in dangerous environments (e.g. chemicals,
explosives) and people undertaking high levels of responsibil-
ity (e.g. pilots, surgeons). Automatic stress classification could
support the medical diagnosis of depressive illness or sorting of
emergency telephone messages. It could also improve human-
computer interaction and help to develop more natural Virtual
Reality environments.

A stress classification task consists of two major parts: fea-
ture extraction and feature classification. Many resent studies
[1][2] focus on the acoustic features, such as pitch features,
spectral features and intensity features. There are also stud-
ies proposing the use of features such as Linear Predictive co-
efficients (LPC) [5], and Mel Frequency Cepstral Coefficients
(MFCC) [5]. The most often listed classifiers in the literature
include neural network, k-nearest neighbors and Gaussian Mix-

ture Model classifiers.

The majority of features listed in the literature are derived
from linear models of a speech signal, such as the source-filter
model [5]. The underlying assumption of the linear models
is that there is a single excitation source with the fundamen-
tal frequency F0 (pitch). However, in their studies Teager [3]
and Zhou [4] indicate that in the emotional state of anger or
stress, the fast air flow causes vortices located near the false vo-
cal folds providing additional excitation signals other than the
pitch. The additional excitation signals appear in the speech
spectrum as harmonics of fundamental frequencies not equal to
F0, and cross-harmonics between the F0 source and additional
sources. This implies that the vortex-flow interactions produce
speech that can be treated as a multiple-source signal and the
speech production process has a nonlinear character. The pres-
ence of additional harmonic series other than the F0-series in-
dicates the emotional state of a speaker and can be used to de-
rive characteristic features for the detection and classification of
speech under stress.

In [4] Zhou proposed the use of the Teager Energy Op-
erator for detection of additional harmonics produced due to
emotion. The detection was performed at the vowel level; the
additional harmonics were searched for around F0, and within
Critical Bands. In this paper, a similar approach is proposed.
However, the Teager Energy Operator is used to derive the clas-
sification feature at the voiced frame level and the search for the
additional harmonics is done within the Critical Bands as well
as the Wavelet and the Wavelet Packet bands.

2. Speech Analysis Using Teager Energy
Operator

2.1. Nonlinear model of speech

In his work on nonlinear speech modelling, Teager[3] indicated
modulation as a major process in the production of speech. He
also noted the importance of analysing speech signals from the
point of view of the energy required to generate them and de-
rived a nonlinear energy-tracking operator known as the Tea-
ger Energy Operator (TEO). As indicated in [3], [4] the airflow
in the vocal tract is separated into different tracts, each with
its own energy. The different tracts include the main air flow
through the vocal folds as well as additional vortex-flows gen-
erated due to specific emotional states (anger, fear, stress, etc).

The production of a speech signal could be regarded as an
effect of amplitude and frequency modulation of separate os-
cillatory waves in the vocal tract. Therefore, speech signals
could be modelled as a combination of several amplitude and
frequency modulated (AM-FM) oscillatory components. Mara-
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gos et al. [6] proposed a nonlinear model of speech, which rep-
resents the sampled speech signal s(n) as:

s(n) =
M�

i=1

xi(n) (1)

where xi(n) is a single-component speech signal, and M is the
number of speech components. Each component of speech can
be modelled as an AM-FM sinewave given as:

x(n) = α(n)cos(Φ(n)) = α(n)cos(ωcn+ωh

� n

0

q(k)dk+θ)

(2)
where q(k) is the modulating signal, ωc is the source frequency
(carrier), ωh ∈ [0; ωc] is the maximum frequency deviation, θ
is a constant phase offset, and α(n) is the instantaneous ampli-
tude.

2.2. Teager Energy Operator

The presence of the vortex-flow interactions can be detected us-
ing the Teager Energy Operator, which in the discrete time do-
main can be defined as:

Ψ[x(t)] = x2(n)− x(n + 1)x(n− 1) (3)

Substituting Eq(2) into Eq.(3), the Teager Energy Operator of
the speech model described by Eq. (3) becomes:

Ψ[x(n)] = (α(n))2sin(ω2
i (n)) (4)

The instantaneous frequency ω(n) of the FM component can
be then approximated in terms of the Teager Energy Operator
Ψ[x(n)] as:

ω(n) = 2πf(n) ≈ 1

2πT
arcsin(

�
Ψ[y(n)]

4Ψ[x(n)]
) (5)

and the amplitude α(n) of the AM component can be approxi-
mated as:

α(n) ≈ 2Ψ[x(n)]�
Ψ[y(n)]

(6)

where y(n) = x(n + 1)− x(n− 1).

2.2.1. Normalised TEO Autocorrelation Envelope

If we assume that the speech signal x(n) has a single harmonic
with constant amplitude and instantaneous frequency, then the
TEO contour Ψ[x(n)] should be a constant number for all val-
ues of n. If the speech signal x(n) consists of more than one
harmonic, then the TEO contour changes in time and Ψ[x(n)]
is a function of n. In reality, speech signals always contain a
number of harmonic components. If there is only one speech
source or fundamental frequency F0, then there will be a whole
harmonic series of integer multiples of F0. Additional sources
(vortices) will generate their own harmonic series. However if
we break speech into small bands, and calculate the TEO for
each band, then we can more easily observe the presence or
absence of a harmonic component within each band. This is
done through calculation of the polynomial coefficients, which
describe the normalised TEO autocorrelation envelope area [4].
The TEO autocorrelation envelope is described as:

RΨ(x)(k) =
1

2M + 1

M�
n=−M

Ψ[x(n)]Ψ[x(n + k)] (7)

Figure 1: Flowchart of the TEO-CB analysis.

where N is the number of samples within the analysed speech
frame. By computing the TEO autocorrelation envelope and
normalising it by the maximum value of N/2, the normalised
TEO autocorrelation envelope area parameters (TEO-Auto-
Env) can be obtained for each of the analysed frequency bands.
The maximum value of N/2 corresponds to the simplest case
with a single harmonic and no amplitude or frequency modula-
tion. The normalised TEO autocorrelation envelope area values
reflect the degree of excitation sources variability within each
frequency band.

3. Feature Extraction Methods
3.1. Critical Bands Based TEO Analysis (TEO-CB)

It is known that the human auditory system decomposes the
whole audible frequency range into several critical bands (see
Table 2). The width of these bands increases logarithmically
with frequency. Observations of the changes in the numbers of
harmonics within critical bands can provide cues for the recog-
nition of stress in speech [1],[4]. The flowchart of the criti-
cal band based TEO analysis is illustrated in Fig.1. After the
voiced/unvoiced detection, the voiced speech was filtered using
a bank of Gabor band pass filters. The filters’ centre frequen-
cies were set to the centre frequencies of the critical bands, and
the effective RMS bandwidth of each filter was set to the width
of the corresponding critical band. For each band the Teager
Energy Operator and the area under the normalised TEO au-
tocorrelation envelope were calculated. The analysis was per-
formed on a frame-by-frame basis, with the sampling frequency
of 8 kHz and 256 samples per frame with 50% overlap between
frames.

3.2. Discrete Wavelet Transform Based TEO Analysis
(TEO-DWT)

The Discrete Wavelet Transform (DWT) [8] can be computed
by successive lowpass and highpass filtering of the discrete
time-domain signal. The DWT was used to analyse the speech
signal into a number of dyadic frequency bands listed in Table
1. Four decomposition levels were generated. At each decom-
position level, the half band filters produced signals spanning
only half the frequency band.

With this approach, very high time resolution of the signal
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was achieved at high frequencies, while the frequency resolu-
tion became very high at the low frequency bands. The analy-
sis was done on the frame-by-frame basis and only the voiced
speech was analysed. At each level of analysis, the high pass
filters produced detail information, while the low pass filter as-
sociated with scaling function produced coarse approximations.
The detail information for the decomposition levels 0-3 and
the approximation information for level 3 were used to calcu-
late the area under the normalised autocorrelation envelope of
the Teager Energy Operator (TEO-DWT-Auto-Env). Frequency
components of speech from 300-3000 Hz are known to be the
most important for speech intelligibility [5]. It was therefore
expected that the high resolution DWT analysis achieved at low
frequencies could provide important features representing the
emotional aspect of speech.

The TEO-DWT-Auto-Env features were calculated using 8
different types of mother wavelets: haar (db1), db2, db3, db5,
bior2.4, bior3.1, bior6.8 and coif1.

Table 1: DWT bands used in TEO-DWT analysis and WP bands
used in TEO-WP analysis.

Band Discrete Wavelet Transform Wavelet Packet
Lower Upper BW Lower Upper BW

1 0 250 250 0 500 500

2 250 500 250 500 1000 500

3 500 1000 500 1000 1500 500

4 1000 2000 1000 1500 2000 500

5 2000 4000 2000 2000 2500 500

6 2500 3000 500

7 3000 3500 500

8 3500 4000 500

3.3. Wavelet Packet Based TEO Analysis (TEO-WP)

In the search for the optimal sub-band decomposition for the
TEO based feature extraction the Wavelet Packet (WP) analysis
was tested. The Wavelet Packet method is a modified form of
the Discrete Wavelet Transform where the signal is passed itera-
tively through a larger number of filters than in the DWT. In the
DWT, each level is calculated by passing the previous approxi-
mation coefficients through high and low pass filters. However,
in the WP decomposition both the detail and approximation sig-
nals are decomposed. The WP analysis could provide both low
and high frequency affect cues. The TEO-WP-Auto-Env fea-
tures were calculated for the outputs from 8 bands. The corre-
sponding frequency ranges of these bands are listed in Table 1.
Like for DWT, the TEO-feature extraction was performed with
8 different types of mother wavelets: haar (db1), db2, db3, db5,
bior2.4, bior3.1, bior6.8 and coif1.

3.4. Perceptual Wavelets Packet Based TEO Analysis
(TEO-PWP)

The WP decomposition provides a wide selection of bands cov-
ering the entire frequency range of speech. Such wide selection
could provide a lot of redundant information from the percep-
tive point of view. The human auditory system shows the high-
est sensitivity within Critical Bands; therefore selection of WP
bands corresponding to the Critical Bands could improve the
efficiency of affect detection in speech.

The Wavelet Packet decomposition algorithm was used to
select 17 bands with frequency ranges close to the Critical

Bands. This type of decomposition was called the Perceptual
Wavelet Packet (PWP). The TEO-PWP-Auto-Env features were
calculated for the 17 terminal tree outputs with frequency bands
listed in Table 2. The analysis was performed for 8 different
types of mother wavelets: haar (db1), db2, db3, db5, bior2.4,
bior3.1, bior6.8 and coif1.

4. Feature Classifications Using Gaussian
Mixture Model (GMM)

The Gaussian Mixture Model [5] method was used to classify
the speech samples into two classes: neutral and stressed.

For two classes: neutral and stressed, the class models λifor
j=1,2 were estimated using the Expectation Maximization (EM)
algorithm [5]. Then for each test utterance, sets {x̄n} of feature
vectors were calculated. The probability of each speaker model
given the feature sets, i.e., P ({x̄n}|λj) was calculated using
known Gaussian Mixture Model (GMM) pdfs. The class with
the highest probability max P ({x̄n}|λj) was then identified as
a source of the test utterance.

Table 2: Critical Bands used in TEO-CB analysis and PWP
bands used in TEO-PWP analysis.

Band Critical Bands Perceptual Wavelet Packet
Lower Upper BW Lower Upper BW

1 100 200 100 0 125 125

2 200 300 100 125 250 125

3 300 400 100 250 375 125

4 400 510 110 375 500 125

5 510 630 120 500 625 125

6 630 770 140 625 750 125

7 770 920 150 750 875 125

8 920 1080 160 875 1000 125

9 1080 1270 190 1000 1250 250

10 1270 1480 210 1250 1500 250

11 1480 1720 240 1500 1750 250

12 1720 2000 280 1750 2000 250

13 2000 2320 320 2000 2250 250

14 2320 2700 380 2250 2500 250

15 2700 3150 450 2500 3000 500

16 3150 3700 550 3000 3500 500

17 3500 4000 500

5. Training and Testing Data
The training and testing data were selected from the ”Single
Tracking Task” domain of SUSAS database [7]. The speech
recordings were made by 9 different speakers and included 35
aircraft communication words. Every word was repeated twice
by each speaker, under simulated stressed and neutral condi-
tions, thus generating a total of 1260 speech recordings. Be-
fore each run of the classification process, the entire set of 1260
recordings was randomly divided into the training set (1034
recordings) and testing set (126 recordings). Both sets con-
tained 50% of neutral speech recordings and 50% of stressed
speech recordings.

6. Subjective Listening Test
A subjective listening test was performed to estimate the human
classification level for the purpose of comparison. The test was
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performed using testing sets of speech recordings selected from
the same data that was used in the objective classification. Four
listeners (2 male and 2 female) were asked to listen to each of
the test words presented in random order and decide if it rep-
resented neutral speech or speech produced under stress. The
computer played the utterance with 3 second intervals between
every word. The test could be paused whenever the subjects
wanted to rest. No training program was offered before the test,
and no feedback about the classification results was provided
during the test. Table 3 contains the confusion matrix resulting
from the listening test.

Table 3: Confusion matrix produced by the listening test.

Actual Emotion Classified Emotion
Neutral Stressed

Neutral 86.03% 13.97%

Stressed 14.60% 85.40%

7. Objective Speaker-Independent
Classification

The Gaussian Mixture Model classifier was used to classify
the test set of words into two classes, neutral and stressed,
using 4 different feature selection methods. The classifica-
tion was performed using feature vectors obtained from TEO-
CB-Auto-Env, TEO-DWT-Auto-Env, TEO-WP-Auto-Env and
TEO-PWP-Auto-Env. The results are summarized in Tables 4-
5. For each method, the classification was run 10 times, each
time with different randomly selected training and testing sets.
The percentage of correct classifications was calculated as an
average of the 10 runs. The classification process had speaker-
independent character, the speaker identities were not taken into
account.

Table 4: The percentage of correct classificaiton .

Method Correct percentage

TEO-CB-Auto-Env 93.59%

Table 5: The percentage of correct classificaiton.

Mother Wavelet Methods
TEO-DWT TEO-WP TEO-PWP

db1 90.63% 88.10% 94.13%

db2 94.76% 87.38% 95.95%

db3 92.54% 88.73% 94.68%

db5 90.46% 92.06% 95.48%

bior2.4 94.05% 86.51% 94.52%

bior3.1 91.19% 90.24% 95.32%

bior6.8 89.13% 92.30% 95.79%

coif1 94.44% 90.16% 94.68%

8. Conclusions
Assuming that a speech signal has multi-component charac-
ter, and the speech production can be modelled as a nonlin-
ear process, characteristic features were derived for the purpose
of detecting the presence of stress in speech. One previously

known method [4] TEO-CB-Auto-Env, and three newly pro-
posed here feature extraction methods, TEO-DWT-Auto-Env,
TEO-WP-Auto-Env and TEO-PWP-Auto-Env, were tested.

The results show a 93.6% correct performance rate for
the TEO-CB-Auto-Env method. The newly introduced meth-
ods, TEO-DWT-Auto-Env, TEO-WP-Auto-Env and TEO-
PWP-Auto-Env, in general show very comparable performance
to TEO-CB-Auto-Env with correct classification rates ranging
from 86.5% to 95.8%.

As illustrated in Tables 4-5, the worse results were obtained
when using the DWT based feature extraction TEO-DWT-Auto-
Env. The performance in this case was below the TEO-CB-
Auto-Env level for all types of mother wavelets. When the
DWT was replaced by WP in TEO-WP-Auto-Env, the perfor-
mance for some types of mother wavelets become better than
for TEO-CB-Auto-Env. Further improvement of performance
was achieved by replacing the WP by PWP in TEO-PWP-Auto-
Env. The TEO-PWP-Auto-Env method clearly outperformed
the TEO-CB-Auto-Env method for all types of mother wavelets
and showed consistently the best overall performance out of all
four methods tested in this experiment.

It can also be observed that the subjective classification
level of about 86% was at the lowest performance level achieved
by any of the tested automatic classification methods.

The results indicate that the selection of characteristic fea-
tures from Critical Bands covering both the low and the high
frequency ranges is crucial for the purpose of stress recognition
in speech.
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