




ing industrial relevance because of their applications in
emulsification, wetting, phase separation, and viscosity reduc-
tion (18). Plasmid pESOX4 was used to insert the Ptac::dsz
cassette into the chromosome of P. aeruginosa PG201; how-
ever, as P. aeruginosa PG201 is kanamycin resistant, the
selection of recombinant cells after triparental filter mating
was carried out on BSM liquid medium supplemented with
0.2% citrate and DBT. The selection was performed in liq-
uid medium because the agar contains trace amounts of sul-
fur that allow growth of Dsz2 strains. After 5 days of incuba-
tion at 30°C, growth was observed and several P. aeruginosa
PG201::miniTn5Km(Ptac::dsz) transconjugants were isolat-

ed on M63 minimal medium plates supplemented with 0.2%
citrate. The desulfurization phenotype of one of these trans-
conjugants, hereafter designated P. aeruginosa EGSOX, was
confirmed by a sulfur bioavailability test. Like the parental
strain, P. aeruginosa EGSOX formed halos on blue-agar plates
(21), confirming the production of extracellular rhamnolipid
biosurfactants (data not shown).

The absence of plasmids in P. putida EGSOX and P. aerugi-
nosa EGSOX cells, and the results of a Southern blot experi-
ment (Fig. 3), demonstrated the chromosomal location of the
Ptac::dsz cassette in both recombinant strains. All these data
indicated, therefore, that the dsz cluster was functional when

FIG. 2. Scheme of construction of the pESOX series of plasmids. Plasmid pSAD225-32 has been described previously (5). DNA from R. erythropolis IGTS8 is shown
as hatched blocks. Thin arrows indicate the direction of transcription of the genes. Thick arrows represent the promoters. Vector-derived sequences are shown as broken
lines. The black blocks indicate the Shine-Dalgarno (SD) region of the dsz cluster. Pdsz, native promoter of the dsz cluster. The replication (rep and oriR6K) and RP4-mediated
mobilization functions (mob and oriTRP4) are also indicated. The letters I and O represent the 19-bp I and O terminal ends of Tn5. tnp*, gene devoid of NotI sites encoding
Tn5 transposase. Antibiotic resistances are indicated as follows: Apr, ampicillin; Kmr, kanamycin; Tcr, tetracycline. Only relevant restriction sites are shown.
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stably inserted in a single copy into the chromosomes of dif-
ferent Pseudomonas strains.

Figure 4 shows the time course of DBT desulfurization by
the two recombinant strains, P. putida EGSOX and P. aerugi-
nosa EGSOX, and the wild-type strain R. erythropolis IGTS8.

At 48 h of incubation, cultures of strain IGTS8 still showed the
presence of DBT; however, this compound was exhausted by
the two engineered Pseudomonas strains. P. aeruginosa EGSOX
showed the fastest metabolism of DBT: while this strain had
transformed 95% of the DBT at 24 h of incubation, only 18%
of the DBT was transformed by R. erythropolis IGTS8. Inter-
estingly, although P. putida EGSOX did not show any signifi-
cant increase in optical density at 600 nm after 24 h of incu-
bation (Fig. 4), it was able to consume 40% of the DBT, a
behavior that resembles a resting-cell process. Remarkably,
DBT depletion was concomitant with HBP accumulation in all
three strains, and the amount of this compound did not de-
crease during stationary-phase cultivation up to 5 days (data
not shown), indicating that, as already reported for strain
IGTS8 and other Dsz gram-positive bacteria (9), HBP is a
dead-end metabolite that cannot be further catabolized or
used as a carbon source. These data demonstrated that the
IGTS8-derived dsz cassette was efficiently expressed, allowing
the elimination of sulfur with no loss of the carbon atoms of
DBT, both in P. putida EGSOX and P. aeruginosa EGSOX.
Moreover, in comparison with the wild-type R. erythropolis
IGTS8 strain, the two recombinant biocatalysts described here
showed an enhanced biodesulfurization ability.

In summary, we have reported here that the dsz cluster from
the gram-positive bacterium R. erythropolis IGTS8 can be en-
gineered as a DNA cassette under the control of heterologous
regulatory signals and used in a single copy to expand the
ability of some Pseudomonas strains to efficiently desulfurize
DBT. The alleviation of the native sulfur repression of the dsz
cluster by heterologous regulation and the chromosomal loca-
tion of dsz, providing stability and containment, are relevant
features of the recombinant strains described here. Moreover,
we have constructed a Pseudomonas strain that combines two
traits of industrial interest, that is, a desulfurization phenotype
and the ability to produce a biosurfactant that should increase
the aqueous concentrations of hydrophobic compounds, result-
ing in higher mass transfer rates in two-liquid-phase bioreac-
tors (18). Nevertheless, since rhamnolipid production by P.
aeruginosa PG201 occurs with limiting concentrations of nitro-
gen and iron during late exponential and stationary phases of
growth (18), for checking the influence of these surfactants on
DBT desulfurization further research will be required. The
design of well-suited recombinant biocatalysts endowed with a
desulfurization phenotype offers, therefore, new alternatives
for the development of commercially viable desulfurization
processes.
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