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Keywords: Mixed and Augmented Reality, Motion Capture

Abstract: Cats and dogs being humanity’s favoured domestic pets occupy a large portion of the internet and of our
digital lives. However, augmented reality technology — while becoming pervasive for humans — has so
far mostly left out our beloved pets out of the picture due to limited enabling technology. While there are
well-established learning frameworks for human pose estimation, they mostly rely on large datasets of hand-
labelled images, such as Microsoft’s COCO (Lin et al., 2014) or facebook’s dense pose (Güler et al., 2018).
Labelling large datasets is time-consuming and expensive, and manually labelling 3D information is difficult
to do consistently. Our solution to these problem is to synthesize highly varied datasets of animals, together
with their corresponding 3D information such as pose. To generalize to various animals and breeds, as well as
to the real-world domain, we leverage domain randomization over traditional dimensions (background, color
variations and image transforms), but as well as with novel procedural appearance variations in breed, age and
species. We evaluate the validity of our approach on various benchmarks, and produced several 3D graphical
augmentations of real world cats and dogs using our fully synthetic approach.

Introduction

Augmented reality has the potential to enhance
our visual experience of the world with both use-
ful and entertaining information. In the case of ani-
mals, we could imagine sharing localized information
about our pets, or create amusing augmentations of
our favored animals performing stunts, agility park-
ours and everyday activities such as interrupting a
football game. Moreover, animal characters in movies
could be tracked and augmented during previs, or mo-
tion captured for CG re-enactment.

In order to be able to augment animals with 3D
graphical objects from a single RGB camera, we need
to be able to automatically estimate the 3D informa-
tion of the animal in the image. Due to extensive vari-
ability in breed, as well as fur appearance and shape,
animals are notoriously challenging to track.

While deep learning has allowed un-precedent
performance in monocular pose estimation, it
has been in large part thanks to large datasets
of hand-labelled images of humans, such as
the COCO (Lin et al., 2014) and the MPII
(Andriluka et al., 2014) datasets. The problem
with these methods is that first it requires vast
amounts of hand labelling efforts, and second it
is quite challenging to hand-label 3D information
consistently. In consequence, it cannot be used for

3D pose prediction.

In this paper we solve these problems by leverag-
ing the computer graphics toolbox and synthesizing a
large dataset of animals, labelled with full 3D skele-
ton and camera information. We then design and train
a custom deep neural network (DNN) to regress from
image to 3D pose. At run-time, we provide our net-
work with a real-world image, and retrieve the 3D in-
formation, which we use to add 3D graphical objects
on animals such as hats, wings and riders.

The biggest technical challenge with leveraging
synthetic data is to bridge the so-called reality gap:
the pixel-level difference between real world im-
ages and their synthetic counter-parts. DNNs tend
to over-fit onto particular features only seen in the
synthetic domain, and thereby struggle to general-
ize to real world data. To address this problem,
we employ the strategy of domain randomization
(Tobin et al., 2017). Thus in the data generation pro-
cess, we strongly vary dimensions like pose, shape,
texture, background, lighting, and camera viewpoint.
Another technical challenge to reach the desired 3D
augmentations lies in predicting 3D joint orientation
and positions that have a good overlay in the aug-
mented image space. While 2D tracking has shown
impressive results so far, the exact pixel positions are
often lost when going to a 3D pose. We address
this problem by designing a two step network, pro-
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Figure 1: Overview of the proposed approach, which can be divided into 3 basic groups: (red) The data generation process
which allows to create a large dataset of synthetic images with according pose information, 2D and 3D. (blue) The step of
training a neural network to go from synthetic images to the according pose. (green) Using the trained system to predict an
animal’s pose on real world footage, and using those poses to augment the footage with 3D digital assets.

ducing both 2D and 3D information, which can then
be used in an optimization step to create faithful 3D
poses from the camera’s viewpoint. As a result, our
network is able to generalize to real world data and
shows robustness to new environments, shapes, and
appearances. The optimized 3D poses are grounded
in the camera space allowing us to create entertaining
augmentations for cats and dogs in real-world scenar-
ios, as shown in Figure 7.

In Section 1, we discuss the data generation
pipeline, Section 2 addresses the network architec-
ture, and in Section 3 the augmentation of the animals
is explained.

Related Work

The vision of digitally augmenting the real
world was first introduced over fifty years ago
(Sutherland, 1968), and has since been revisited
countless times as progress in hardware, computer vi-
sion, and computer graphics continues to be made —
each time unlocking new possibilities for communi-
cation, education and entertainment.

Several augmentation concepts have already
been explored for humans around the body,
face and hair — allowing people to try vir-
tual make-up and glasses (Javornik et al., 2017),
hairs styles (Kemelmacher-Shlizerman, 2016),
and clothing (Rogge et al., 2014, Facecake, 2015,
Yang et al., 2016). To our knowledge, the only pets
augmentation is from SnapChat, which we believe
utilize a combination of 2D feature predictions

together with the phone’s gyroscope to create 3D
augmentation effects, but limited to front-facing dog
faces.

To augment animals with 3D objects, we need
to estimate their 3D pose. Many techniques for
animals build upon methodology developed for hu-
man tracking, more specifically 2D landmark or body
part estimation (Wei et al., 2016, Newell et al., 2016,
Cao et al., 2017, Xiao et al., 2018) from RGB im-
ages. A large dataset of images — typically hand-
labelled with 2D body part locations — is used to
train a multi-stage deep convolutional neural network
(DCNN) to predict the confidence location map of
each joint or landmark; each stage improving the pre-
dictions.

For 3D pose estimation, it is common to train
a separate network to go from 2D-to-3D joint lo-
cations (Chen and Ramanan, 2017, Tomè et al., 2017,
Martinez et al., 2017, Pavllo et al., 2019). We build
upon this work and extend it to our use case of
animal tracking as described in Section 2.2. An-
other line of work extends the convolutional net-
work to predict volumetric 3D joint confidence maps
(Pavlakos et al., 2016, Mehta et al., 2017), and then
optimizes for a kinematic skeleton to match the 3D
predictions (Mehta et al., 2017). However, this ap-
proach lacks limb orientation, and the sparse set of
landmarks can easily loose track of the 3D orienta-
tion of the limbs; which could be attenuated by op-
timizing for a mesh instead of a kinematic skeleton
(Xu et al., 2018).

Seeing the progress in human pose estimation,
biologists have integrated deep learning based ap-



proaches to track and measure the movements of an-
imals and insects (Kays et al., 2015). Most work in
this area is focused on labelling tools for 2D pre-
dictions (Graving et al., 2019, Pereira et al., 2018).
Some work has focused on modeling the shape of an-
imals (Zuf� et al., 2016) from scans of toy �gurines,
optimizing for 3D shapes to match 2D joint esti-
mations (Biggs et al., 2018) and capturing their tex-
ture from video footage (Zuf� et al., 2018). Recent
work combine those approaches in a deep learning
framework to estimate Zebra pose, shape and texture
(Zuf� et al., 2019) or try to leverage the progress in
human pose estimation by transferring it to animals
using domain adaptation (Cao et al., 2019).

To avoid manually labelling images, as
well as to overcome the challenge of labelling
3D information, many works, both for hu-
mans (Chen et al., 2016, Varol et al., 2017,
Xu et al., 2019) and animals (Biggs et al., 2018,
Mu et al., 2019, Zuf� et al., 2019) have explored
generating synthetic datasets.

(Mu et al., 2019) use 3D models to label the im-
ages with 2D landmarks, and devised a learning
scheme to bridge the reality gap. (Chen et al., 2016)
estimate a 3D skeleton from 2D image features, and
they include a domain similarity loss to help steer the
feature extractor extrapolate to real world imagery. To
avoid dealing with the reality gap, (Biggs et al., 2018)
create a dataset of silhouettes and regress from silhou-
ettes to 2D keypoints. This unfortunately only per-
forms as good as the given silhouette estimator.

Another way to address the reality gap is by
so-calleddomain randomization(Tobin et al., 2017)
— to add noise and variations to the dataset to
avoid over-�tting. Domain randomization has been
shown to achieve state-of-the-art accuracy for car de-
tection (Tremblay et al., 2018, Khirodkar et al., 2018,
Prakash et al., 2019), and has unlocked the possibility
to use in the real world. In this work, we extend this
principle to articulated �gures such as animals.

Overview

The core of our approach is a 3D pose predictor
from an RGB image. Our overall approach is summa-
rized in Figure 1. While deep neural networks provide
state-of-the-art performance for monocular pose esti-
mation, several problems must be overcome in order
to be able to track and augment animals.

First, there are no publicly available datasets of
animals labeled with 3D skeletons. To solve the data
problem, we create a highly varied synthetic dataset
of animal images, labeled with 3D information — the

red area in Figure 1. The details of this process are
discussed in Section 1.

Second, directly regressing from the 2D image do-
main to accurate 3D skeletons remains to this day a
challenging task. Two strategies help improve our ac-
curacy (blue area in Figure 1). First to perform as
much processing as possible in the image domain.
Hence we predict 2D joint locations and bone direc-
tions as 2D activation maps (Section 2.1), before re-
gressing to 3D. The second strategy is to avoid unnec-
essary correlations between the 6D rigid (root) pre-
diction and the rest of the body joints, as described in
Section 2.2.

The third problem comes from limited GPU mem-
ory, which does not allow processing large image
frames in real-time. We solve this by estimating a
2D crop when sequentially processing videos. How-
ever, the local crop causes our 3D predictions to be
in many differentvirtual cameras, as opposed to the
footage-capturing camera. To solve this problem, we
optimize for a 3D skeleton in the footage-capturing
camera space, that seeks to match the 2D predictions,
while remaining as similar as possible to the 3D pre-
dictions, which is detailed in Section 3. Finally at
run-time we attach 3D objects onto the optimized 3D
skeleton, as shown in the green area of Figure 1.

1 Data Generation

Our approach leverages modern computer graph-
ics to create a realistic dataset of imagesI labelled
with 3D skeleton informationX;Q in camera space,
with X representing skeleton coordinates andQ the
pose (represented as quaternions). The main chal-
lenge for creating realistic images of cats and dogs,
lies in their vast variability when it comes to appear-
ance, shape, pose, lighting conditions, and environ-
ment. Thus, for any learning framework, over-�tting
on a speci�c animal — not to mention on a synthetic
one — is a serious challenge. Additionally, due to the
approximate nature of the 3D assets and the rendering
algorithms, the learning framework is challenged by a
so-calleddomain gap, i.e. the difference between the
synthetic training data to the real world test data.

To address the domain gap and over-�tting prob-
lems, we leverage the principle ofdomain ran-
domization(Tobin et al., 2017, Tremblay et al., 2018,
Khirodkar et al., 2018). Hence, we programmatically
introduce a large amount of variability in the most sig-
ni�cant dimensions of the dataset, i.e. texture, shape,
pose, lighting, and context (or scene background).

This domain randomization can be seen as a reg-
ularization or alternatively, as as a vast expansion of



Figure 2: Overview of the data generation pipeline: The pipeline can be split in a 3D part (green) and a 2D part (blue): a) a 3D
asset (including mesh, blendshapes, poses, materials), and b) a randomization process where those components are sampled
to create a large variation of appearances. Additionally, the scene and camera settings are sampled, leading to the rendered
images that are stored together with the pose data (grey). c) During training, standard image augmentations are applied in
image space.

the training data distribution that reduces the distance
to the real world distribution. Randomizing shape,
pose, appearance and lighting requires 3D informa-
tion and is therefore applied during the animal ren-
dering procedure (Section 1.1). Besides this 3D ran-
domization we apply standard 2D image augmenta-
tion techniques such as color space transforms and 2D
geometric transforms during training directly in im-
age space (Section 1.2). Without the 2D/3D random-
ization the model would over�t to the few synthetic
animals and not generalize to images of real animals.
The overall data generation process is summarized in
Figure 2.

1.1 3D Randomization

We utilize a 3D game engine for fast rendering and
fast iterations over our datasets. For this purpose,
we parameterize the shape and pose of animals with
parametersb andQ respectively for shape and pose.
Such a parameterization is compatible with real-time
game engine rigs, which typically offer only blend
shapes and linear blend skinning (LBS) as shape pa-
rameterizations.

1.1.1 Shape Parameterization

Our approach starts with a 3D mesh of an animal in
a rest poseV0, whose shape variationsDVj ( j differ-
ent entire meshes) have been hand-crafted for differ-
ent breeds, age, muscle, fat, bone, etc. We purchased
these models on the DAZ platform (DAZ, 2019).

Unlike a small local shape variation such as a
muscle bulge, our shape variations for breed and age
affect the entire proportions of the mesh, including
its underlying skeleton. Hence to remain compatible
with LBS, we parameterize the skeleton coordinates
X w.r.t. surrounding mesh vertices, which are being
deformed by blend shape parametersb j as follows:
V = V0 + å j b jDVj . For each jointi we choose to lin-
early map theL closest verticesV i to the joint position
xi . Hence, we take those mesh vertices in the rest pose
V i

0 with the corresponding joint positionxi
0 and solve

a linear least squares problem:kAi V i
0 + bi � xi

0k w.r.t.
Ai andbi . Given a deformed meshV, the joint posi-
tions can then be determined as:xi = AiV i + bi , using
the precomputedAi andbi .

Following our principles of domain randomiza-
tion, we sample shape parametersb in a broad range,
which not only cover the original artist-intended
species, but also various blends between them.

1.1.2 Pose Sampling

In order to robustly track animals in their everyday
life, the training data needs to re�ect the poses ani-
mals tend to perform. Since motion capturing animals
is cumbersome, expensive and often times danger-
ous, we pursue a strategy to leveraging only a sparse
set of poses, such as a hand-crafted dataset of about
200 distinct poses; purchased on the DAZ platform
(DAZ, 2019).

To sample pose variations, we model a pose dis-
tribution using principal component analysis (PCA).
The resulting pose vector is then sampled asQ = P� t


