Is "Being Green" Rewarded in the Market? An Empirical Investigation of Decarbonization Risk and Stock Returns 40TH IAEE INTERNATIONAL CONFERENCE JUNE 19, 2017 Soh Young In, Stanford University Ki Young Park, Yonsei University Ashby Monk, Stanford Global Projects Center ## Main Findings This study empirically examines the relationship among firmlevel carbon intensity, firm characteristics, and stock returns. - Based on 75,638 observations of U.S. firms from 2005 to 2015, we construct EMI ("[carbon] efficient-minusinefficient") portfolio based on firm-level carbon intensity. - We find that EMI portfolio exhibits a large positive cumulative return since 2009. - Using multi-factor asset pricing models, we find that EMI portfolio is not well priced by well-known risk factors (market, size, value, operating profitability, investment, and momentum) ## Main Findings (cont'd) - By estimating factor-loadings of industry portfolios, we find that EMI portfolio has explanatory power that is independent from well-known risk factors. - □ Carbon-efficient firms tend to be those with lower book-to-market ratios, higher ROA, higher Tobin's q, higher free cash flows and cash holdings, higher coverage ratios, lower leverage ratios, and higher dividend payout ratios. ## Road Map - 1 Motivation - 2 Related Literature - 3 Data and Methodology - 4 Empirical Findings and Discussion - **5** Conclusion and Future Directions #### **Motivation** - □ investors lack understanding of market evaluation of firm's decarbonization actions → investment barrier - What kinds of firms are efficient or inefficient in terms of carbon emission? - What does it mean to invest in carbon-efficient firms? #### Literature Review How EP (environmental performance) and FP (financial performance) are related? - □ "Traditionalist" view: corporate EP is not compatible with profit maximization → (-) relationship - □ "Revisionist" view: EP can be a source of a firm's competitiveness → (+) relationship - □ "Neo-classical" view: The relationship can be (+) or (-) depending other factors (regulation, governance, etc) - ☐ Thus, it can be an empirical question and is important to address endogeneity problem ### **Empirical Approaches** - Event studies - Events include oil spills, law violation, etc - Not easy to generalize the results - Typical regression analysis - Effect of ESG-related effort on cost of capital, firm value, etc - Need to address endogenity issues - Asset pricing models - Cohen et al. (1995): "environmental leaders" outperform "environmental laggards" - Puopolo et al. (2015): no linear relationship between green standard and stock returns - ET Index Research (2015): EMI ("efficient-minus-intensive") portfolio exhibits a large positive cumulative return from 2009 ## Distinct Value of this Study Different from previous studies, - we measure carbon intensity based on the actual amount of GHG emissions, not self-reported ESG ratings. - we apply multi-factor asset pricing models with a broader set of factors - we examine the firm-level characteristics that earns extra returns in stock market (ongoing subject) #### **Data Description** - Sample: - 75,638 observations of 739 U.S. firms during January 2005 – December 2015 - Data: - Trucost for carbon intensity - KLD (Kinder, Lydenberg, Domini and Company) for ESG ratings - Compustat for financial variables - CRSP for stock prices/returns - Fama-French website ### Key Variables - Measures of firm's carbon intensity: - Absolute GHG emissions: direct emissions from operations (Scope 1), indirect emission from purchased electricity (Scope 2) and other supply chain emissions (Scope 3) - Carbon intensity: absolute GHG emissions divided by revenue - External cost: sum of direct and indirect external cost of carbon emission - Impact ratio: external cost/revenue # Summary Statistics, by Industry | | (1) | (2) | (3) | (4) | (5) | (6) | | |------------------------|---------|--------------|--------------|-------------|----------|--------|-------| | | Scope 1 | Scope 1 | Scope 2 | Scope 3 | External | Impact | N | | GICS industry sectors | (CO2e) | (CO2e/\$mil) | (CO2e/\$mil) | (CO2e/\$mil |) cost | ratio | | | Consumer Discretionary | 23,654 | 19.83 | 36.68 | 142.98 | 84.88 | 0.70 | 1,303 | | Consumer Staples | 22,106 | 42.57 | 41.39 | 446.69 | 428.11 | 1.86 | 410 | | Energy | 22,266 | 444.38 | 59.58 | 215.24 | 598.96 | 2.53 | 544 | | Financials | 22,739 | 2.94 | 7.41 | 37.93 | 18.22 | 0.17 | 1,029 | | Health Care | 22,338 | 16.69 | 18.47 | 101.50 | 61.07 | 0.48 | 685 | | Industrials | 22,024 | 157.58 | 22.70 | 213.25 | 139.11 | 1.40 | 1,193 | | Information Tech | 22,452 | 14.84 | 22.79 | 99.53 | 39.37 | 0.48 | 1,041 | | Materials | 22,362 | 498.39 | 174.11 | 424.63 | 326.56 | 4.01 | 561 | | Real Estate | 22,732 | 30.16 | 59.72 | 54.85 | 13.38 | 0.51 | 422 | | Telecommunication | 19,123 | 7.45 | 29.69 | 54.54 | 91.11 | 0.32 | 132 | | Utilities | 22,680 | 3,780.87 | 96.37 | 319.19 | 1,096.75 | 14.73 | 472 | | Total | 22,550 | 331.21 | 43.71 | 176.12 | 205.08 | 1.95 | 7,792 | ### Research Design EMI Portfolio & its Market Performance Sort stocks into 10 market capitalization groups and 3 carbon intensity groups at the end of each month, and construct the EMI portfolio Pricing EMI Portfolio with Risk Factors - Perform GRS test to see if well-known risk factors can price the EMI portfolio. - Models of consideration: CAPM model, Fama-French 3factor model, Fama-French 4-factor model, and Fama-French 5-factor model Industry Portfolios & Bivariate-Sorted Portfolios Estimate the factor loadings of 12 industry portfolios to see if EMI portfolio can explain industry portfolio Carbon Intensity & Firm Characteristics Examine the average values of firm-level characteristics (e.g. financial, managerial) by quartiles defined by four decarbonization variables ## Constructing EMI Portfolio - We define carbon intensity as (GHG emission/revenue) to adjust for a firm's size → low carbon intensity implies 'efficient' firms - We sort stocks into 10 market capitalization groups and 3 carbon intensity groups at the end of each month, and construct the EMI portfolio: EMI = 0.5*(small efficient + big efficient)- 0.5*(small inefficient + big inefficient) - By double-sorting on size and carbon intensity, we attempt to address the industry-specific carbon intensity - We also use different definitions of EMI portfolio #### Performance of EMI Portfolio ■ With varying definitions of EMI portfolios, they exhibit large positive cumulative returns, especially from 2009 #### **GRS Test** - ☐ Is it alpha? Or compensation for bearing additional risk? - We use market excess return, SMB, HML, RMW, CMA, WML to capture the risk (or styles) related to beta, size, value, operating profitability, investment, and momentum → CAPM, Fama-French 3-factor, FF3 + momentum, FF 5-factor model $$EMI_t - r_{ft} = \alpha + b(r_{Mt} - r_{ft}) + e_t$$ $$EMI_t - r_{ft} = \alpha + b(r_{Mt} - r_{ft}) + sSMB_t + hHML_t + e_t$$ $$EMI_t - r_{ft} = \alpha + b(r_{Mt} - r_{ft}) + sSMB_t + hHML_t + mWML_t + e_t$$ $$EMI_t - r_{ft} = \alpha + b(r_{Mt} - r_{ft}) + sSMB_t + hHML_t + rRMW_t + cCMA_t + e_t$$ #### **GRS Test** ☐ From 2009, an investment strategy that purchases shares of efficient firms and sells shares of inefficient firms earns abnormal returns of 7.7~8.9 percent per year. | | Sample period: 2009m1-2015m12 | | | | | | |----------------------|-------------------------------|---------|---------|---------|--|--| | Market excess return | 0.076 | 0.135 | 0.108 | 0.099 | | | | | (0.90) | (1.42) | (1.22) | (1.08) | | | | SMB (size) | | -0.075 | -0.072 | -0.118 | | | | | | (0.62) | (0.58) | (0.98) | | | | HML (B/M) | | -0.142 | -0.220* | -0.054 | | | | | | (1.17) | (1.75) | (0.29) | | | | WML (momentum) | | | -0.120* | | | | | | | | (1.71) | | | | | RMW (profitability) | | | | -0.276* | | | | | | | | (1.71) | | | | CMA (investment) | | | | -0.341 | | | | | | | | (0.88) | | | | Alpha | 0.736** | 0.643** | 0.628** | 0.743** | | | | | (2.67) | (2.29) | (2.27) | (2.56) | | | | R^2 | 0.014 | 0.035 | 0.078 | 0.076 | | | | N | 84 | 84 | 84 | 84 | | | #### Can EMI Price Other Portfolio Returns? - EMI portfolio prices industry portfolios even in the presence of well-known risk factors - □ For carbon-intensive industries such as utilities, energy, and manufacturing, we obtain negative factor loadings on EMI portfolio. | | nodur | durbl | manuf | enrgy | chms | busq | |----------------|----------|----------|----------|----------|----------|----------| | Mktrf | 0.76*** | 1.44*** | 1.28*** | 1.21*** | 0.99*** | 1.12*** | | | (17.26) | (12.66) | (26.70) | (12.86) | (21.09) | (26.99) | | SMB | -0.23*** | 0.72*** | 0.29*** | 0.00 | -0.13 | 0.12 | | | (2.98) | (3.10) | (3.66) | 0.00 | (1.58) | (1.58) | | HML | -0.06 | 0.18 | 0.01 | -0.02 | 0.01 | -0.38*** | | | (0.71) | (0.94) | (0.15) | (0.08) | (0.12) | (4.79) | | RMW | 0.25** | 0.2 | 0.12 | 0.27 | 0.19 | -0.01 | | | (2.15) | (0.54) | (0.96) | (1.17) | (1.56) | (0.06) | | CMA | 0.24* | 0.14 | -0.12 | -0.52** | 0.08 | -0.14 | | | (1.67) | (0.49) | (0.98) | (2.00) | (0.47) | (1.08) | | EMI | 0.06 | 0.09 | -0.16*** | -0.95*** | -0.08 | 0.21*** | | | (1.14) | (0.87) | (3.71) | (7.88) | (1.30) | (4.76) | | alpha | 0.28* | -0.45 | 0.02 | 0.17 | 0.08 | -0.04 | | | (1.80) | (-1.42) | (0.10) | (0.48) | (0.48) | (0.23) | | \mathbb{R}^2 | 0.77 | 0.78 | 0.92 | 0.68 | 0.85 | 0.91 | | | tlcm | utils | shops | health | money | othr | | Mktrf | 1.04*** | 0.68*** | 0.83*** | 0.71*** | 1.02*** | 1.11*** | | | (20.30) | (8.15) | (16.94) | (10.53) | (20.54) | (28.82) | | SMB | -0.06 | -0.15 | 0.26*** | -0.16 | -0.16* | 0.08 | | | (0.76) | (1.13) | (2.77) | (1.38) | (1.95) | (1.14) | | HML | -0.15 | -0.28** | -0.07 | -0.24* | 0.83*** | 0.14** | | | (1.55) | (1.98) | (0.88) | (1.96) | (8.41) | (2.00) | | RMW | 0.37*** | 0.14 | 0.46*** | -0.35** | -0.44*** | 0.08 | | | (2.79) | (0.72) | (3.48) | (2.39) | (3.62) | (0.82) | | CMA | 0.46*** | 0.31* | 0.23 | 0.21 | -0.32** | 0.22** | | | (3.11) | (1.68) | (1.55) | (1.25) | (2.16) | (2.16) | | EMI | 0.06 | -0.26*** | 0.21*** | 0.06 | 0.19*** | 0.06 | | | (0.86) | (3.39) | (3.39) | (0.90) | (3.07) | (1.53) | | alpha | -0.05 | 0.26 | 0.08 | 0.46** | -0.2 | -0.24* | | | (0.28) | (0.94) | (0.44) | (2.19) | (1.21) | (1.94) | | \mathbb{R}^2 | 0.83 | 0.44 | 0.81 | 0.65 | 0.92 | 0.93 | #### What Drives Positive Alphas? - Are carbon-efficient firms better firms? Or riskier firms? - In what senses? - Carbon-efficient firms tend to be those with lower book-tomarket ratios, higher ROA, higher Tobin's q, higher free cash flows and cash holdings, higher coverage ratios, lower leverage ratios, and higher dividend payout ratios. # Carbon Intensity and Firm Characteristics | | Scope (sum of scope 1, 2, & 3, divided by revenue) | | | | | |------------------------------|--|----------|----------|--------------|----------| | | Q1 (lowest) | Q2 | Q3 | Q4 (highest) | Average | | Size (market capitalization) | 15,754.4 | 15,264.7 | 11,657.4 | 20,000.9 | 15,670.1 | | Book-to-market ratio | 0.375 | 0.382 | 0.418 | 0.542 | 0.430 | | ROA | 0.069 | 0.062 | 0.062 | 0.049 | 0.060 | | ROE | 0.038 | 0.029 | 0.033 | 0.048 | 0.037 | | ROI | 0.113 | 0.099 | 0.102 | 0.078 | 0.098 | | Tobin's q | 2.376 | 2.338 | 2.059 | 1.562 | 2.084 | | Capital intensity | 0.036 | 0.045 | 0.063 | 0.075 | 0.055 | | Cash flow | 0.107 | 0.099 | 0.104 | 0.092 | 0.100 | | Free cash flow | 0.089 | 0.074 | 0.059 | 0.032 | 0.063 | | Cash holdings | 0.184 | 0.168 | 0.123 | 0.059 | 0.134 | | Coverage ratio | 59.371 | 57.571 | 35.820 | 15.970 | 41.572 | | Earnings per share (EPS) | 2.263 | 2.162 | 2.366 | 2.770 | 2.390 | | Leverage ratio | 0.880 | 0.909 | 1.031 | 1.063 | 0.971 | | Dividend payout ratio | 0.900 | 0.783 | 0.687 | 0.634 | 0.751 | | Tangible asset | 0.161 | 0.246 | 0.297 | 0.514 | 0.304 | | R&D intensity | 0.050 | 0.051 | 0.032 | 0.013 | 0.040 | | AD intensity | 0.036 | 0.022 | 0.029 | 0.029 | 0.029 | | Environmental strength | 0.398 | 0.727 | 0.696 | 0.942 | 0.692 | | Environmental concern | 0.045 | 0.237 | 0.393 | 1.232 | 0.481 | | Governance strength | 0.131 | 0.188 | 0.169 | 0.267 | 0.189 | | Governance concern | 0.675 | 0.666 | 0.549 | 0.535 | 0.606 | #### **Future Research Directions** - In what mechanisms do those carbon-efficient firms outperform in stock markets? - ☐ Is it related to unidentified risk? Or is it related to governance and other characteristics? ## **Implications** The presenter acknowledges the support of the Portfolio Decarbonization Coalition (PDC), United Nations Environmental Programme Finance Initiative (UNEP FI), Trucost, and Stanford Global Projects Center. The full-length paper is accessible through: https://gpc.stanford.edu/publications/being-green-rewarded-market-empirical-investigation-decarbonization-risk-and-stock Contact email: si2131@stanford.edu