A short proof and generalization of Lagrange’s theorem on continued fractions

Sam Northshield

Abstract

We present a short new proof that the continued fraction of a quadratic irrational eventually repeats. The proof easily generalizes; we construct a large class of functions which, when iterated, must eventually repeat when starting with a quadratic irrational.

1 Introduction.

A quadratic irrational is an irrational root of a quadratic polynomial with integer coefficients. Lagrange’s theorem on continued fractions – that any positive quadratic irrational has an eventually repeating continued fraction – has many proofs. Perhaps the most common proof is one by Charves which can be found in a book by Hardy and Wright [1, Theorem 177]. Many other proofs exist of course; a particularly short proof appears in the book by Hensley [2, p. 9] and a more general result appears in a recent paper by Panti [3]. We present a short new proof which leads to a new generalization.

2 Lagrange’s Theorem.

Let \((a_0, a_1, a_2, \ldots) := a_0 + 1/(a_1 + 1/(a_2 + 1/\ldots))\) where each \(a_i\) is an integer and, for some \(N\), \(a_i = 0\) for \(i < N\) and \(a_i > 0\) for \(i \geq N\). This, of course, is not quite the standard notation for continued fractions. In particular, there are infinitely many representations for a given number. However, if \((0, 0, \ldots, a_N, a_{N+1} \ldots) = (0, 0, \ldots, b_M, b_{M+1} \ldots)\) where \(a_N > 0\) and \(b_M > 0\), then \(M - N\) is even and \(b_{M+k} = a_{N+k}\) for all \(k\). Define a function on positive real numbers by

\[
f(x) := \begin{cases}
 x - 1 & \text{if } x \geq 1, \\
 x/(1 - x) & \text{if } x < 1.
\end{cases}
\]

Note that \((0, 0, \ldots, a_N, a_{N+1} \ldots) > 1\) if and only if \(N\), the number of zeros, is even and, in general,

\[f((0, 0, \ldots, a_N, a_{N+1} \ldots)) = (0, 0, \ldots, 0, a_N - 1, a_{N+1}, \ldots).\]
Iteration of f then chips away at the leftmost nonzero integer in $\langle a_0, a_1, a_2, \ldots \rangle$, reducing it by one in each step.

Suppose x is a positive quadratic irrational. Then x is irrational and there exist integers a, b, c such that $ax^2 + bx + c = 0$. We use the notation $x \in [a, b, c]$ for this. It is then easy to verify that

$$a(x - 1)^2 + (2a + b)(x - 1) + (a + b + c) = ax^2 + bx + c = 0$$

and

$$(a + b + c)x^2 + (b + 2c)x(1 - x) + c(1 - x)^2 = ax^2 + bx + c = 0,$$

and thus

$$f(x) \in [a, 2a + b, a + b + c] \text{ or } f(x) \in [a + b + c, b + 2c, c].$$

Let $x_1 := x$ and, for $n \geq 1$, $x_{n+1} := f(x_n)$. Then (x_n) is a sequence of quadratic irrationals and so determines an infinite sequence of triples: $x_n \in [s_n, t_n, u_n]$ where we may assume, without loss of generality, that $s_n > 0$ (since $y \in [s, t, u]$ if and only if $y \in [-s, -t, -u]$). Since

$$(2a + b)^2 - 4a(a + b + c) = b^2 - 4ac = (b + 2c)^2 - 4(a + b + c)c,$$

we see that $t_n^2 - 4s_n u_n$ is independent of n.

If only finitely many of the triples $[s_n, t_n, u_n]$ have $u_n < 0$, then from some point on, $s_n, u_n > 0$ and, consequently, $t_n < 0$ (because $x_n > 0$). This is impossible since $(s_n - t_n + u_n)$ would then be strictly decreasing and nonnegative. Therefore, $s_nu_n < 0$ infinitely often and, since $t_n^2 - 4s_n u_n$ is constant, there must be a triple which appears three times in the sequence $([s_n, t_n, u_n])$. Hence $x_n = x_m$ for some m and n satisfying $m > n$. If $x = \langle a_0, a_1, a_2, \ldots \rangle$ then x_n is of the form $\langle 0, \ldots, 0, b, a_i, a_{i+1}, \ldots \rangle$ and x_m is of the form $\langle 0, \ldots, 0, c, a_j, a_{j+1}, \ldots \rangle$ where $b > 0, c > 0, j > i$. Since these are equal, the difference $j - i$ is positive and even and so $b = c$ and, for all k, $a_{j+k} = a_{i+k}$. That is, the sequence a_k is eventually periodic and we have Lagrange’s theorem:

Theorem 1. If x is a positive quadratic irrational then its continued fraction is eventually periodic.

3 Generalizations.

There are only three facts about f necessary so that if x is a quadratic irrational then x_n eventually repeats. They are that f takes positive numbers to positive numbers, that for any of the corresponding triples $[s_n, t_n, u_n]$, $t_n^2 - 4s_n u_n$ is independent of n, and that whenever $s_n u_n > 0$ and $s_{n+1} u_{n+1} > 0$, $|s_{n+1}| + |t_{n+1}| + |u_{n+1}| \leq |s_n| + |t_n| + |u_n|$.

We say that a function is *regular* if it is a fractional linear transformation $(ax + b)/(cx + d)$ where a, b, c, d are integers satisfying $|ad - bc| = 1$, $(a - b)(d - c) > 0$, and there exists $t > 0$ such that $(at + b)/(ct + d) > 0$. (This last condition, although made redundant by the hypotheses of the next two theorems, will be useful later.) We then have:
Theorem 2. Let \(f : (0, \infty) \to (0, \infty) \) be any function which is piecewise regular. If \(x \) is a positive quadratic irrational then the iterates of \(f \), starting at \(x \), eventually repeat.

Proof. It is not hard to verify that for any \(s, t, u, a, b, c, d \), if \(S = d^2s - cdt + c^2u \), \(T = -2bds + (ad + bc)t - 2acu \), and \(U = b^2s - abt + a^2u \), then

\[
t^2 - 4su = (ad - bc)^2(T^2 - 4SU)
\]

and

\[
S(ax + b)^2 + T(ax + b)(cx + d) + U(cx + d)^2 = (ad - bc)^2(sx^2 + tx + u).
\]

Suppose \(x \) is a quadratic irrational, so that there exist integers \(s, t, u \) such that \(sx^2 + tx + u = 0 \). Then for \(S, T, U \) as defined above,

\[
S \left(\frac{ax + b}{cx + d} \right)^2 + T \left(\frac{ax + b}{cx + d} \right) + U = 0.
\] (1)

Let \(x_1 := x \) and, for \(n \geq 1 \), \(x_{n+1} = f(x_n) \). By the hypothesis of the theorem, if \(x_n \in [s_n, t_n, u_n] \), then \(x_{n+1} \in [s_{n+1}, t_{n+1}, u_{n+1}] \) where \(t_{n+1}^2 - 4s_{n+1}u_{n+1} = t_n^2 - 4s_nu_n \). Since there are only finitely many triples \([a, b, c] \) where \(b^2 - 4ac \) is bounded and \(ac < 0 \), either there exist \(i, j, k \) such that \(i < j < k \) and \([s_i, t_i, u_i] = [s_j, t_j, u_j] = [s_k, t_k, u_k] \) (hence, at least two of \(s_i, x_j, s_k \) agree) or \(s_nu_n > 0 \) for all sufficiently large \(n \).

Suppose \(x \in [s, t, u] \) and \(f(x) = (ax + b)/(cx + d) \). Let \(S = d^2s - cdt + c^2u \), \(T = -2bds + (ad + bc)t - 2acu \), and \(U = b^2s - abt + a^2u \) so that \(f(x) \in [S, T, U] \). It is not hard to verify that, since \(|ad - bc| = 1 \),

\[
s - t + u = (a - b)^2S - (a - b)(d - c)T + (c - d)^2U.
\] (2)

Now suppose that \(SU, su > 0 \). Then since \(x \) and \(f(x) \) are positive, \(t \) must have the opposite sign from \(s \) and \(u \), and \(T \) must have the opposite sign from \(S \) and \(U \). Also, since \((a - b)(d - c) \geq 1 \), we must have \((a - b)^2 \geq 1 \) and \((c - d)^2 \geq 1 \). Therefore,

\[
|s| + |t| + |u| = |s - t + u| = |(a - b)^2S - (a - b)(d - c)T + (c - d)^2U| = (a - b)^2|S| + (a - b)(d - c)|T| + (c - d)^2|U| \geq |S| + |T| + |U|.
\] (3)

Since there are only finitely many triples \([a, b, c]\) where \(|a| + |b| + |c|\) is bounded, there must exist \(i, j, k \) such that \(i < j < k \) and \([s_i, t_i, u_i] = [s_j, t_j, u_j] = [s_k, t_k, u_k] \). Hence, at least two of \(s_i, x_j, s_k \) agree and the result follows. \(\square \)

Example 1. If \(f(x) = \{1/x\} \) (where \(\{x\} \) denotes the fractional part of \(x \); this \(f \) is usually called the Gauss map) and \(x \) is a positive quadratic irrational then the iterates of \(f \) eventually repeat.

Example 2. If \(f(x) = \{x\}/(1 - \{x\}) \) and \(x \) is a positive quadratic irrational then the iterates of \(f \) eventually repeat.
We may extend further; the proof of the following theorem is essentially contained in that of Theorem 2 and is left to the reader.

Theorem 3. Let \(f_1, f_2, \ldots \) be any sequence of regular functions. Given \(x \), define a sequence recursively by \(x_1 := x \) and, for \(n \geq 1 \), \(x_{n+1} = f_n(x_n) \). If \(x \) is a positive quadratic irrational and \(x_n > 0 \) for all \(n \), then there exist distinct \(j, k \) such that \(x_j = x_k \).

Example 3. For any \(n \), choose one of the two functions \(\{1/x\} \) or \(\{x\}/(1-\{x\}) \) at random and so form a random sequence \(f_n \). For any positive quadratic irrational \(x \), the sequence \((x_n) \) defined by \(x_1 := x \) and \(x_{n+1} := f_n(x_n) \) satisfies \(x_j = x_k \) for some pair of distinct integers \(j, k \).

4 Understanding Regular Functions.

Recall \(\text{PGL}_2(\mathbb{Z}) \) can be taken to be the group of linear fractional transformations \((ax + b)/(cx + d) \) where \(a, b, c, d \in \mathbb{Z} \) and \(ad - bc = \pm 1 \). A function \(g(x) \) is then regular if it is an element of \(\text{PGL}_2(\mathbb{Z}) \) such that \(g(-1) < 0 \) and there exists \(t > 0 \) such that \(g(t) > 0 \). It turns out, by a careful consideration of several cases, that if \(g \) is regular then \(g(s) < 0 \) for all \(s < 0 \). Since \(g \) takes on all values except possibly \(\lim_{x \to -\infty} g(x) \), which is nonpositive, the range of \(g \) must contain all positive numbers. It follows that the set of regular functions is closed under composition.

We may then classify all regular functions. First, \(g \) is regular with determinant \(-1\) if and only if \(1/g \) is regular with determinant \(1 \); it is then enough to classify regular functions in \(\text{SL}_2(\mathbb{Z}) \). Given \(a, b \) positive and relatively prime, let \(a' := a^{-1} \pmod{b} \) and \(b' := b^{-1} \pmod{a} \) (e.g., \(a' \) is the unique number between 1 and \(b \) satisfying \(aa' \equiv 1 \pmod{b} \)) and define

\[
g_{a/b}(x) := \frac{a'x + b' - a}{(a' - b)x + b'}.
\]

It is not hard to show that \(aa' + bb' = ab + 1 \) and that \(g_{a/b} \) is regular and in \(\text{SL}_2(\mathbb{Z}) \). Conversely, every regular function \(g \) in \(\text{SL}_2(\mathbb{Z}) \) is of that form! To see this, note that \(g(x) = 1 \) has a positive solution since \(g(s) < 0 \) for all \(s < 0 \). Hence \(g^{-1}(1) = a/b \) for some positive relatively prime \(a \) and \(b \). Suppose \(g(x) = (sx + t)/(ux + v) \). Since \(g(a/b) = 1 \), there exists \(c \) such that \(sa + tb = c = ua + vb \) and thus \(u = s - bk \) and \(v = t + ak \) for some \(k \). By multiplying all of \(s, t, u, \) and \(v \) by \(-1\) if necessary, we may assume without loss of generality that \(c > 0 \). Since \(g \in \text{SL}_2(\mathbb{Z}) \), \((as + bt)k = sv - tu = 1 \) and thus \(as + bt = 1, k = 1, u = s - b \), and \(v = t + a \). Since \(g(-1) < 0 \), \((s - t)(a + s - b) \geq 1 \) and so \(0 < s - t < a + b \). Since there is a unique pair \(s, t \) such that \(as + bt = 1 \) and \(0 < s - t < a + b \), it follows that \(s = a', t = b' - a \), and the function \(g \) must coincide with \(g_{a/b} \).

We can go further. Suppose \(a, b \) are positive integers with \(a > b \). By the easily verified facts that \((a - b)^{−1} \pmod{b} = a^{-1} \pmod{b} \) and \(b^{-1} \pmod{a} -
\begin{align*}
\frac{a}{b} = a^{-1} \pmod{b} + b^{-1} \pmod{a} - b, \text{ it follows that }\frac{g_{(a-b)/b}(x-1)}{b} = g_a/b(x).
\end{align*}
Equivalently, for \(r > 1 \),
\begin{align*}
g_{r-1}(x-1) = g_r(x).
\end{align*}
Since for positive rational \(r \), \(g_{1/r}(1/x) = 1/g_r(x) \), it follows that for \(r \in (0,1) \),
\begin{align*}
g_{r/(1-r)}(x/(1-x)) = g_r(x).
\end{align*}

Letting \(f \) be defined as in Section 2 and given a positive rational \(r \), there exists \(n \) such that the \(n \)-fold iterate \(f \circ f \circ \cdots \circ f(r) = 1 \). Hence there exists a sequence of functions \(h_1, h_2, \ldots, h_n \) such that each \(h_i(x) \) is either \(x-1 \) or \(x/(1-x) \) and \(H := h_n \circ \cdots \circ h_1 \) satisfies \(H(r) = 1 \) and therefore
\begin{align*}
g_r(x) = g_{H(r)}(H(x)) = g_1(H(x)) = H(x).
\end{align*}

Hence every \(g_r \) is a composition of the functions \(x-1 \) and \(x/(1-x) \) and thus every regular function is a composition of the functions \(x-1 \) and \(1/x \). Since \(x-1 \) and \(1/x \) are regular and the set of regular functions is closed under composition, we see that the set of regular functions is the monoid generated by \(x-1 \) and \(1/x \).

This leads to a characterization of quadratic irrationals. Note that if \(x = \langle a_0, a_1, a_2, \ldots \rangle \), then \(1/x = \langle 0, a_0, a_1, a_2, \ldots \rangle \). Let
\begin{align*}
S_t := \{ g(t) : g \text{ is regular and } g(t) > 0 \}.
\end{align*}
Since every \(g \) is a composition of \(x-1 \) and \(1/x \), it follows that if \(t = \langle a_0, a_1, a_2, \ldots \rangle \) then any element in \(S_t \) is of the form \(\langle 0, \ldots, 0, b, a_n, a_{n+1}, \ldots \rangle \), where \(b \leq a_{n-1} \), and so \(S_t \) is finite if and only if the sequence \((a_n) \) eventually repeats.

Theorem 4. A positive irrational number \(t \) is a quadratic irrational if and only if \(S_t \) is finite.

The regular functions in \(SL_2(\mathbb{Z}) \) can be parametrized by the positive rational numbers. This leads to an interesting associative (but not commutative) binary operation \(* \) with identity \(1 \) defined by \(g_r \circ g_s = g_{r*s} \). Since \(r*s = (g_r \circ g_s)^{-1}(1) \), one may write out \(a/b * c/d \) explicitly:
\begin{align*}
\frac{a}{b} * \frac{c}{d} &= \frac{bc + (a-b)d'}{ad + (b-a)c'},
\end{align*}
where \(c' = c^{-1} \pmod{d} \) and \(d' = d^{-1} \pmod{c} \).

References

Department of Mathematics, SUNY, Plattsburgh, NY 12901
northssw@plattsburgh.edu