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Abstract: The escalated growth of the Internet of Things (IoT) has started to reform and reshape our
lives. The deployment of a large number of objects adhered to the internet has unlocked the vision
of the smart world around us, thereby paving a road towards automation and humongous data
generation and collection. This automation and continuous explosion of personal and professional
information to the digital world provides a potent ground to the adversaries to perform numerous
cyber-attacks, thus making security in IoT a sizeable concern. Hence, timely detection and prevention
of such threats are pre-requisites to prevent serious consequences. The survey conducted provides a
brief insight into the technology with prime attention towards the various attacks and anomalies
and their detection based on the intelligent intrusion detection system (IDS). The comprehensive
look-over presented in this paper provides an in-depth analysis and assessment of diverse machine
learning and deep learning-based network intrusion detection system (NIDS). Additionally, a case
study of healthcare in IoT is presented. The study depicts the architecture, security, and privacy issues
and application of learning paradigms in this sector. The research assessment is finally concluded by
listing the results derived from the literature. Additionally, the paper discusses numerous research
challenges to allow further rectifications in the approaches to deal with unusual complications.

Keywords: Internet of Things (IoT); machine learning; deep learning; intrusion detection system;
wireless sensor network; testbed

1. Introduction

The rapid escalation in numerous technological aspects of wireless sensor networks
(WSN), mobile communication, radio-frequency identification (RFID), and various lightweight
protocols have endorsed the concept of the Internet of Things. The core conviction of IoT
revolves around the dynamic interconnection of billions of different units or entities in an
ecosystem driving either in a wired or a wireless fashion via the assistance of intelligent
sensors, actuators, and other components. These components mesh with each other to
yield the state of things and thus, providing extensive benefits and comforts to humans.
Numbers stipulate that the IoT market has reached a mark of approximately 200 billion in
2020, starting with just 2 billion in 2006 [1]. The result of this automation has manifested
the presence of smarter and intelligent objects, thus paving a way in all spheres: smart
cities, healthcare, finance, manufacturing, academia, etc. The application of IoT with
percentage implementation in diverse fields is depicted in Figure 1 [1]. IoT is, therefore,
an amalgamation of diverse technologies at various layers coming up together to bestow
the best of ubiquitous and pervasive computing to provide numerous benefits in different
application areas.
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Figure 1. Applications of Internet of Things (IoT) with practical Implementations [1].

Smart services have become an integral part of today’s lifestyle. For example, disabled
people could manage things with IoT assistance, specially-abled children could interact
using the Autism Glass, and remote health tracking aids in curing. Moreover, IoT sensors
working with warning system alerts about environmental disasters. Even the usefulness of
IoT in managing natural resources could be realized from the number of use-cases discussed
in the literature [2]. With smart grids and smart meters, the daily power-consumption
could be optimized and the supply–demand ratio could be efficiently maintained to meet
the growing demands. Likewise, intelligent transportation systems provide valuable
insights into different services. For example, based on real-time traffic conditions traffic
signals consequentially set their timer to avoid traffic congestion and thus, environmental
pollution [3]. With smart agriculture, the crop yield could be predicted, fertilizers needed,
disease-prone crop areas could be identified and isolated. Alongside these services, it
brings deep-rooted security challenges as these IoT nodes are flooded to market with
inherent vulnerabilities.

The exponential growth and integration of IoT with other technologies have provided a
bigger attack surface to play with [4,5]. Moreover, it is challenging to maintain the security
requirements of an IoT system due to the very nature of IoT nodes in terms of scarce
resources and unattended environments [6]. Employing existing security mechanisms such
as encryption, authentication, and access control is also not a feasible solution for systems
with a large no. of connected devices entertaining inherent vulnerabilities. Additionally,
the end-users and developers are ignorant about the security risks complimenting the
extensive smart applications. These loopholes in IoT devices are exploited to launch cyber-
attacks like Mirai [7]. Furthermore, this negligence in securing IoT devices has been proven
to be life-threatening. For example, the compromised sensors in self-driving cars could
cause human calamity and damage to public properties as well. Now, these cyber-attacks
turned out to be another way of declining the economy of the developed countries. Thus,
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the security challenges being an integral part of these useful IoT services must not be
overlooked and should be handled as a priority.

The learning methods are the appropriate tools for differentiating the “usual” and
“unusual” behavior of IoT components and the way they interact with each other to provide
services. The input to different components of an IoT system is analyzed to find the regular
patterns of interaction, to recognize the malicious behavior in a system in the early stages.
With learning methods [8] (machine learning and deep learning) nascent zero-day attacks
could also be predicted, as these are generally the mutations of foregoing attacks. Moreover,
the unique features of deep learning such as automatic feature extraction, compression
competencies, etc., make it more feasible for resource-constrained IoT systems. The wide
acceptance of deep learning is all due to its ability to self-learning, faster processing,
and accuracy. Consequently, IoT systems must have a transition from merely facilitating
secure communication amongst devices to security-based intelligence enabled by DL/ML
methods for effective and secure systems.

1.1. Scope of the Survey

IoT plays a significant role in our lives by enabling the digitization of the physical
world around us. A large number of surveys were conducted to review and analyze the
multiple IoT facets. Table 1 surmises the relative comparison of the proposed work with
the considered state-of-the-art works. However, the study conducted in this paper pro-
vides a detailed, in-depth review of those facets/dimensions in an appropriate order. An
exhaustive analysis of various research surveys is compiled together to convey an overall
assessment, which has not taken place in the past. For example, Neshenko et al. [9] provide
a unique taxonomy of numerous attacks and vulnerabilities occurring in IoT devices along
with methodologies and security capabilities to counter those flaws. Additionally, architec-
tural vulnerabilities occurring in each respective layer are represented diagrammatically.
Furthermore, an appropriate assessment is provided in multiple sections to deliver the
essence of the problems occurring due to the coupled nature of IoT devices. Additionally,
Butun et al. [10] has shed light on the integration of WSN with IoT and laid stress on the
possible attack avenues available generated.

Divyakmika et al. [11] analyzed the application of ML in IoT security by proposing
two-tier NIDS. The approach is based on TCP/IP data packet features obtained from NSL-
KDD DATASET. It clustered the data into two (normal and new patterns). The classification
was done using KNN, MLP, and reinforcement learning. A similar approach is presented
by Pajouh et al. [12] to develop an intrusion detection model by collaborating Naïve Bayes
and KNN. The challenge of upgrading the mechanism to extend the model to the higher
layers is also highlighted. To overcome the problem of availability of the dataset Canedo
et al. [13] constructed a testbed to monitor the application of artificial neural networks in
attack detection in the IoT sites. However, to generate better analysis, an upgraded testbed
with a large number of sensors and devices is required. To construct a real-world attack
scenario, Anthi et al. [14] proposed a novel real-time IDS named pulse, which deploys
supervised ML for the identification of maleficent activities like scanning, probing, and
other elementary forms of DOS attacks with promising results using the Naïve Bayes
technique. However, it was executed for the limited number of attacks only. Further, Hasan
et al. [15] compared and contrasted the application of multiple ML algorithms in a real-time
virtual IoT scenario to further substantiate the research.

Contemporary improvisation includes the application of deep models in IoT.
Rahul et al. [16] analyzed the application of various deep models to detect multiple net-
work attacks. KDD cup 99 was used to train the network. However, a lack of real-time
IoT datasets and evaluation of deeper networks still posed a challenge. To overcome this,
Roopak et al. [17] explored the capabilities of the deeper networks by training models like
1D-CNN, RNN, LSTM, and a hybrid model of CNN + LSTM on the CICIDS2017 dataset.
Furthermore, from the considered start-of-the-art, we found that only a few works have
explicitly focused on both machine learning and deep learning-based solutions for securing
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IoT in an elaborated manner. Thus, in this manuscript, we aimed the same. The inherent
vulnerabilities in IoT devices and IoT environments (communication protocols) have also
been explored as being the root cause of these emerging attacks in smart applications.

Table 1. A relative comparison of the proposed work with state-of-the-art works.

Author(s) Year Discussion Challenge(s) 1 2 3 4 5 6 7 8

Ahlmeyer et al. [18] 2016

The different frameworks for
securing IoT are discussed and have
given their own IoT security
framework.

There is no standardization in terms
of securing IoT. 4 5 5 5 5 5 4 5

Nia et al. [19] 2016
The vulnerabilities in the edge layer
of IoT are extensively discussed
with mitigation approaches.

The usage of data collected by IoT
nodes in unexpected ways. 4 5 4 4 5 5 4 5

Alaba et al. [20] 2017
Discussed multiple security
scenarios, and possible
countermeasures.

To develop lightweight
authentication schemes for IoT
environments.

4 5 5 4 5 5 4 5

Makhdoom et al. [21] 2018
Different malware attacks targeting
IoT systems are discussed in an
elaborated way.

The challenges IoT will face with
FoG computing. 4 5 4 4 4 5 4 5

Rahul et al. [16] 2018
Discussed the application of deep
models as IDS to detect attacks of
varying complexity.

Lack of real-time IoT dataset,
evaluation of deeper networks. 4 4 4 5 5 4 4 5

Samaila et al. [22] 2018
IoT threat model is given with
multiple threat mitigation
approaches.

Nano-electronic-based security
mechanisms to be explored by IoT. 4 5 4 4 5 5 4 5

Butun et al. [10] 2019

Analyzed the application of WSN in
IoT. Moreover, an in-depth review
of various attacks constituting WSN
in IoT.

A better Approach/standard for the
routing, trust management, and
schemes for data collection for the
multiple IoT layers.

5 5 4 5 5 5 4 5

Neshenko et al. [9] 2019

Provides a detailed analysis of IoT
along with its various facets.
Additionally, a taxonomy
constituting various attacks,
vulnerabilities, and methodologies
to monitor them are discussed.

More detailed investigation to
provide prompt remediation for
detecting malicious IoT devices.

5 5 4 4 5 5 5 5

Hasan et al. [15] 2019
Provides a detailed framework for
attack and anomaly detection in IoT
using machine learning.

More robust algorithms are
required; more attention is required
for real-time detection.

4 4 4 5 4 5 4 5

Roopak et al. [17] 2019

Focussed on the detection of DDoS
attacks using deep models along
with numerous other challenges in
their application.

Lack of Deep learning models that
can work with highly unbalanced
datasets.

4 4 5 5 5 4 4 5

Hussain et al. [6] 2020 IoT security with learning-based
solutions is talked over.

The IoT data-based challenges to be
explored. 5 5 4 5 4 4 4 5

Anand et al. [5] 2020

IoT vulnerabilities and their
assessment techniques, with a case
study on Sustainable Smart
Agriculture.

Lack of intelligent vulnerability
assessment technique. 4 5 4 4 4 5 4 5

Yazdinejad et al. [23] 2020
Applying blockchain in IoT for
secure data transmission and access
control.

Comparative analysis with other
such architectures. 5 5 4 4 5 5 4 5

Rachit et al. [24] 2021
IoT threats, security models, and
standardization practices are
discussed.

Learning-based solutions will be
explored further. 4 5 4 5 5 5 4 5

Rasheed et al. [25] 2021
A systematic survey of recent
learning-based solutions for
securing IoT.

Growing vulnerabilities are not
discussed. 5 4 4 5 4 4 4 5

The Proposed one 2021

Machine learning and deep
learning-based IoT security
mechanisms with comparative
analysis.

Hybrid learning-based techniques
will be explored. 4 4 4 4 4 4 4 5

Notes: 1: Architecture; 2: Dataset; 3: Attacks; 4: Vulnerabilities; 5: Machine learning-based IoT; 6: Deep learning-based IoT; 7: Emerging
Challenges; 8: Testbed. Notations: 4: considered; 5: not considered.
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1.2. Contributions

The key contributions of this paper are as follows:

• A taxonomy that focuses on attacks, vulnerabilities, and anomalies in IoT is given.
• The benefits of the growing usage of machine learning and deep learning techniques

for securing IoT are highlighted. Critical analysis of different learning techniques has
also been presented.

• The case studies on the usage of IoT, learning methods, and security challenges
in Smart Healthcare System, Smart Vehicular system, and Smart Manufacturing
is presented.

• Finally, research challenges and future recommendations for the end-users were given
to ensure secure IoT infrastructure.

1.3. Methods and Materials

The methodical approach is adopted to conduct this study in a proper way to provide
in-depth analysis of different learning methods used to secure the IoT system in one way
or the other, as security in IoT questions its sustenance. The related research articles,
blogs, use-cases, tutorial papers, reports, and white papers were discovered to conduct this
review. This work primarily focused on the state-of-the-art research on IoT attacks, threats,
anomalies, vulnerabilities, and learning-based approaches to handle them in general
and concerning smart healthcare specifically. Additionally, to emphasize the current
research challenges, open issues, and future scope related to the same. The screening
of the identified articles is done based on the relevance and other factors as depicted in
Figure 2. The quality checks are applied to the extracted data to get reliable material for
the proposed survey. The ones from the SCI journals and with a good number of citations
are commonly chosen. The peer-reviewed and high-quality database journals and reputed
conferences like IEEEXplore, Springer, MDPI, Wiley, ACM, Elsevier, and Google Scholar,
are investigated to get the relevant research articles. For searching, vital keywords like IoT,
security, attacks, vulnerabilities, threats, machine learning, deep learning, smart healthcare,
etc., were benefitted.

1.4. Organization

Figure 3 demonstrates the organization of the proposed article. In Section 1 we present
an introduction to IoT and its services, several security issues and attacks, and how ML/DL
methods can be the conceivable solution. Section 2 provides a general perspective to the
technology and its applications followed by background information, which prominently
includes its prime driving technologies, architectural view, and protocol suite. Section 3
introduces security-related concepts by highlighting imminent attacks, anomalies, and
vulnerabilities in this area with a brief introduction to the IDS mechanism. The next section
presents ML and DL-based IDS solutions to deal with the security intricacies mentioned in
the previous section, followed by case studies to understand the practical implementation
of IoT in the healthcare sector, vehicular systems, and manufacturing along with research
challenges, open issues, and future scope.
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2. Background and Preliminaries

This section focuses on the background and importance of security in IoT. This section
is bifurcated into three subsections. Firstly, we cover IoT driving technologies which
include RFID, sensors, wireless sensor networks, communication, cloud computing, and
embedded systems. Secondly, we briefly discuss the IoT ecosystem, followed by the IoT
architecture with protocol suite in the subsequent subsections.
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2.1. IoT Driving Technologies

IoT systems consist of various technological/functional components to lubricate the
task of sensing, identification, communication, analysis, and management. Colakovic
et al. [4] detailed the vision towards IoT along with various technologies used at different
levels. Moreover, the survey conducted in [1,5] also introduces these technologies.

• RFID (radio-frequency identification) Technology: It is a technology used for the
identification of a person or any other object by exercising the wireless radio frequency
technology in the network. It utilizes the labels/tags on the objects for identification.
It is a combination of e-labels, an integrated circuit for processing information by
modulating and demodulating the signals along with a reader–writer system [26].
Jia et al. [27] presented detailed interpretation and applications of RFID in IoT.

• Sensor Technology: It is responsible for interacting with the physical environment and
subsequently detecting, observing, storing, and providing the necessary information
by converting it into a human-readable form. The primary purpose is to interpret
the real-world conditions by monitoring the documentation collected in the form
of sound, light, humidity, pressure, and many other values for analysis of various
surrounding scenarios [28]. These, therefore, bridge the gap between the physical and
the digital world.

• Wireless Sensor Network Technology: It is an integration of numerous self- config-
urable devices with embedded sensors for scanning and documenting the conditions
of the physical environment and subsequently forwarding them to the appropriate
sink node for analysis [29]. Actuators can also be a part of WSN in certain condi-
tions; hence they are often referred to as wireless sensor and actuator networks. The
various applications of WSN include weather monitoring systems in which nodes
collect temperature, humidity, and other data, soil moisture monitoring system, health
monitoring system, etc. For the communication between various sensor technologies,
numerous short-distance communication strategies are available like Bluetooth, RFID,
Zigbee, Wifi. These are termed network communication technologies. Each one has its
pros and cons, and further subsequent selection depends on the application scenario.

• Embedded System Technology: This is a blend of numerous peripheral hardware
(Sensors, Actuators) combined with software running or embedded OS (Real-time
operating system) to accomplish some specific tasks. Principal components include
microcontrollers, memory, network units, ic running on an embedded operating sys-
tem such as (RTOS) with critical features like real-time computing, low maintenance,
and low power consumption [30].

• Cloud Computing: It is an essential IoT component provisioning the users with
processing and storage capabilities on demand. It is used as a powerful tool in IoT
to handle the big-data and, in turn, rendering intelligent monitoring and decision
making in various applications, thus turning them smart. The prime benefits are
elasticity, agility with less deployment time [31].

2.2. IoT Ecosystem

The technologies mentioned above provide a hazy overview of the IoT. To get a
crisp and unclouded perspective, understanding IoT architecture is extremely vital before
proceeding into the intricate details of the various facets of it. It is hugely challenging
to standardize one architecture for IoT due to its inability to capture a particular image
characterizing it due to vast expansion and variation in this sector. There are miscellaneous
three, four, five, and seven-layer architecture, which are accepted by various professionals
to have a visual sculpture of this technology. Table 2 describes some of the prominent IoT
architectures. Figure 4 depicts the general three-layer architecture [12,13] with its extension
into five layers [14,15].
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Table 2. Prominent IoT architectures.

Author Description

Bauer et al. [32] IoT-A. An amalgamation of different IoT perspectives.

Atzori et al. [33] The author has presented a SocialIoT-architecture based on the integration of IoT with the social
networking concept.

Qin et al. [34] The author presents SDN-based architecture for provisioning IoT with better quality-of-service,
deployment, scalability, and context awareness.

Li et al. [35] Mobility first (future internet architecture) mainly addresses the challenges concerning the usage of
mobile phones as gateways and dealing with the security aspect of sensor data.

Singh et al. [36] JDL (joint director of labs) based model for IoT architecture with the combination of semantic layer.

Cecchinel et al. [37] Software architecture for collection of sensor-based data with cloud-based storage (sensor, sensor
board, bridges, middleware)

Kraijak et al. [38] 5-layer architecture (perception, network, middleware, application, business)

Ray et al. [39] It describes major IoT functional elements with multiple IoT architectures in different application
areas.
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2.3. The Prominent IoT Layers

The two most prevalent architectures IoT-A (internet of things-Architecture) and IIRA
(industrial internet reference architecture) synchronized with the IoT community and
incorporating multiple views are given in [40]. In concern to IoT, many different wired and
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wireless protocols are introduced despite the similarity towards the general TCP/IP stack,
primarily because of the differences in the characteristics of IoT devices concerning memory
and computational power. Priyadarshi et al. [41] and Sahrawi et al. [42] provides a detailed
analysis of various IoT protocols. The prominent IoT layers with working protocols are
briefly described subsequently.

Perception Layer: It is also referred to as the physical layer in IoT. It is an amalgamation
of a wide variety of sensors, actuators, and devices mainly for data accumulation from
the surroundings [43]. The primary objective is to acquire all the essential insights for
more in-depth analysis in the succeeding. The connected objects should not only establish
communication with their respective gateways but also must be able to recognize and talk
to each other to merge in real-time to leverage the benefits of the technology. Lightweight
M2M (machine to machine) has become a standard for low memory, lightweight devices
that typically find an application in IoT [44]. However, such a dynamic approach is
disrupted by some of the significant threats by the intruder [3,9,21].

• Node Capture and Cloning: It is one of the most detrimental attacks faced by this
layer. In this attack, the intruder gains full control over the IoT nodes. Such IoT nodes
can be cloned to launch new attacks.

• Eavesdropping: In this attack, the intruder intercepts the personnel user data. The
attacker takes advantage of the insecure communication mode to gain access to such
sensitive information.

• Jamming attack: This includes scrambling a particular communication channel by
the emission of the radio signals. This attack disrupts the node signals by efficiently
bypassing the physical layer protocols.

• Resource depletion attack: This includes multiple retransmissions and collisions of
the nodes to deplete it completely.

• Relay attack: This involves the relocation of the IoT nodes with the relay node. The
transmitted information passes through the relay node and thus can be exploited by
the intruder.

Network Layer: The main goal of the network layer is to establish communication
amongst smart devices via the assistance of appropriate IoT protocols. The prime purpose
is to transfer data to proper edge infrastructures or cloud-based platforms through inter-
mediaries like gateways or any other data collection systems. Another important aspect
here is security. Appropriate security tools like NIDS or any other form of encryption can
be applied to reduce the risks of threats and attacks. However, such transmission can be
exploited to launch various attacks like a man-in-the-middle attack, routing attack, DDoS
attack, Sybil attack.

Support Layer: It consists of cloud-based applications with prime tasks of storing,
processing, and analyzing the data. It is mainly referred to as the brain in the IoT body.
The main challenges faced here are restricted access and slow data transfer rate, which
ultimately leads to late response. These challenges necessitate the need for appropriate
edge analytics for quicker replies [44]. DoS and malicious insider attacks are some of the
common attacks performed in this layer.

Application Layer: The last layer is the application layer, which ensures data integrity,
confidentiality, and authenticity by enabling process-to-process communication via the
use of suitable ports. It is responsible for the dispatching of the required services to the
end-users via the assistance of appropriate audio and video interfaces. However, several
security disputes prevent its proper functioning.

• DoS attack: In this attack, the intruder pretends to be an authenticated user to disrupt
the normal functioning of the network. It is accomplished by flooding the authenti-
cated user to trigger a crash [5].

• Phishing attack: It is a sensitive social engineering attack to gain access to the user
credentials like passwords, credit card details by masquerading oneself as a trusted
body [8].



Sensors 2021, 21, 1809 10 of 33

• Malicious code injection: In this attack, the intruder injects a malicious code to manip-
ulate the authentic data of the authorized user [21,45].

• Session hijacking attack: This attack consists of exploiting the web session by the
intruder to gain access to the sensitive data of the user [9].

3. IoT Security Landscape

Security is a crucial zone of this technology, as recent trends and surveys have captured
numerous changes in this sector, which in turn, indicates the evolution of the attacking
mechanism leading to the generation of several zero-day attacks [46]. This behavior is
mainly because most vendors are only concerned about dealing with some aspects of the
IoT ecosystem. Those involve mostly providing new functionality to get their products into
the market and thereby ignoring the privacy and security risks associated, thus making
them easy targets of the hackers. The past few years have already recorded some damaging
effects of lack of security in IoT in the form of attacks like Mirai botnet attack, Bashlite
attack, and many more. Attackers are not only inaugurating numerous scanning, probing,
and flooding attacks but are also escalating malware in the form of worms, viruses, and
spams to exploit the weaknesses of the existing software, thereby causing severe damage
to the sensitive information of the users. Therefore proper detection and prevention of
such threats are very vital. IDS provides a platform to deal with such issues. Tables 3 and 4
provide a brief insight into various such attacks and anomalies at different IoT levels and
layers [30–32]. Adversaries primarily try to detour the security framework with subsequent
launching of zero-day attacks, which in turn reduce the network throughput and produce
huge discomforts to the legitimate users [47].

Table 3. Attacks in IoT.

Nature of Attack Description Classification

Active attacks

These are performed mainly to carry out malicious acts
against the system, thus affecting or disrupting the services
for legitimate users. They hamper both the confidentiality
and integrity of the system.

Dos (denial-of-service), DDOS
(distributed denial of service),
MITH (man-in-the-middle), Interruption,
Alteration [48].

Passive attacks
These are performed mainly for gathering useful
information without getting sensed, i.e., they do not disturb
the communication.

Monitoring, Traffic Analysis,
Eavesdropping, Node
destruction/malfunction [49].

Physical layer attacks These attacks try to tamper and exploit the devices making
them the most vulnerable terminal of IoT.

Node tampering, Jamming, Replication
[10].

Datalink layer attacks These undertake the advantage of mac schemes to launch
different attacks. Collision, Dos, ARP spoofing, unfairness.

Network layer attacks These attacks try to disrupt the communication between the
source and the destination by playing with the packets.

Dos, Routing Attack, Sybil Attack,
blackhole, spoofing, alteration.

Privacy threats The capabilities of IoT allow it to launch acute attacks
targetting the privacy of users.

Identification, profiling, tracking, linkage,
inventory [50].

Software-based attacks These attacks make use of third-party software to gain
access to the system and cause destruction. Virus, Trojan horse, Worms.

Side-channel attacks These are hardware-based attack that uncovers the secret
information like cryptographic keys to exploit the device. Timing Analysis, Power Analysis.

Botnet attacks

These are a collection of infected devices (zombies) like
printers, cameras, sensors, and similar smart devices, which
launch large-scale DDOS attacks to compromise other
intelligent devices. The principal components are command
and control servers, along with the bots.

Mirai, Hydra, Bashlite, lua-bot, Aidra
[51].

Protocol-based attacks The attacks work against the connectivity protocols of IoT.

RFID-based (replay, tracking, killing tag)
Bluetooth based (bluesnarfing,
bluejacking, Dos),
Zigbee Based (sniffing, replay, ZED
sabotage attack) [52].
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Table 4. Anomalies in IoT.

Type Description

Point Anomaly It is the most basic type of anomaly. One data point is abnormal in comparison to the rest of the
data points.

Contextual Anomaly
It is a sophisticated type anomaly type where a data point is considered unusual in a specific context.
For example, if any system accesses services at a particular time and if there is a sudden change in the
background, i.e., time changes, it is considered abnormal.

Collective anomaly Data points are anomalous w.r.t to the whole dataset or the entire services but not by themselves
individually.

3.1. IoT Security Analysis

The listing of various attacks and anomalies prescribes the difficulties in the construc-
tion of a secure smart network. The prime goal is to safeguard the security requirements
(integrity, confidentiality, availability) of legitimate users. Various researchers have car-
ried out a rigorous survey to list down all possible attacks, their nature, challenges, and
countermeasures to deal with them.

Sadique et al. [53] highlighted the critical future security challenges in IoT and open
issues w.r.t the various IoT layers. Additionally, Riahi et al. [54] presented a roadmap to IoT
security by representing a systemic approach to it by discussing its every aspect, beginning
from persons/nodes to the ecosystem to managing privacy, trust, responsibility in the
technology via the assistance of a smart manufacturing case study. Mardiana Binti et al. [55]
discussed all recent trends in IoT security from 2016 to 2018. Additionally, a layer-wise
security approach in IoT with all possible attacks, tools, and simulators is discussed.

Gudymenko et al. [56] present a list of various critical challenges in IoT, required to
be addressed to maintain security in this area. Whitter et al. [57] presented a research
paper that primarily focuses on the various historical attacks and malevolent activities that
happened against the IoT networks. Additionally, the solutions to deal with them and
possible areas for future developments are mentioned.

Benzarti et al. [58] presented a taxonomy of attacks against IoT by categorizing them
into six classes based on architecture, attributes of security (integrity, authentication, con-
fidentiality), communication disturbance, faulty or corrupted packets, channel, device
functionalities. Additionally, the solutions to various existing attacks in different IoT appli-
cations like smart grid, smart home, VANET (vehicular ad-hoc networks) are discussed.
Additionally, the survey conducted in [44–46] provides different IoT attack taxonomies
and countermeasures to deal with it.

3.2. IoT Vulnerabilities

Vulnerabilities, in general, refer to the weaknesses of a system that can be overbur-
dened by the adversaries to perform unintended activities. In IoT, hackers can exploit
the integrity, confidentiality, availability of services to legitimate users by taking advan-
tage of such teething problems [59]. Therefore an understanding of such delicacy in the
system becomes mandatory before the development of appropriate defense mechanisms.
The authors presented a multidimensional view of the IoT vulnerabilities with a detailed
explanation of their effects on the diverse security paradigms [9]. OWASP (Open web
application security project) has also listed the top ten IoT vulnerabilities [60]. Figure 5
explains the prime categorization of various IoT vulnerabilities.
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a. Device Security: This aspect of security surface primarily includes physical damage
to the IoT devices mainly caused by unauthorized access to them. The foremost
reason is that these devices are in open territory, thus wholly left at the disposal of
nature and adversaries. Therefore, they are easily getting damaged, or hackers can
clone the firmware to produce their malicious counterpart and can also manipulate
the data. Typical examples include the cloning of radio frequency signals in electric
cars to unlock them or gaining access to the controller area network bus of the vehicle
to execute any damaging activity.

b. Insecure Booting: Lack of proper verification before the implementation of the
device refers to insecure booting. This aspect is an essential requirement in terms
of maintaining security because it provides a comfortable surface for attackers to
launch their malicious activities by injecting the devices before their launch [61]. The
experiment conducted by researchers in [62] against the nest thermostat and Nike +
Fuel band, a wearable device to depicts the detrimental effects of the booting process.

c. Network-Based Vulnerabilities: These typically target the connectivity of IoT de-
vices, thus making them susceptible to a large number of attacks. These typically
include the insecure services within the devices themselves, lack of proper authenti-
cation and encryption, i.e., using default or weak passwords, and deploying encryp-
tion techniques that do not match the standards of lightweight cryptography in IoT,
thereby hampering the security. The intruder can perform attacks like DDoS, Sybil
attack or could also steal valuable data via the network vulnerabilities. Further due
to limited memory and resources in the IoT devices it lacks appropriate encryption to
protect the data. In the medical field, attackers can gain control over external devices
like insulin pumps or cardiovascular objects to play with the health of people [63].

Therefore, a deficit of a robust crypto-algorithm makes the devices further vulnerable.
Research work related to authentication and encryption is provided in [64,65], respectively.
The situation is further worsened via the presence of open ports. These are a significant
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threat to the IoT devices because they can expose the existence of smart devices in the
surroundings, thus providing a platform to adversaries to conduct mischievous activi-
ties like modification of the firmware, injecting malicious code. The well-known Mirai
botnet attack took the advantage of the open telnet ports to create an army of multiple
compromised devices on the internet. To further fulfill its intentions Mirai used a brute
force approach by attempting default factory credentials or the dictionary of attacks to
generate the username and the password. Sivanathan et al. [66] explained the use of SYN
and TCP scans to discover IoT devices at the disposal of open ports. Further, Markowsky
et al. [67] described the usage of dark web SHODAN [68], Masscan, and NMAP to find
and connect to vulnerable devices in the network.

d. Software-Based Vulnerabilities: These typically include the usage of readily avail-
able, guessable, and default passwords, also in addition to this, not performing
suitable software updates/patch updates or using deprecated or outdated software
libraries or components. All these factors together increase the vulnerability of the en-
tire system [69] explains the attacks launched due to firmware modification. Further,
deliberately following weak programming practices, i.e., launching firmware with
well-known vulnerabilities, aids hackers to perform their dark activities.

e. Insufficient Privacy: This means compromising user’s personnel information without
seeking their permission because of current default settings that often restrict users
from altering the configurations. This can be life-threatening in the case of e-health
services. A pacemaker with wireless capabilities was found vulnerable thereby
exploiting the health of the user [70].

f. Insufficient Audit Mechanism: Lack of sufficient logging mechanism lead to such
vulnerabilities. The research survey in [60,61] provides some insights towards audit
mechanisms in IoT. Figure 6 depicts the most vulnerable IoT devices by 2020. The
devices, mainly security cameras, virtual assistants, smart TVs, and smart lights, have
proved to be the most vulnerable towards adversaries [71]. These devices can be
easily hijacked to perform both active and passive attacks. In the case of security
cameras, mainly, the fault lies at the purchase corner of these. Buying cheap models
can open doors for hackers. Similarly, in the case of home assistants, eavesdropping
may be a carrier of your activities to the adversary. Additionally, remote access to
various devices can be undertaken to perform all kinds of mischief [72].
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3.3. Intrusion Detection System

Several countermeasures are proposed to deal with the wide variety of attack sce-
narios in IoT. These vary from better authentication, device identification to introducing
lightweight encryption to several others like adding risk assessment models, and intrusion
detection at higher layers of IoT. In this survey, we particularly narrowed our research
to IDS-based attack and anomaly detection. It is defined as an appropriate ensemble
of various tools, techniques, and methods required to detect unintentional activities of
the hackers.

Figure 6 provides a view of the multiple properties of IDS like its occurrence, place-
ment, recognition strategy, and usage frequency, the knowledge of which is essential for
its proper implementation to achieve the desired results. The properties are described
in terms of whether they are host-based or network-based, i.e., deals with attacks and
anomalies launched against the entire network by analyzing all the incoming packets in
the system. Snort, Suricata, Zeek are some of the examples of NIDS, or they can be hybrid,
i.e., composed of both HIDS and NIDS. It is referred to as the network monitoring stage of
IDS, which is followed by analysis. Finally, the detection stage, which is again categorized
into misuse-based, anomaly-based, or can be policy-based [63,64]. There are several IDS
techniques based on data mining, ML, statistical model, payload model, rule-based, but
due to the massive data generation in IoT, ML can be thought of as a suitable paradigm to
provide intelligence in this area. It can leverage the vast data generated by IoT devices for
training to create patterns and behavior to make appropriate predictions and assessments.
Thus IDS based on ML-based learning approaches can prove to be an excellent tool for
attack detection in a smart IoT environment.

4. Learning-Based Solutions for Securing IoT

The vulnerabilities, attacks, and anomalies mentioned in the previous section focused
on the broad range of concerns brought in our lives due to the expansion of IoT. Addition-
ally, the advances in big data and computing power have further surfaced the platform for
carrying out unintentional activities by the adversaries. However, ML-based specialists
identify learning approaches as a productive tool to deal with IoT-based security issues,
thereby leading to the amalgamation of ML and DL approaches with IDS technology.
Figure 7 depicts a classification of existing learning techniques. In this section, we will
mainly focus on various learning approaches, their types, and multiple solutions for IoT
security based on these approaches. Existing methods can be classified based on the mode
and the approach used. Figure 8 provides a visual sculpture of these.

• Based on the mode: There are two modes: offline and online. In offline mode, the
input is processed in batches and is known as lambda learning, whereas in online
mode, the data are processed piece by piece serially and is known as kappa learning.

• Based on the approach: There are three approaches: supervised, unsupervised, and
reinforcement.

Supervised Learning: It is a procedure of learning the functionality from the training
dataset. The prime goal is the estimation of the mapping function to predict the correct
output labels for the prescribed new data. Based on the essence of target labels, it can be
classified into classification and regression [73]. The technique is enormously useful in
fault detection and misuse-based intrusion detection, quality of service, event detection,
etc. The prime prerequisite in implementing supervised ML algorithms in IoT is the
availability of the dataset with signatures for known attacks for learning purposes. There
are various supervised learning approaches like Knn [74], Decision tree [75], SVM [76],
Naïve Bayes [77], ANN [78] utilized for attack detection in IoT. Despite high detection
statistics, lack of detection of different attack footprints, more resource consumption limits
their usage in the era of numerous Zero-Day attacks.
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Unsupervised Learning: It is very useful in modeling the elementary or the concealed
structure of the data due to the non-availability of the labeled dataset. The unavailability of
the labeled dataset differentiates it from the supervised approach, thus promotes a compre-
hensive evaluation of the data. It is majorly bifurcated into three sections, namely cluster-
ing [79], dimensionality reduction [80], and density estimation. Hence, these approaches
are instrumental in detecting outliers and novel anomalies. Additionally, Dimensionality
reduction techniques like PCA helps in eliminating the features which have no contribution
to class separability.

Reinforcement Learning: The technique is concerned with the application of appro-
priate actions taken by the software agents in an environment to maximize the cumulative
reward. More generally, it can be a catchphrase as learning from the environment. Two
principal methods of reinforcement learning include policy search and value function ap-
proximation. The primary classification includes Q-learning, TD-learning, and R-learning.
The mentioned ML classification techniques with their pros and cons indicate that there is
no particular algorithm that is applicable in all the situations. Additionally, the increase in
the number of IoT devices and the continuous evolution of zero-day attacks have urged
the researchers to come up with Ensemble, hybrid, and other fused models to overcome
the pros and cons of individual classifiers. Figure 8 depicts various learning models of
machine learning.

Federated learning (FL): Another thriving machine learning paradigm that is capable
of sorting the issues of security in IoT devices is federated learning (FL). This advanced
machine learning technique is capable of training the machine learning models in a dis-
tributed manner. Traditionally, there was a significant communication overhead during the
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transmission of updates between the centrally managed server and the connected devices
in the network. The network overhead leads to compromise the data rates, reliability,
privacy, and resource management [81]. However, with the advent of FL methods, there is
a significant improvement in the security aspect of smart systems. The learning models
under FL takes the advantage of the distributed nature of learning and ensure the trans-
mission of only learnable parameters instead of whole datasets. FL has been of immense
use in intelligent transport systems thereby ensuring the security and privacy of data.
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4.1. ML-Based Solutions for IoT Security

Arthur Samuel coined the term “Machine Learning“ in 1959 and defined it as a field of
study that gives computers the ability to learn without being explicitly programmed [67]. It
is used to comprehend a model defining the particular behavior or characteristic and then
subsequently utilizing it to predict the traits in seen or unseen instances. The flexibility,
adaptability, and low CPU load of ML algorithms can help us build numerous analytical
models with better accuracy and reduced false alarm rates for attack and anomaly detection.
Further, understanding various ML approaches is a prerequisite to understanding their
suitability towards various attacks and anomalies. Table 5 summarizes the different
machine learning-based solutions to secure IoT systems against the growing attacks.

Anthi et al. [14] proposed novel real-time IDS named pulse, which deploys super-
vised ML for the identification of maleficent activities like scanning, probing, and other
elementary forms of DOS attacks. In this work, the authors developed a smart home
testbed and with cross-validation concluded the better results by using the Naïve Bayes
technique. In a similar work [11], a two-tier machine learning-based NIDS is proposed
with preprocessing using wekas and the construction of an autonomous model based
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on hierarchical agglomerative clustering. Additionally, Pajouh et al. [12] introduced a
state-of-the-art technique for subsequent detection and classification of malignant activities
like the user to root and remote to local attacks by acquainting the readers with TDTC
(two-layer dimension reduction and two-tier classification module) model. Both PCA and
LDA are employed to reduce the computational complexity, then succeeding forward by
the application of Naïve Bayes and CF-KNN along with the KD tree to present a more
efficient classification.

Shahid et al. [82] presented a smart home monitoring system to generate legitimate
traffic data with the malicious traffic created offline by deliberately attacking the device or
by using IoT honey-pots. Six machine learning algorithms were deployed, followed by a
comparison of their accuracies in which Random Forest outperformed. In another work,
Srinivasan et al. [83] leveraged the power of machine learning techniques like random forest,
support vector machine, MLP (multilayer perceptron) to ease the recognition and localization
of link faults in the highly sophisticated network like IoT using a mininet platform.

Moustafa et al. [84] proposed an Adaboost ensemble model (Decision tree, Naïve
Bayes, ANN) to detect malevolent activities, particularly attacks in the network by using
features of DNS, HTTP protocols in TCP/IP models. It is a three-step framework initialized
by feature extraction by using Tcpdump, Bro-ids, and other extractor modules followed by
generation of data-sources from UNSW-NB15 and NIFS dataset and simulated IoT traffic.
In [13], the authors conducted suitable experimentation to generate their own synthetic
data to inspect and carefully scrutinize the usage of ANN (Artificial Neural Networks) in IoT
gateway devices present in the transport layer to work at the security aspects of the technique.
Further, Ioannou et al. [85] presented an ML approach known as a support vector machine
for the detection of malicious activities within the IoT network exploiting actual IoT traffic
with specific network layer attacks such as blackhole, selective forward, etc.

On similar lines, Zhao et al. [86] proposed a novel framework for real-time intrusion
detection for numerous attacks and other suspicious activities occurring at the network
layer using online machine learning with better time complexity using softmax regression.
In [87] the authors presented an online sequential extreme learning machine model for
intelligent detection of attacks at the fog nodes to provide a faster, scalable, and flexible
interpretation of benign and adversarial traffic coming from the IoT application. In another
notable work, Hasan et al. [15] compared the anomaly detection mechanism of various ML
techniques (LR, SVM, DT, RF ANN) in a virtual environment producing synthetic data in
which random forest outperformed with 99.4% accuracy.

Lee et al. [88] come up with profiling of abnormal activities of IoT devices via the
support of a variety of machine learning algorithms. The approach considers signal
injection as a threat to IoT and hence finds it as a principal attack in his research. In [89]
the authors proposed a unique human in the cycle intrusion detection via ML to reduce
the dependency on a large amount of labeled data for anomaly detection exploiting the
query selection mechanism for unlabelled data. Further, Shafi et al. [90] presented a fog-
aided SDN (software-defined networking) structure for anomaly detection and prevention
for IoT networks, mainly to overcome the pitfalls of screening at the cloud and at the
devices, evaluated by simulating an IoT network using the cooja simulation tool. However,
due to certain limitations like processing power, scalability, manual feature selection, and
heterogeneous data handling pushes us to come with better learning approaches. To deal
with some aspects of limitations in ML, DL was implemented and analyzed in the security
region of IoT [91].

4.2. Deep Learning-Based Solutions in IoT Security

Deep learning technology is considered to be a successor of ML with the capability of
mimicking the human brain, thus falling under the categorization of AI. Deep networks have
the potential of achieving better accuracy in terms of predictions and classifications because
of the multilayered composition. This composition, when combined with IDS, can achieve
performance at a superhuman level for the detection of new attacks and anomalies [16]. The
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principle benefit of the technology is the omission of manual feature selection and the
capability to model non-linear relationships, thereby achieving an edge over ML. Moreover,
the ability to handle Big Data, automatic feature extraction further backs the usage of
technology in IoT. The essence of the technology revolves around cascading multiple layers
for predicting the output. To accomplish the non-linearity activation function plays an
important role. Table 6 lists the activation function for deeper networks [92]. Furthermore,
Table 7 summarizes the different deep learning-based solutions used to secure IoT systems.
Deep learning can be classified into three classes, known as discriminative, generative, and
hybrid models.

Discriminative Models: These models belong to the class of supervised learning and
thus are used for treating problems of classification and regression. If the input label is X
and the corresponding output label is Y, then discriminative models require to learn the
conditional probability of target label y, i.e., p(y|x) [93].

Convolutional Neural Network (CNN): It is a feed-forward deep artificial neural
network that leverages the concept of convolution for predictions. The notion is to allocate
importance to different parts of the image by connecting only a smaller region of a particular
layer to the layer, succeeding it. The primary concept is to reduce the size of weights and
the neurons. The functionality of CNN revolves around the four layers, namely the
convolution layer, to reduce the size of weights followed by the Relu layer to introduce
non-linearity into the network [94]. Then come the pooling and the fully connected layer,
which subsequently perform the task of shrinking the stack size obtained from the previous
layer and performing the actual classification, respectively. Nowadays, the technique is
finding usage in the sector of anomaly detection [93,94], the approach is fused with other
methods for anomaly detection, thus providing a profitable proposal in this sector.

Recurrent Neural Network (RNN): This type of feed-forward artificial neural net-
work posses internal memory. The associations between the various units form a digraph,
thereby allowing the structure to copy the output and propagating it back to RNN at
every timestamp. These associations permit the composition to evince temporal dynamic
behavior. The characteristics mentioned above make it appropriate for applications like
speech recognition, time series prediction, and anomaly detection [95]. There are many
variants to the basic RNN, namely hope field network, fully recurrent, Elman and Jordan
networks, etc.

Long Short Term Memory (LSTM): It is a type of RNN with an ability to remember
long-time dependencies, thus overcoming the limitations of RNN. The composition of
LSTM includes memory cells for keeping back the information along with three gates,
namely forget, input, and output for memory orchestration [96,97].

Generative Models: These models belong to the class of unsupervised learning. They
are used when there is no presence of labeled data. The model requires calculating the joint
probability p(x,y) where x and y are input and output variables, respectively.

Table 5. Tabular Representation of Machine Learning Approaches.

Author
Algorithm with
Implementation
Platform

Threats Challenges Performance
Evaluation

Anthi et al. [14] Naïve-Bayes
Platform: Weka

Network probing,
scanning, Dos
attacks-SYN, UDP
flood attacks.

No clustering of similar
devices, limited attacks
covered.

scan attack:
precision-97.7,
recall-97.7,
f-measure-97.7
SYN: precision-80.8,
recall-68.8,
f-measure-65.8

Divyatmika et al. [11]

Clustering+ KNN(data
classification) + MLP
(misuse detection) +
reinforcement(anomaly
detetion)
Platform: Weka

Dos, probe,
Remote-to-local(R2L),
User-To-Root(U2R).

- Accuracy: 99.95%(with
reduced false alarms).
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Table 5. Cont.

Author
Algorithm with
Implementation
Platform

Threats Challenges Performance
Evaluation

Pajouh et al. [12]
PCA + LDA (Feature
selection),naïve bayes +
CF-KNN
(classification)

Dos, probe,
Remote-to-local(R2L),
User-To-Root(U2R)

Anomaly and intrusion
detection at the
application and
support layer,
considering different
protocols of the
network layer.

Accuracy:
Probe Attack: 87.32,
Dos Attack: 88.20,
U2R-70.15,
R2L-42
Detection rate: 84.86,
False alarm rate-4.86

Shahid et al. [82]
Random forest,
Decision tree, ANN,
KNN, GNB (Gaussian
Naïve Bayes)

-

Integration of anomaly
detection models with
a software-defined
networking
environment.

Accuracy:
RF-99.9%, DT-99.5%,
SVM-99.3%,
KNN-98.9%,
ANN-98.6%,
GNB-91.6%

Srinivasan et al. [83]
Random forest, MLP,
SVM
Platform: mininet

Link fault
identification.

Testing different ML
algorithms. Accuracy: 97%

[97]

Ensemble model
(Decision tree + Naïve
Bayes + ANN)
Platforms and tools:
NodeRed middleware,
tcpdump, Bro-IDS,

Analysis, backdoor,
dos, exploit, fuzzers,
generic,
Reconnaissance,
worms.

Considering other IoT
protocols,
concentrating on ore
zero-day attacks.

Accuracy with DNS
data source: 99.54%,
Accuracy with HTTP
data source: 98.97%

Canedo et al. [13]
ANN
Platform: R(neural-net
package).

Invalid data entries.

Generating data entries
by creating a testbed
with more devices and
sensors.

N/A

Ioannou et al. [85]

c-SVM
platform: RMT
tool(Run time
monitoring tool).

Routing layer attacks
(sinkhole, blackhole,
selective forward).

Placement of IDS in
high-energy gateway
nodes.

Accuracy: 100% (with
the same topology)
Accuracy = 81%(when
the topology is
changed)

Zhao et al. [86]

PCA (to reduce
dimensions) + KNN
(classification +
Softmax regression
(classification).

Dos, probe,
Remote-to-local (R2L),
User-To-Root (U2R)

Accuracy: 85.24% with
3 dimensions, 85.19%
with 6 dimensions
84.406% with 10
dimensions.

Prabavathy et al. [87]

OS-ELM (online
sequential extreme
machine learning)
Platform: MATLAB
(R2013a).

Dos, probe,
Remote-to-local (R2L),
User-To-Root (U2R).

More depth analysis of
zero-day attacks is
required.

Accuracy: 97.16%
(forbinary
classification)
TPR (true positive rate):
normal-98.63%,
probe-84.2%,
Dos-96.61%,
U2R-53.81,R2L-71.87%
(for multi class
classification).

Hasan et al. [15]

LR, SVM, ANN, RF, DT
Platform: python with
Numpy, pandas, sci-kit
learn.

Dos, data type probing,
malicious control,
malicious control,
malicious operation,
scan, spying, wrong
setup.

More robust algorithms
are required, more
attention is required for
real-time detection.

Accuracy:
LR-98.3%
SVM-98.2%
DT-99.4%
RF-99.4%
ANN-99.4%

Table 6. Activation Functions.

Activation Function Nature Range Classification Mathematical Notation Usage

Sigmoid Non-linear 0 or 1 Binary classification f(x) = 1/1 + e−x Output layer
Tanh Non-linear −1 or 1 Binary classification Tanh(x) = 2 × sigmoid(2x) − 1 Output layer
Relu [98] Non-linear [0,inf] Multiple classification f(x) = max(0, max) Hidden layer
Swish Non-linear -inf to inf Multiple classification f(x) = x × sigmoid(x) Hidden layer
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Autoencoders: It is a class of deep learning model which relies on the concept of
rebuilding the input after performing suitable compression via the application of an encoder
followed by a decoder [99]. The prime task is to achieve dimensionality reduction to visualize
the data and gather suitable projections from it provided input features are not independent
and have some correlation. Vanilla, convolutional, multilayer, regularized are some variants
of autoencoders. Meidan et al. [100] presented N-Balot (network-based detection of IoT botnet
attacks using deep autoencoders) to detect botnet attacks using autoencoders.

Roopak et al. [17] presented a deep learning-based hybrid approach particularly for
DDOS attack detection and comparisons were made with the standalone Machine learning
techniques. In another work, McDermatt et al. [101] provided a novel bidirectional long
short-term memory-based RNN for the sensing of botnet activities amongst the consumer
IoT device. Packet level detection was performed along with word embedding for recog-
nition of text and conversion of packets into integer format. Further, Rahul et al. [16]
proposed a deep neural network-based approach to predict attacks on a NIDS.

On similar lines, Diro et al. [102] presented a deep learning model for the distributed
detection of attacks to leverage the self-teaching and compression capabilities of DL to
implement the network detection of attacks at fog nodes. The results showed that dis-
tributed attack detection provided better accuracy compared to the centralized schemes.
Further, an attempt to collaborate DL technology with its shallow counterpart was made by
Shone et al. [103]. They presented a novel unsupervised learning approach named NDAE
(non-symmetric deep autoencoder) for feature engineering combined with random forest
for classification.

Ullah et al. [104] proposed a tensor-flow-based Deep neural network approach to
detect software piracy and other malware-based attacks in the industrial IoT network. This
DNN is used for capturing pirated software from the source code of different programmers
from google code jam followed by an application of CNN to detect footprints via binary
visualization on colored images of malware files. Traffic classification plays a very vital
role in ensuring security in IoT networks. Yao et al. [105] present an end-to-end deep
learning-based capsule network approach for traffic classification and identification of
malware, unlike the conventional DL methods.

In another work, Telikani et al. [106] proposed a CSSAE technique for intrusion detec-
tion, especially in IoT networks. The main focus of the paper is the class imbalance problem
in the datasets, which tends to bias the results towards the majority class. Pajouh et al. [107]
also deployed LSTM for malware detection in ARM rooted IoT applications. In [108]
the authors exploited RNN, and network coding in amalgamation to prevent eavesdrop-
ping attacks in heterogeneous IoT environments with highly unreliable storage structures
and proposed two algorithms FAGA() (failure-aware greedy allocation) and FLAGA()
(failure-and-load aware greedy allocation) to test the failure condition of storage devices.

The complete inspection and scrutinization of the prevailing ML and DL techniques
concerning the survey conducted in this groundwork stipulate the following trends for
anomaly detection in the IoT. As a matter of fact, concerning the non-availability of a
particular IoT dataset has advocated researchers to orchestrate their experiments either by
using some non-IoT series of data or come up with their data records [108,109]. Further,
the survey conducted also helps us to reach some conclusions for the learning approaches
which includes their advantages, disadvantages, and their suitability towards the various
known attacks which is depicted in Table 8.
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Table 7. Tabular Representation of Deep Learning Approaches.

Author Dataset Used
Algorithm with
Implementation
Platform

Threats Challenges Performance
Evaluation

Roopak et al. [17] CICIDS2017

MLP,1-d CNN,LSTM,
CNN + LSTM
Platform:
Keras–Tensorflow,
machine learning
implementation
MATLAB2017a.

DDOS

Lack of Deep
learning models that
can work with highly
unbalanced datasets.

Accuracy:
1dCNN-95.14%,
MLP-86.34%,LSTM-
96.24%, CNN +
LSTM-97.16%.

McDermatt et al.
[101]

Dataset generated by
creating a testbed. BLSTM

Mirai(scan, infect,
control, and attack),
UDP.

Lack of
comprehensive
dataset including
more attack vectors.

Accuracy: 99.99%
(Mirai), 98.58%
(UDP).

Rahul et al. [16] KDD cup 99

DNN with three
layers
Platform: Keras
(Tensorflow).

Dos, probe,
User-To-Root (U2R),
Remote-to-local
(R2L).

Lack of real-time IoT
dataset, evaluation of
deeper networks.

Accuracy: 93%.

Diro et al. [102] NSL-KDD

Deep learning model
with 150, 120, 50
neurons in first,
second, and third
layer respectively.

Implementation of
technique on
different datasets.

Accuracy: 96% to
99%
99% (for two
class-normal and
anomalous)
98.27% (for 4
class(normal, dos,
probe, U2R and R2L)

Shone et al. [103] KDD cup 99,
NSL-KDD

NDAE
(non-symmetric deep
auto-encoders)
Platform: GPU
enabled tensor-flow.

Dos, probe,
User-To-Root (U2R),
Remote-to-local (R2L

Lack of real-time
traffic for appropriate
analysis.

Accuracy:
94.58% (Dos),
94.67% (probe),
3.82% (R2L),
2.70% (U2R).

Ullah et al. [104]
Google code jam,
Leopard Mobile
dataset1

Deep neural
networks
Platform:
Tensor-flow

Pirated software and
malware
threats(industrial
IoT).

- Accuracy: 96%

Yao et al. [105] UTSC-2016

Capsuleapproach(1-
D CNN + capsule
networklayer +
LSTM + output layer.
Platform:Python2.7,
TensorFlow1.8.0

Malware threats. -

Higher classification
accuracy compared
to traditional
approaches.

Table 8. Conclusions about learning approaches.

Ml And Dl
Techniques Advantages Disadvantages Suitability towards the Attacks

DT

Inherent feature selection, less
preprocessing required, simple
and easy to implement, can
handle missing values, coupling
with clustering decreases the
processing time in misuse-based
detection [29].

Large training time, large
complexity, small alterations
cause significant changes.

C4.0, C5.0 show very similar
results to ANN in [110] with real
IoT data.
J48 shows a high affinity towards
the DOS attack [111].

SVM

The Huge success rate in IDS, best
for binary classification, requires
small datasets for training,
enhanced SVM shows better
results in novel and real attacks.

Reveals its weakness in multiclass
classification, massive
consumption of memory, depends
on the kernel function.

It is used in [9] for attack
detection.
Also useful in spoofing attacks,
intrusions in access control [112],
online outlier detection [113].

KNN
It has a Fast training phase and
makes no assumptions about the
data.

It requires abundant storage,
expensive, depends on the value
of K, and suffers from the
dimensionality curse.

Mostly used in combination with
other classifiers [48,107].
Useful for access control intrusion
detection, malware.

RF
No feature selection, no
overfitting problem, usually has
the best accuracy.

Time-consuming because of the
development of decision trees.

It has achieved 99% accuracy. for
the DOS attack [106].
Useful for malware detection,link
fault detection [83], access control.
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Table 8. Cont.

Ml And Dl
Techniques Advantages Disadvantages Suitability towards the Attacks

NB Robust towards the noise, simple
and easy to implement

It cannot capture useful
information because of the
assumption of independence
amongst the features.

Used in [49] for intrusion
detection, access control.

ANN Robust model and can handle
non-linear data.

It suffers from overfitting, and the
technique is time-consuming,
selection of activation function is
another overhead and estimating
an appropriate number of units in
each layer.

Very useful DOS attack detection
[83,114].

RNN Efficient modeling of time-series
data

Difficulty in training, cannot
remember very long sequences
with Relu or tanh activation
function [115].

Eavesdropping [107].

LSTM

Reduces a load of feature
engineering, effective for
unstructured datasets, can
remember long sequences of
attack patterns.

Difficult to train because of
gigantic memory bandwidth
requirements.

IoT malware [108], botnet
activities, used in [116] for attack
detection in fog networks.

The table mentioned above will assist readers with the choice of learning approach
they want to implement in their researches based on their advantages, disadvantages, and
their suitability towards the various attacks.

5. Case Studies
5.1. Healthcare and IoT

The innovation in numerous IoT technologies has led to the decentralization of health-
care mechanisms from being traditional to a customary localized forum via the assistance
of IoT-authorized gadgets. These gadgets are based on the concept of a multisensor
framework for recording various parameters. These include recording blood sugar, ECG
(electrocardiogram), pulse, temperature, etc. of the patient. This customization supports
the notion of remote health tracking, which in particular involves at-home medication,
elderly care, or any fitness program [117–119]. Healthcare in IoT primarily involves four
basic entities, which are actors, sensors, communication networks, and applications. The
actors include the patients, clinical staff involving the doctors, nurses, experts. Sensors
are used for illuminating the actors with paramount requirements and subsequently dis-
patching the information via a suitable communication network [120]. There are profuse
devices prevalent for reading and tracking vital patient data and other medical statistics.
These devices range from smart wearables like smart bands, watches, shoes to intelligent
video cameras and meters. Applications assist with real-time notifications, thus aiding any
emergency services.

The real-time monitoring of data generated by smart devices and their transmission
in the ecosystem is very critical to intelligent decision-making. These intelligent systems
work autonomously without human intervention and decision regarding mitigating a
specific threat is taken in real-time after adapting to environmental changes. Figure 9
depicts secure smart healthcare management with the use of technologies like artificial
intelligence, blockchain, machine learning, and deep learning providing autonomous
working and decision making. Sensors are used for reading patient’s data and are connected
to the microprocessors. These microprocessors are further connected to any wireless
communication technology for routing and forwarding the data through the gateway. The
data are stored in the virtual machines popular as clouds for preprocessing and analysis.
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These data can be accessed by doctors, experts, and even patients. However, a proper
security mechanism is required to prevent any kind of damage by the adversaries.
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Various IoT architectures have progressed over the past years. Some of the prominent
architectures are given. For example, mHealth is a primary health care system with a
three-layered structure. The layers include a data collection layer for apprehending and
collecting the data followed by a data storage layer, which provides for stocking the data
in the stack pile racks, and a data processing layer for a proper inspection and scanning of
data [121]. Additionally, 6Lowpan consists of numerous access points with forwarding and
routing capabilities. The deployed sensor nodes, along with the access points, lead to the
formation of clusters. The connection is achieved via the assistance of IPV6. This approach
is preferred over others due to its low energy requirements, which makes it suitable for
the battery-powered sensor. Gao et al. [122] discuss a Zigbee-based structural health
monitoring system. The revolution in WSN allows multiple sensor nodes to communicate
wirelessly with the base station. To increase the lifetime of the network, a low-energy
communication channel is necessary. This led to the injection of Zigbee for communication
in the health monitoring system.

Despite many benefits, this sector of technology suffers from various loopholes, which
are enumerated below. The massive growth in the deadly underlying medical conditions of
the population requires well-organized, systematic, and efficient healthcare management.
Despite the numerous benefits like better diagnosis, treatment, and other facilities, the smart
and ubiquitous nature exposes it to multiple cyber threats. Cybersecurity in healthcare is at
a nascent stage and thereby requires proactive and improved technologies to protect it from
various attacks. Understanding different security challenges are necessary before dealing
with other intricacies of it. There are numerous challenges and issues for contemporary
health care applications. The broadcast nature of communication in healthcare leads to
the exploitation of the privacy of the patients, thus launching platforms for serious threats
like eavesdropping. This aspect, in turn, leads to the exploitation of the confidentiality of
the data [123]. Furthermore, any change in the data received from the sensors can be life-
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threatening in the case of healthcare applications. Therefore, integrity and authentication
are the two major concerns here. Moreover, the author in [124] depicts how emergency
services can be disrupted and compromised because of a lack of a single cloud-based
infrastructure where all e-health records can be accessed. Further security breaches in
cloud storage can worsen the situation.

To address the above-mentioned flaws, better and improved security frameworks
are required that necessitate the amalgamation of machine learning in this sector. Besides
fixing critical medical conditions like the identification of tumors, bleeds, etc., this AI
tool can solve many security-related affairs and issues by acting as an anomaly detec-
tor. Newaz et al. [125] suggested the application of health guard: an ML-based security
application framework for healthcare systems. This framework leveraged multiple ML
algorithms (KNN, Random Forest, DT, ANN) for detecting malicious activity and was able
to achieve an accuracy of 91%. The framework can encapsulate and observe correlations
amongst multiple body functionalities and other crucial signs. The structure was tested
against threats that included tamped medical devices, DOS, and other false data. To further
increase security, research is being carried out to combine ML with blockchain technology.

Tanwar et al. [126] suggested the use of ML in blockchain to improvise data secu-
rity and privacy. The architecture was proposed by integrating the blockchain with ML.
The learning potential of ML combined with blockchain technology that will not only
make it smarter but also reduce many data-oriented issues in IoT could be seen in recent
works [127–130]. Decentralization, transparency, and immutability are the primary objec-
tives of blockchain technology, which help to improve the security of the system [131–133].
This combination will result in correct predictions and better security. Additionally, Nil-
ima et al. [134] further backed that the usage of ML with blockchain to make the system
smarter and deal with privacy, integrity, and authentication issues.

5.2. Smart Vehicular System

In addition to ensuring security in the healthcare sector using IoT, there are many
scenarios where the application of the internet of things is being realized. Recently, the
application of IoT in vehicular security systems has gained huge success and attention [135].
The progression in intelligent technologies has opened a wide array of opportunities for the
ever-vulnerable smart vehicle systems. The availability of 4G LTE and 5G communication
spectrum has unlocked many possibilities for cyber-attacks leading to compromise of
security in smart vehicular systems (SVS) [136]. These connected vehicles are the source of
generation to the enormous amount of data and therefore are vulnerable to many security
attacks. Some of the popular security attacks on the SVS are Denial of Service(DoS), Black-
hole, Replay, Sybil, Impersonation, Malware, Falsified information, and timing attack [137].
All these cyber-attacks attempt to destabilize the functioning and performance of the SVS.
The application of intelligence on monitoring and controlling these sensors enabled smart
vehicular systems to have made these systems more robust and secure. Deep learning
techniques and machine learning-based algorithms like k-NN, SVM, decision trees, etc. are
in use for developing a security solution in vehicular systems using IoT. An example of the
Tyre Pressure Monitoring System (TPMS) [138] in the intelligent and connected system of
vehicles ensures proper monitoring of tyre pressure in all the tyres of the vehicle including
the spare wheel in the boot. The system was devised for ride comfort and robust handling
of the vehicle on the road. The use of sensors for all the tyres ensures the collection of
real-time data for the proper safety of the vehicle. A cyber-attack on this system may leak
the collected data to the attacker, thereby compromising the valuable data such as the
location of the vehicle, speed of the vehicle, and the braking behavior of the driver [139].
The prevention against such types of attacks using learning-based mechanisms has made
this system more applicable in current scenarios [140].

The security challenges the smart vehicles face today could be realized from the sever-
ity of security incidents in smart vehicles [141,142]. The infotainment system vulnerabilities
are being exploited to get into smart cars [143]. Tesla motors faced the causality in the
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smart car accident all due to the compromised sensors [144]. Anand et al. [3] discussed
the use-case of smart transportation covering the common attack surfaces and inherent
vulnerabilities.

5.3. Smart Manufacturing System

With the amalgamation of hardware, software, and the internet with IoT, another
promising domain with immense potential to improve the global economy is smart man-
ufacturing. The four vital components of any manufacturing unit or organization are
processes, people, products, and infrastructure [145]. The application of sensors in any of
these four components results in yielding an enormous amount of data which would be
very critical for the overall monitoring and control of the manufacturing systems. The main
advantage of having IoT in manufacturing is the optimum functioning of these four compo-
nents. With the benefits of IoT in manufacturing, there are pitfalls too. These smart-systems
are vulnerable to cyber threats leading to malfunction of the overall systems [146,147].
However, the ever-evolving use of machine learning and deep learning techniques in
manufacturing helps to prevent and mitigate cyber threats. One of the security issues in
manufacturing units is the prediction and management of vulnerabilities [148]. In these
categories of security issues, the machine learning algorithms are applied to gather the
data to identify the areas of the fault occurrences, i.e., to predict future issues from past
issues [149–151].

6. Research Challenges and Future Directions

The expeditious advancement of IoT usage in multiple sectors brings security compli-
cations to the forefront. The tremendous volumes of research conducted in the past years
still limit IoT to its nascent stage. The prime reason for the multiple challenges IoT is facing
that limit its expansion is in the security zone. In this section, the emerging challenges
which halt the IoT growth are discussed and pinpointed in Figure 10.

i Intelligence-based Vulnerability Management: Firstly, the heterogeneity of the de-
vices in the smart digitized world limits the automated detection and discovery of the
vulnerabilities. Further, adding to this is the lightweight security requirement for their
protection. These factors culminate the need to restructure the security analysis plat-
form. The survey conducted in this paper also backs this restructuring by merging AI
with IoT and presenting various solutions offered in this context. However, to further
improvise the attack discovery, detection, and mitigation, some problems need to be
confronted. These include a lack of real-time datasets. The datasets available for the
research purpose do not reflect real-world attack scenarios and are often unbalanced.
Further, the continuously changing functionalities of the networking environment
require retraining of the system, thereby adding to the overhead.

ii To Automate the Patch Management Process: The prime challenge to address the
vulnerabilities in the smart devices is the lack of a single automated binary code
patch generator that is functional across multiple platforms. The leading cause is
the generation of devices by different manufacturers. Therefore, this prescribes their
usability and prevents us from achieving an appropriate and feasible solution for
the firmware patching. Further adding to this is the variable nature of the operating
system and architectural patterns followed in the numerous devices. Thus, automatic
patch generation requires a deep understanding of the entire mechanism, thereby
making it a long-term security goal.

iii To manage a separate database for IoT vulnerabilities: From the studied literature
and growing attacks, it is seen that the general IoT devices with inherent known
vulnerabilities are flooded to the market. These IoT nodes, in turn, act as a stepping
stone for the adversaries to launch various attacks like Mirai, Hajime. Thus, to handle
the insecure IoT devices, maintaining structured information about the exploits and
known vulnerabilities in the smart environment would be of immense use. VARIoT is
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one such project working exclusively to develop a separate database for managing
IoT vulnerabilities.
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i To maintain a balance between Efficiency and Security in an IoT system: In addi-
tion, a balance needs to be achieved between efficiency and data security. Due to the
inverse nature, one often gets compromised. Therefore, incorporating ML and DL
to the fog nodes must be explored in depth to the intelligence near the data sources
to reduce the latency and the bandwidth. Though ML and DL can detect multiple
attacks, still the challenge for mitigating all possible attacks persists. Therefore, sup-
plementing the research further is required by exploring the incremental machine
learning near the sources.

ii Learning-based challenges in securing IoT: Machine Learning being known for ex-
tracting knowledge from the data were used for both malevolent and noble purposes.
It is found that the potential adversaries make efficient use of these learning algo-
rithms (machine learning and deep learning-based) to break the cryptographic secrets.
For example, Recurrent Neural networks are being used by the authors for crypt-
analysis. Furthermore, false data input feeds to the machine learning model result
in improper functioning of the entire learning-based system. The problems of the
oversampling, inadequate training dataset, and feature extraction are also a matter of
concern in adding intelligence to smart environments.

7. Conclusions

The extensive study conducted in this research culminates in the various facets of IoT,
beginning from the overview of the technology to the different architectural approaches.
The outline is followed by an in-depth security analysis depicting a taxonomy of attacks,
anomalies, and vulnerabilities. The technology has brought and will continue to bring
numerous benefits to its pertinent implementation. However, the deep contemplation
regarding the security aspects of it highlights the raising concerns in this sector. Thus,
appropriate defense mechanisms like access control, IDS, and authentication are required
to handle it. Due to the non-applicability of traditional security approaches (firewalls,
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antivirus) primarily because of low memory and computational constraints, other defense
mechanisms like IDS have gained popularity. This paper highlights the numerous research
efforts in the application of IDS based on the ML and DL algorithm as a security shield in
this area. Additionally, the pros and cons of the various learning techniques are listed with
their suitability towards different attacks conducted with critical analysis. Further, a case
study highlighting the various facets of healthcare is also provided which further helps in
understanding the practical implementation of IoT and learning-based security methods
in real-world scenarios. The Smart Vehicular system and Smart Manufacturing systems
are also explored in terms of their applications after being connected and the security
challenges presented as a byproduct. Furthermore, after the extensive literature surveyed
and presented, it is found that the critical issues namely automated patch management,
intelligent vulnerability management system, and a separate depository for IoT vulnera-
bilities must be handled in hand for sustainable IoT. In the future, hybrid learning-based
techniques will be explored to secure growing smart environments.
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