A method for soil moisture estimation in Western Africa based on ERS Scatterometer

M. Zribi, C. André, B. Decharme
CETP/CNRS, 10-12 av. de l'Europe, 78140 Vélizy, France
tel.: 33 1 39 25 49 34, fax: 33 1 39 25 49 22, email: zribi@cetp.ipsl.fr

Abstract
The analysis of feedback phenomena which occur between continental surfaces and the atmosphere is one of the keys to an improved understanding of African Monsoon dynamics. For this reason the monitoring of surface parameters, in particular soil moisture, is very important. The present paper presents a new methodology for the estimation of surface soil moisture over Western Africa, based on data provided by the European Remote sensing Wind SCatterometer (WSC) instrument, in which an empirical model is used to estimate volumetric soil moisture. This approach takes into account the effects of vegetation and soil roughness in the soil moisture estimation process. The proposed estimations have been validated using different methods, and a good degree of coherence has been observed between satellite estimations and ground truth measurements over the Banizambou site in Niger. Moisture and rainfall estimations for the same site are shown to be strongly correlated. Comparison with the multi-model analysis product provided by the Global Soil Wetness Project, Phase 2 (GSWP-2) indicates that their estimations are well correlated, although land surface models provide slightly overestimated levels of soil moisture.
I. Introduction

Surface soil moisture plays a crucial role in the continental water cycle because it controls the partitioning of precipitation between runoff, infiltration and evaporation ([1]), controls the partitioning of incoming radiation between latent and sensible heat fluxes, influences the vegetation’s condition, and modulates the soil’s thermal and hydraulic properties. Soil moisture thus influences atmospheric water vapour fluxes, and precipitation as a consequence. Various numerical weather forecasting models have demonstrated the high sensitivity of predicted rainfall to the ambient conditions of soil moisture ([2], [3], [4]).

In the case of African Monsoons, the feedback effects arising from the influence of continental surfaces on monsoon dynamics, are commonly thought to have played an important role in the drought of the 70's and 80's. In order to fully understand the role played by continental surfaces, it is important to identify the main hydrological processes involved in the continental water cycle, together with their variation and sensitivity as a function of climatic or geological region. While the theories of Charney (1975), [5] or Eltahir and Gong (1996), ([6]) address this question on regional scales, other studies (see e.g. [7]) raise the hypothesis of continental surface feedback at convective scales. [8] illustrate the importance of soil moisture on precipitation in different regions of the globe, particularly over West Africa, for which it is important to take both the atmospheric and the continental water dynamics (interactions between horizontal water transfer, soil water storage, and vegetation dynamics) into consideration. Whereas the regular measurement of soil surface characteristics (moisture and vegetation) in these regions poses a substantial challenge, considerable efforts have been made over the past three decades to develop remote sensing techniques to characterise the spatial and temporal variability of soil moisture over large regions [9]. In particular, active and passive microwave techniques as well as interpretation tools have been developed [10].

Passive sensors measure the natural thermal emission of the land surface at microwave wavelengths, using highly sensitive radiometers with spatial resolution (more than 40km).
In the case of tropical and semi-arid regions, only a small number of campaigns have been devoted to the study of surface characteristics such as soil moisture. The active microwave studies reported in recent years were based mainly on the use of a low resolution scatterometer ([11]-[18],...). In some studies, e.g. ([19]), the estimation of soil moisture has been based on a simple model which incoherently combines vegetation and bare soil contributions, weighted according to their respective relative surface areas (as a percentage of total surface area) within each cell observed by the scatterometer. The backscattered contribution from vegetation is determined using physical or empirical models ([20]). [13]-[14], developed a global methodology for the estimation of a relative soil surface moisture index. However, with an approach based on the methods described above, three distinct difficulties arise from the study of sites of the type described in the present paper:

- Firstly, because of the highly heterogeneous use of land and vegetation, it is very difficult to use theoretical models to describe the influence of the latter. In practice, vegetation models require a large number of parameters, which need to be tuned with high precision.

- Secondly, vegetation dynamics are very strong during the monsoon period, such that it is important to correctly take into account the vegetation’s development in the presence of varying soil moisture content.

- Thirdly, the concept of a relative index relies on the hypothesis of observing the maximum possible value of reflected radar signal (corresponding to conditions of saturated surface soil), over an area at least as large as the remote sensing instrument’s spatial resolution. In the case of arid and semi-arid regions, the latter condition is rarely fulfilled.

In the present paper we introduce a methodology in which soil moisture is estimated from ERS wind scatterometer radar data, acquired using both ERS1 and ERS2 over the period from 1991 to 2000. With this approach, processed radar data is combined with Normalized Difference Vegetation Index (NDVI) auxiliary data in order to estimate the mean soil moisture with a resolution of 25 km. The concept of the proposed approach is very close to the studies realised with SAR data in ([21]-[24]).
Our paper is organised as follows: in section II, the studied site and satellite data are presented. Section III describes the proposed methodology. Validation and derived results, including mapping of soil moisture, are provided in section IV. Finally, our conclusions are presented in Section V.

II. Studied area and satellite data

A. Study area (vegetation, rainfall, ...)

Western Africa is characterised by three climatic zones, distinguished by their mean annual rainfall levels:

* The north: a desert-like regime prevails (less than 300mm of annual precipitation), with one rainy season of less than three months (from mid-July to mid-September).

* The central zone: characterised by a Sahelian regime (300 to 750 mm of annual precipitation) in which the rainy season lasts between three and four months (August being the wettest month), and the remaining part of the year is generally dry.

* The tropical zone: characterised by 750 to 1200 mm of annual precipitation and a longer rainy season, which can last up to six months in the southern reaches of the zone.

As far as the vegetation is concerned, this changes gradually from the south to the north as illustrated in figure 1: savannah woodlands can be found in the south, which give way to open tree savannas, followed by thorn bush/tall-grass savannas, semi-desertic grasslands and scrublands, and stretches of barren land.

One of the most significant climatic variations experienced in this region was the persistent decline in rainfall which occurred in the Sahel, starting in the late 1960s. The trend was abruptly interrupted by a return of adequate rainfall in 1994, which is considered to be the wettest of the past 30 years, and was thought to signal the end of the preceding drought. However, rainfall in 1994 barely exceeded the region’s mean value during the 20th century, and was unusual in that the anomalously wet conditions occurred towards the end of the rainy season and in the following months. Unfortunately, dry conditions returned after 1994.

B. ERS Scatterometer data
The ERS wind scatterometer was initially designed to measure wind speed and direction at the sea’s surface. The instrument consists of three antennae which transmit radar beams which are pointed 45° forwards, 45° sideways, and 45° backwards with respect to the satellite’s nadir. The incidence angle θ varies over the instrument’s swath, from 18° to 47° for the mid-beam antenna, and from 25 to 59° for the fore-beam and aft-beam antennae ([11], [25]) Once the data has been reduced, each resolution cell is thus associated with measurements derived from three different angles of incidence. The sensor operates at 5.3 GHz and VV polarisation, like the ERS/SAR instrument. Its spatial resolution is around 50 km, and measurements are repeated every 3 to 4 days. The data is processed using a grid, and our studied region was divided into elementary 0.25° square cells. All measurements associated with the same cell, but taken at various incidence angles, are recorded together and are associated with the corresponding latitude/longitude co-ordinates.

III. Methodology

A. Radar data normalisation

As the backscattered radar signals are acquired at incidence angles ranging between 18° and 59° signal strength variations can arise, which are affected in particular by soil roughness and surface vegetation characteristics. The angular dependence of the radar signals can thus be expected to have spatial and temporal variations, with the latter being strongly influenced by vegetation dynamics during the rainy season. For all of these reasons, we chose to normalise the radar signal data, using monthly statistics for each elementary cell in the studied site.

The angular variation of backscattering coefficient is modelled with a 2nd order polynomial function:

$$\sigma_{dB}^0 = A(t)\theta^2 + B(t)\theta + C(t)$$ \hspace{1cm} (1)

The three parameters A, B, and C are computed for each cell, for each month of the year, using radar data measured during the period 1991-2000 with all incidence angle interval.

Figure 2 illustrates three examples of polynomial fitting of radar data, computed in January and August for three cells, one in the tropical region, (lat: 9°, lon: 3°), one in the Sahel region (lat: 12°, lon: 3°) and one in desert region (lat: 16°, lon: 3°). It can clearly be seen that the presence of vegetation with an increasing of soil moisture in rainy season tends to prevent the weakening of
signal strength when the incidence angle increases. First, during the dry season (January), when the density of vegetation is very low, the decrease in radar signal (as a function of incidence angle) is more pronounced than in August, when the vegetation density is at its maximum, second, the level of soil contribution increases with soil moisture.

Using the polynomial fit described above, the data was normalised to 40° using the following expression:

\[
\sigma_{dB}^0(40°) = \sigma_{dB}^0(\theta) - A(\theta)(\theta^2 - 40^2) - B(\theta)(\theta - 40)
\]

(2)

In the present study, after normalisation with all incidence measurements, only signals recorded at incidence angles less than 35° have been considered in soil moisture estimation. At higher incidence angles, the influence of vegetation on radar signal is likely to be strong and to dominate the soil moisture effect. The dynamic range of backscattered radar signals, arising from variations in soil moisture, would then diminish at higher incidence angles, thereby introducing radar normalisation errors, particularly at the data interval extremities. Although only low incidence angle signals are used for soil moisture estimation, we included high incidence angle signals in our normalisation approach, in order to have a precise estimation of processed signals.

Figure 3 illustrates the temporal evolution, over the period from 1997 to 2000, of processed radar signals from three cells, in tropical region (lat: 9°, lon: 3°), in sahelian region (lat:12°, lon: 3°) and finally in desert region (lat:16°, lon: 3°) after normalisation. Firstly, a seasonal evolution can be noticed in the radar signals: the lowest values correspond to dry seasons, whereas the highest values correspond to wet seasons with high vegetation coverage. Secondly, it can be seen that the periods of high signal strength, corresponding to high moisture or high vegetation coverage, are shorter for cells in the north because of the shorter monsoon period. The length of the monsoon period, depending on the latitude, is highly correlated with the period of high radar signal values as illustrated in figure 3. Small variations are observed on the processed signal during dry season, in spite of no changes in vegetation, moisture and roughness. This is linked to the fact that estimation
of radar signal on each resolution cell is associated to measurements from different higher integrated areas.

Finally, we observe a difference between the absolute backscattering values of the three cells: around -15, -13 and -11.5 dB for low radar signal values. This difference is particularly due to vegetation density which decreases from the south (tropical region) to the north (desert region). Other effects due to surface topography and roughness could also introduce a difference from one cell to another.

B. Elimination of roughness effects

After normalisation of the backscattered signals to a single angle of incidence, the dataset remains sensitive to three parameters: soil moisture, soil roughness, vegetation and surface heterogeneity. The signal received by the instrument from each spatial cell results from the sum of backscattered signals contributed by both bare soil and vegetation cover. These two contributions, weighted by their respective percentages of terrain cover, are added incoherently to give the measured signal $\sigma_{total}^0(\theta)$:

$$\sigma_{total}^0(\theta) = C \times \sigma_{cover}^0 + (1 - C) \times \sigma_{soil}^0 \quad (3)$$

where C is the mean fraction of observed terrain covered by vegetation, and σ_{cover}^0 is given by the incoherent sum of the modelled contributions of vegetation (σ_{veg}^0) and vegetation-covered soil (σ_{soil}^0). The latter term includes the attenuation resulting from the vegetation cover layer, and σ_{cover}^0 can thus be expressed as:

$$\sigma_{cover}^0 = \sigma_{veg}^0 + \sigma_{soil-veg}^0 + \gamma^2(\theta)\sigma_{soil}^0 \quad (4)$$

where $\gamma^2(\theta) = \exp[-2\tau / \cos(\theta)]$ is the two-way vegetation canopy transmissivity, and $\sigma_{soil-veg}^0$ represents the contribution resulting from multiple scattering interactions between the vegetation canopy and the soil surface.
Any temporal evolution of the soil moisture can potentially be monitored through the detection of changes in backscattered signal. If we consider radar signals scattered from the same cell, roughness effects and some vegetation effects could be eliminated by computing the difference between data recorded at different dates. This approach relies on the assumption that the change in backscattered signal is due only to local variations in soil moisture. In order to estimate the absolute value of soil moisture on one particular date we subtract, for each cell, an estimation of the driest signal (with \(M_v \approx 0\%\)) recorded on the same day of the year, from the ‘moist’ backscattered signal.

From the processed radar signals we identify, for each cell \((i,j)\) and each month \((k)\), the driest day \((d_k)\) corresponding to the weakest radar signal recorded during the period from 1991 to 2000. In order to take into account the short-term influence of strong vegetation dynamics, in particular during the rainy season between July and September, we retrieve the lowest signal corresponding to the other days of the year by using a simple linear interpolation between the driest days retrieved for each month \((k)\), according to:

\[
\begin{align*}
- \sigma_{dry}^0(d) &= f[\sigma_{dry}^0(d_{k-1}), \sigma_{dry}^0(d_k)] & \text{if } (d<d_k), \text{ or} \\
- \sigma_{dry}^0(d) &= f[\sigma_{dry}^0(d_k), \sigma_{dry}^0(d_{k+1})] & \text{if } (d>d_k).
\end{align*}
\]

(5)

Figure 3 illustrates the full set of normalised ERS/WSC data, for three cells, with the associated estimations of \(\sigma_{dry}^0\) for the period ranging between 1996 and 2000. It can clearly be seen that the processed radar signals have a lower limit corresponding to dry conditions. The fully processed signal for a given day \(d\), in month \(k\), thus becomes:

\[
\Delta \sigma = \sigma_{dB}^0(d_k) - \sigma_{dry}^0(d_k) = H(\text{veg}, M_v)
\]

(6)

C. Modelling of radar signal dependence on vegetation and surface moisture

The proposed approach takes advantage of the approximately linear dependence of radar backscattering on changes in soil moisture as for [14].
If we assume that the influence of variations in vegetation canopy is small when compared to that of soil moisture, between a given date for soil moisture estimation and that at which the driest signal is estimated, the difference obtained for each cell could be expressed by:

$$\Delta \sigma = \alpha \Delta M_v ,$$ \hspace{1cm} (7)

where $\Delta \sigma$ is the change in VV polarisation radar signal (dB) and ΔM_v is the change in soil moisture. The parameter α can be expected to depend on vegetation parameters and on the roughness characteristics of the soil surface. In practice, various experimental studies have shown that vegetation has the most significant effect on this slope ([26], [27]). The dependence of α on both vegetation and soil roughness can be expressed using the function $f(\text{veg})$ and the slope α_{soil} (bare soil), with:

$$\alpha = f(\text{veg}) \alpha_{\text{soil}}$$ \hspace{1cm} (8)

meaning that for soil with vegetation coverage, equation (7) becomes:

$$\Delta \sigma = f(\text{veg}) \alpha_{\text{soil}} \Delta M_v$$ \hspace{1cm} (9)

The bare soil slope α_{soil} was measured and estimated from local measurements made at the Diantandou site in Niger, [21], and is estimated to be approximately 0.28 for mean radar signals at 1km scale, in VV polarisation at 5.3 GHz with low incidence angles. This estimation is based on various experimental measurements made with ASAR-ENVISAT data, acquired during two rainy seasons (2004-2005), and soil moisture ground truth measurements made at different test sites (Wankama, Banizambou, Plateau Sofia, Maourey Kaoura Zeno, Tondi Kiboro, Garbey Tombo) with different soil types in Diantandou site. We consider that α_{soil} is only weakly dependent on variations in soil roughness between cells over the studied region, if we consider no large variations of soil roughness during soil moisture monitoring, which is the case of western Africa, with a small percent of agricultural sites. The latter hypothesis could be validated using backscattering model simulations, as shown by [26], [28].
The remaining unknown variable is the function \(f(\text{veg}) \), which characterises the influence of vegetation on the slope of \(\Delta \sigma \).

Analysis of the effect of vegetation on radar signals

The aim of this section is to analyse the relationship between variations in the \(f(\text{veg}) \) and various characteristics of the vegetation. Although optical thickness has been used by ([27]) to estimate such variations, this is not a practical approach in the present case, as there is either a lack or a total absence of validated satellite products such as optical thickness or LAI over Africa. We therefore choose to study the influence of vegetation by directly using the NDVI index, acquired by NOAA’s - Advanced Very High Resolution Radiometer (NOAA-AVHRR). NDVI products are provided by the Africa Data Dissemination Service Website (http://igskmnb015.cr.usgs.gov/adds), and are computed every 10 days. In the present case they were used after extrapolation of the data from 8 x 8 km\(^2\) to 25 x 25 km\(^2\) resolution.

As vegetation sensitivity cannot be demonstrated during the dry season, in the absence of variations in rain and soil moisture, we analysed data from the studied region recorded during the rainy months only (July, August and September). Figure 4 illustrates the processed \(\Delta \sigma \) signal as a function of NDVI, estimated for each cell during these three months, for all of the studied regions.

We first make the assumption that, from the processed data recorded over each region during the ten year interval from 1991 to 2000, the soil moisture varied in the same proportion, independently of the presence or nature of vegetation over each cell. As all of the cells experience periods of total dryness, this means that in all cells the soil moisture would have varied from, say, 0% for driest days in sahel and desert regions to an identical maximum value during the rainy season. The latter does not necessarily correspond to conditions of saturation, as in situ measurements observed by ([12], [16], [29]) indicate that the maximum value of volumetric moisture attained is around 20-25%. For value of NDVI (between 0 and 1), variations in \(\Delta \sigma \) are mainly caused by variations in soil moisture. It can also be observed that the maximum values of \(\Delta \sigma \), recorded for any given level of NDVI, must correspond to approximately the same maximum value of volumetric moisture -
since we take into account the statistics of a full set of data, recorded over the ten year period between 1991 and 1992. As shown in figure 4, an increase in vegetation (NDVI) is clearly associated with a reduction in the maximum value of $\Delta \sigma$. This tendency is in agreement with the observed decrease in radar signal sensitivity to soil moisture associated with an increasing of vegetation cover. In order to estimate variations of the slope α without being affected by noise effects due to rare events, for each value of NDVI we excluded the upper 2% of the corresponding values of $\Delta \sigma$. As illustrated in figure 4, when the NDVI increases from 0 to 1, the corresponding estimations of $\Delta \sigma$ decrease in value. This relationship is closely approximated by the following polynomial:

$$\Delta \sigma_{\text{max}}(\text{NDVI}) = \xi \cdot \text{NDVI}^2 + \gamma \cdot \text{NDVI} + \Delta \sigma_{\text{bare}}^{\text{max}}$$

(10)

Soil moisture estimation

The results of the last section show that the slope α decreases as a function of NDVI. By introducing the expression: $\Delta \sigma_{\text{max}}^{\text{bare}} = \alpha_{\text{soil}}M_{\text{V}}_{\text{max}}$ for bare soil, we can write:

$$\Delta \sigma_{\text{max}} = \left(\frac{\Delta \sigma_{\text{max}}^{\text{bare}}}{M_{\text{V}}_{\text{max}}} + \frac{\xi}{M_{\text{V}}_{\text{max}}} \cdot \text{NDVI}^2 + \frac{\gamma}{M_{\text{V}}_{\text{max}}} \cdot \text{NDVI} \right) M_{\text{V}}_{\text{max}}$$

(11)

$\Delta \sigma_{\text{max}}$ can be rewritten as:

$$\Delta \sigma_{\text{max}} = \left(\alpha_{\text{soil}} + \frac{\xi}{\Delta \sigma_{\text{max}}^{\text{bare}}} \cdot \alpha_{\text{soil}} \cdot \text{NDVI}^2 + \frac{\gamma}{\Delta \sigma_{\text{max}}^{\text{bare}}} \cdot \alpha_{\text{soil}} \cdot \text{NDVI} \right) M_{\text{V}}_{\text{max}}$$

(12)

By recalling the more general linear relationship of expression (7), one can then write:

$$\Delta \sigma = \alpha_{\text{soil}} \left(1 + \frac{\xi}{\Delta \sigma_{\text{max}}^{\text{bare}}} \cdot \text{NDVI}^2 + \frac{\gamma}{\Delta \sigma_{\text{max}}^{\text{bare}}} \cdot \text{NDVI} \right) M_{\text{V}}$$

(13)

and the following expression can be derived for the slope α:

$$\alpha = \alpha_{\text{soil}} \left(1 + \frac{\xi}{\Delta \sigma_{\text{max}}^{\text{bare}}} \cdot \text{NDVI}^2 + \frac{\gamma}{\Delta \sigma_{\text{max}}^{\text{bare}}} \cdot \text{NDVI} \right)$$

(14)

One can identify the second term in the above expression with $f(\text{veg})$, described above.
From the analysed data, the following empirical relationship can then be established:

\[
\Delta \sigma = 0.28 \times \left(-1.21 \text{NDVI}^2 + 0.03 \text{NDVI} + 1 \right) Mv
\]

(15)

In order to avoid errors due to high effect of dense vegetation cover, particularly in tropical regions, we propose to estimate soil moisture only for cells with a maximum NDVI during the studied period lower than 0.6.

IV. Validation and results

A. Algorithm validation

Because of the absence of sufficient ground truth soil moisture measurements in the studied period, between 1991 and 2000, we propose to validate our approach using several different methods.

Comparison with in situ soil moisture measurements

Only a small number of in situ measurements were made during the studied period, on the Banizambou site in Niger (lat: 13°.53, long: 2.65° co-ordinates). These measurements were made in different test fields, using TDR and gravimetric measurements. The comparisons between measurements and estimations shown in figure 5-a are found to have an rms error equal to 2.4%. As these measurements were not made specifically for the purposes of remote sensing validation, the may have been made some hours before or after the overhead passage of the radar instrument. It would then be normal for significant errors to occur whenever the measurements were made shortly before or after a rainfall event. The rms error of 2.4% is nevertheless small, and is associated with a very small bias equal to 0.43dB. Comparisons made with Wagner et al. products (figure 5-b), estimated for a saturation volumetric moisture of 30%, lead to larger values of rms error and bias.

Correlation with rainfall

Figure 6 provides a time series comparison of soil moisture and rainfall. The latter is given by the mean value of measurements taken from different rain gauge stations on the Banizambou site. It can be seen that although rainfall and soil moisture are not directly comparable, soil moisture peaks occur after rainfall events during the rainy season. For the studied sites, it has been computed that
92% of volumetric moisture values higher than 8% correspond to rainfall events which occurred on the same or previous day. Similarly, 89% of volumetric moisture values lower than 4% correspond to an absence of rainfall during the previous two days. These results demonstrate a good degree of correlation between rainfall and variations in soil moisture.

Comparison with GSWP2 multi-model analysis

The soil moisture estimations described here have been compared with soil moisture products provided by GSWP-2 ([30]. GSWP-2 (http://www.iges.org/gswp/) is an international initiative which was launched by the Global Energy and Water Cycle Experiment (GEWEX) to provide global data sets of soil wetness, energy and water fluxes, by driving 13 land surface models with state-of-the-art 1° by 1° atmospheric forcing and land surface parameters over a 10 year period (1986-1995). The baseline meteorological forcing provided by GSWP-2 is based on reanalysis made by the National Centers for Environmental Prediction / Department of Energy (NCEP/DOE). Corrections to systematic biases in the 3-hourly reanalysis fields are made by hybridisation with global observed monthly climatologies, from the Global Precipitation Climatology Centre (GPCC) and the Global Precipitation Climatology Project (GPCP). Daily profiles of soil moisture used in this comparison are a part of the multi-model product. Analysis of the soil wetness products of GSWP-2 has shown that Land Surface Models (LSMs) can be used to provide high quality estimations of soil moisture across space and time, and that a multi-model approach provides estimations which are superior to those derived from individual models.

The soil moisture estimations derived in the present study are compared with GSWP-2 modelled (top layer) soil moisture profiles of 0.5° by 0.5° cells, for the period from 1991-1995. If we consider the same lowest value of soil moisture during the dry season, figure 7 illustrates temporal variations of the two products in three different cells (the tropics, the Sahel and the desert region). In the case of the first cell (geographic coordinates: 10°-3°), we observe an increase in soil moisture after the dry season, with a wet season which lasts for approximately 6 months. In the Sahel cell (13°-3°), the wet season starts in June and lasts for approximately 4 months, and in the
desert region cell (16°-3°) there is a very short wet season associated with lower soil moisture values. We observe good coherence between estimations based on satellite data and model simulations for the two last regions. Both estimators follow approximately the same variations during the rainy season. In the case of the latter two regions, we observe an rms difference in volumetric soil moisture equal to 2.4% for the desert cell and 3.4% for the Sahel cell. For the tropical region the correlation is not as good, with an rms difference equal to 3.8%: the LSM output indicates a high level of soil moisture throughout the monsoon season, which is not the case for the satellite-based radar estimations. This overestimation of soil moisture, in the case of the GSWP-2 models, can also be clearly observed in figure 5-c, by comparisons with ground truth measurements which indicate a bias of approximately 6%.

B. Maps

Having validated our algorithm, we were able to apply it to each ERS WSC data point in the studied region. Resulting maps of mean soil moisture, averaged over a period of 5 days, are illustrated in figure 8 for the period June1999-october 1999. As considered in “IV-A section”, we estimate soil moisture only in cells with a maximum NDVI lower than 0.6. Therefore maps correspond particularly to sahel and desert regions. Large spatial variations can be observed, which must be due to high rainfall variability with a convective structure. These results also reveal a general behaviour of monsoon dynamic, in agreement with the known regimes of precipitation with larger duration of monsoon in the south.

V. Conclusion

A methodology has been developed to enable surface soil moisture to be estimated from ERS radar wind scatterometer data, with a resolution equal to 25Km. The raw data is processed in three stages:

- normalisation of the data to a single incidence angle (40°)
- elimination of roughness effects using an estimation of the dry soil signal corresponding to the same roughness and vegetation as the acquired radar signal.

- cancellation of the influence of vegetation on the radar signal’s sensitivity to soil moisture, using the NDVI index derived from AVHRR measurements.

The proposed methodology has been validated using different approaches, and a high level of correlation is observed between soil moisture variations and rainfall events. Secondly, comparisons between some ground truth measurements and the soil moisture values estimated using our methodology are characterised by an rms relative difference of 2.4%. A good degree of coherence is found between the soil moisture output given by GSWP2 multi-model analyses, and our reduction of ERS satellite data, even in those cases where the former is known to overestimate the surface soil moisture, with rms errors for the studied cells equal to 2.4% for desert, 3.4% for sahel cell and 3.8% for tropical cell. Soil moisture maps are proposed for the studied period. Future work will include more detailed analysis of various climatic anomalies, which occurred during the ten years covered by the present study.
References

Acknowledgements

Based on a French initiative, AMMA was formed by an international scientific group, and is currently funded by a large number of agencies, in particular from France, the UK, the USA and Africa. It also benefits from a major financial contribution provided by the European Community's Sixth Framework Research Programme.
Detailed information on the scientific coordination and funding of AMMA is available at its international web site: http://www.amma-international.org/.

The authors would like to thank the European Space Agency (ESA) for providing them with ASAR images free of charge, in the framework of the ENVISAT/ASAR project n° 1522. The authors would also like to thank the Niamey-IRD team for their logistic support during terrain and rainfall measurement surveys carried out in Niger. We also wish to thank Paul Dirmeyer and his team at the Center for Ocean Land Atmosphere studies (COLA) for their contributions towards the development of the Global Soil Wetness Project. Finally, we also wish to thank Vienna university for the use of their global moisture products.
Figures

Figure 1: Vegetation cover description in Western Africa

Figure 2: Illustration of radar signal normalisation approach for three cells in tropical, sahel and desert regions, for January in (a), (b), (c) and August in (d), (e) and (f).

Figure 3: Illustration of normalised radar signal evolution with an estimation of dry radar signal corresponding to the lowest values of radar signal as a function of time from 01/01/1996 in the case of the three region types, (a) tropical region (lat: 9°, lon: 3°), (b) sahel region (lat: 12°, lon: 3°), (c) desert region (lat: 16°, lon: 3°).

Figure 4: Illustration of the processed radar signal as a function of NDVI vegetation index over West Africa (during three months of monsoon season (July, August, September)).

Figure 5: Comparison between soil moisture ground truth measurements and proposed estimations (a) with ERS Scatterometer data based on our approach, (b) with ERS Scatterometer data based on the Wagner approach, (c) with GSWP2 output models.

Figure 6: Illustration of soil moisture estimations compared to rainfall measurements over the Banizambou site in Niger.

Figure 7: Comparison between GSWP2 model outputs and our soil moisture estimations for three regions (a) tropical region (10°-3°), (b) sahel region (13°-3°), (c) desert region (16°-3°).

Figure 8: Mapping of soil moisture over Western Africa in the period May-October 1999, for each months 6 maps with an average moisture over 5 days.
Figure 1
Figure 2
Figure 3
Figure 4

\[y = -6.013x^2 + 0.1512x + 4.9778 \]
Figure 5
Figure 6
(a) RMSE=3.8%

(b) RMSE=3.4%
Figure 7