Modern Chemical Enhanced Oil Recovery

Theory and Practice

James J. Sheng, Ph. D.

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier

Contents

	Preface Nomenclature	xiii xvii
Chapte	er 1 Introduction	1
1.1	Enhanced Oil Recovery's Potential	1
1.2	Definitions of EOR and IOR	1
	Existing Definitions	2
	Proposed Definitions	3
1.3	General Description of Chemical EOR Processes	4
1.4	Performance Evaluation of EOR Processes	5
1.5	Screening Criteria for Chemical EOR Processes	8
	Formation	8
	Oil Composition and Oil Viscosity	8
	Formation Water Salinity and Divalents	8
	Reservoir Temperature	9
1.0	Formation Permeability	9
1.0	Naming Conventions and Units	9 11
1.7	Organization of This book	11
Chante	er 2 Transport of Chemicals and Fractional	
Flow (Curve Analysis	13
2.1	Introduction	13
2.2	Diffusion	13
	Diffusion in a Bulk Liquid or Gas Phase	13
	Diffusion in a Tortuous Pore	14
	Statistical Representation of Diffusion	15
2.3	Dispersion	16
	Concept of Dispersion	16
	Estimate Longitudinal Dispersion Coefficient from	
	Experimental Data	17
	Empirical Correlations for the Longitudinal Dispersion	_
	Coefficient	22
	Empirical Correlations for the Transverse Dispersion Coefficient Evaluation of the Contributions of Diffusion, Convection,	24
	and Dispersion to the Front Spread	25
	Dispersivity	26
2.4	Retardation of Chemicals in Single-Phase Flow	28
2.5	Types of Fronts	29
	Spreading Front	31
	Indifferent Front	31
	Sharpening Front	32

2.6	Fractional Flow Curve Analysis of Two-Phase Flow Saturation Shock	36 36
	Fractional Flow Equation	37
	Retardation of Chemicals in Two-Phase Flow	39
	Fractional Flow Curve Analysis of Waterflooding	41
	Fractional Flow Curve Analysis of Polymer Flooding	43
	Fractional Flow Curve Analysis of Surfactant Flooding	48
Chapte	er 3 Salinity Effect and Ion Exchange	51
3.1	Introduction	51
3.2	Salinity	51
3.3	Ion Exchange	54
	Ion Exchange Equations	55
	Values of Other Exchange Coefficients	61
	Calculation of Exchange Composition	62
	Calculation of Mass Action Constant at Different	
	Temperatures	63
	Effect of Diluting an Equilibrium Solution	63
	Chromatography	64
	Effect of pH	67
3.4	Low-Salinity Waterflooding in Sandstone Reservoirs	67
	Observations of Low-Salinity Waterflooding Effect	68
	Proposed Mechanisms	68
3.5	Salinity Effect on Waterflooding in Carbonate Reservoirs Wettability Alteration by Seawater Injection into Chalk	73
	Formation	74
Chapt	er 4 Mobility Control Requirement	
in EOF	C Processes	79
4.1	Introduction	79
4.2	Background	79
4.3	Setup of Simulation Model	82
4.4	Discussion of the Concept of Mobility Control Requirement	84
4.5	Theoretical Investigation	90
4.6	Numerical Investigation	93
	Effect of Mobility Ratio in a Homogeneous Formation	93
	Effect of Mobility Ratio in a Layered Formation	96
	Effect of Mobility Ratio in a Heterogeneous Formation	96
4.7	Experimental Justification	96
4.8	Further Discussion	99
Chapte	er 5 Polymer Flooding	101
5.1	Introduction	101
5.2	Types of Polymers and Polymer-Related Systems	101
	Hydrolyzed Polyacrylamide	102
	Xanthan Gum	104

vi

	٠	•
v	Ì	1
	-	-

	Salinity-Tolerant Polyacrylamide—KYPAM	104
	Hydrophobically Associating Polymer	110
	2-Acrylamide-2-Methyl Propane-Sulfonate Copolymer	117
	Movable Gels	119
	pH-Sensitive Polymers	121
	BrightWater	122
	Microball	125
	Inverse Polymer Emulsion	127
	Preformed Particle Gel	128
5.3	Properties of Polymer Solutions	129
	Polymer Viscosity	129
	Polymer Stability	135
5.4	Polymer Flow Behavior in Porous Media	148
	Polymer Rheology in Porous Media	148
	Polymer Retention	153
	Inaccessible Pore Volume	164
	Permeability Reduction	165
	Relative Permeabilities in Polymer Flooding	171
5.5	Displacement Mechanisms in Polymer Flooding	176
5.6	Amount of Polymer Injected	177
5.7	Performance Analysis by Hall Plot	178
5.8	Polymer Mixing and Well Operations Related	101
	Polymer Injection	181
	Completion	181
	Completion	182
	Injection velocity	183
	Separate Layer Injection	183
	Removing Plugging	183
5.9	Special Cases, Pilot Tests, and Field Applications	100
	Drafile Control by Injection of Delymour with Different	183
	Adoptular Weighte	104
	Protecular weights	184
	Polymer injection in viscous Oil Reservoirs	185
	Profile Control in a Strong Bottom and Edge Water	100
	Drive Reservoir	188
	Unshore Polymer Flooding	189
	Uses of Produced Water	191
	Early Pilot lests in Daqing	192
	PO and PT Pliot Tests in Daging	192
	Large-Scale Field Applications	194
	Polymer Flooding Pilot in the Sabel Transition Zone	197
	Dagang Gangxi Block 4 PF Pilot with Profile Control	198
	Raramay Crosslinked Polymer Solution Pilot Polymer Flooding in a High-Temperature and High-Salinity	199
	Reservoir	200
5.10	Polymer Flooding Experience and Learning in China	202
	Performance Characteristics during Different Periods	202
	Experience and Learning	202
	-	

Chapte	er 6 Polymer Viscoelastic Behavior and Its	
Effect	on Field Facilities and Operations	207
6.1	Introduction	207
6.2	Viscoelasticity	207
6.3	Polymer Viscoelastic Behavior	212
	Shear-Thickening Viscosity	213
	Apparent Viscosity Model for a Full Velocity Range	215
	Total Pressure Drop of Viscoelastic Fluids	217
<i>.</i> .	Factors Affecting Polymer Viscoelastic Behavior	218
6.4	Observations of Viscoelastic Effect	221
	Core Flood Observations	221
	Relative Permeability Curves	225
65	Displacement Mechanisms of Visconlastic Polymers	220
0.5	Pulling Mechanism	227
	Stripping Mechanism	220
	Mechanism of Oil Thread Flow	230
	Mechanism of Shear-Thickening Effect	232
6.6	Effect of Polymer Solution Viscoelasticity on Injection	
	and Production Facilities	232
	Vibration Problem with Flow Lines	232
	Problems with Pump Valves	234
	Problems with Maturation Tanks	234
	Problems with Beam Pumps	235
	Problems with Centrifugal Pumps	237
Chapt	er 7 Surfactant Flooding	239
7.1	Introduction	239
7.2	Surfactants	239
	Types of Surfactants	239
	Methods to Characterize Surfactants	240
7.3	Types of Microemulsions	244
7.4	Phase Behavior Tests	247
7.5	Surfactant Phase Behavior of Microemulsions and IFT	254
	Ternary Diagrams	254
	Hand's Kule	261
	Effect of Cosolyant (Alcohol) on Phase Benavior	268
	Two-Phase Approximation of Phase Behavior without	277
	Type III Environment	281
	Quantitative Representation of Interfacial Tension	286
	Factors Affecting Phase Behavior and IFT	288
7.6	Viscosity of Microemulsion	291
7.7	Capillary Number	293
	Definitions: Which One to Use	293
	How to Calculate Capillary Number	297

7.8	Trapping Number	301
7.9	Capillary Desaturation Curve	307
7.10	Relative Permeabilities in Surfactant Flooding	314
	General Discussion of Relative Permeabilities	314
	Relative Permeability Models	315
	IFT Effect on the Relative Permeability Ratio k _{rw} /k _{ro}	319
7.11	Surfactant Retention	322
	Precipitation	322
	Adsorption	325
	Phase Trapping	3 31
7.12	Displacement Mechanisms	332
	Displacement Mechanisms in Dilute Surfactant Flooding	332
	Displacement Mechanisms in Micellar Flooding	3 33
7.13	Amount of Surfactant Needed and Process Optimization	334
7.14	An Experimental Study of Surfactant Flooding	334
Chapte	er 8 Optimum Phase Type and Optimum	
Salinity	⁷ Profile in Surfactant Flooding	337
8.1	Introduction	337
8.2	Literature Review	338
	Optimum Phase Types	338
	Optimum Salinity versus Surfactant Concentration	339
	Optimum Salinity Gradients	342
8.3	Sensitivity Study	345
	Basic Model Parameters	345
	Sensitivity Results	345
8.4	Further Discussions	360
	Effect of k. Curves and Optimum Phase Type	360
	Effect of Phase Velocity	361
	Negative Salinity Gradient	362
8.5	Optimum Phase Type and Optimum Salinity Profile Concepts	365
• • •	Optimum Phase Type	365
	Optimum Salinity Profile	366
8.6	Summary	369
		505
Chapte	r 9 Surfactant-Polymer Flooding	371
9.1	Introduction	371
9.2	Surfactant-Polymer Competitive Adsorption	371
9,3	Surfactant-Polymer Interaction and Compatibility	372
	Observations about Surfactant-Polymer Interaction	372
	Factors Affecting Surfactant-Polymer Interaction	374
9.4	Optimization of Surfactant-Polymer Injection Schemes	379
	Placement of Polymer	379
	Effect of the Amounts of Polymer and Surfactant Injected	380
	Time to Shift Waterflood to SP	381
	Optimization of the Chemical Flooding Process	383
9.5	A Field Case of SP Flooding	384

ix

Chapte	r 10 Alkaline Flooding	389
10.1	Introduction	389
10.2	Comparison of Alkalis Used in Alkaline Flooding	389
	General Comparison and pH	389
	Polyphosphate	391
	Silicate versus Carbonate	391
	Precipitation Problems	394
10.3	Alkaline Reaction with Crude Oil	395
	In Situ Soap Generation	396
	Emulsification	398
	Effects of Ionic Strength and pH on IFT	400
10.4	Measurement of Acid Number	402
10.5	Alkali Interactions with Rock	405
	Alkaline Ion Exchange with Rock	406
	Alkaline Reaction with Kock	409
	Alkali-Water Reactions	419
10.6	Pocovory Machanisms	420
10.0	A Brief Summary of Mechanisms	420
	IFT Function in Alkaline Flooding	420
10.7	Simulation of Alkaline Flooding	427
10.7	Mathematical Formulation of Reactions and Equilibria	428
	Mathematical Formulation of Alkaline Flooding	430
	EOBATCH and UTCHEM	432
	A Case with Clay and Silica Dissolution/Precipitation	
	Included	455
10.8	Alkaline Concentration and Slug Size in Field Projects	456
10.9	Surveillance and Monitoring in Pilot Testing	458
10.10	Application Conditions of Alkaline Flooding	458
Chapte	r 11 Alkaline-Polymer Flooding	461
11.1	Introduction	461
11.2	Interaction between Alkali and Polymer	461
	Alkaline Effects on Polymer Viscosity	461
	Polymer Effect on Alkaline/Oil IFT	464
	Alkaline Consumption in Alkaline-Polymer Systems	465
11.3	Synergy between Alkali and Polymer	466
11.4	Field AP Application Example: Liaohe Field	468
Chapte	r 12 Alkaline-Surfactant Flooding	473
12.1	Introduction	473
12.2	Phase Behavior Tests for the Alkaline-Surfactant Process	473
12.3	Quantitative Representation of Phase Behavior	
	of an Alkaline-Surfactant System	474
12.4	Activity Maps	477
12.5	Synergy between Alkali and Surfactant	480

х

12.6	Synergy between Alkali and Surfactant in Heavy Oil	
	Recovery	482
12.7	pH Effect on Surfactant Adsorption	486
12.8	Recovery Mechanisms	492
12.9	Simulation of Phase Behavior of the Alkaline-Surfactant	
	System	492
	Setup of Alkaline-Surfactant Batch Model	492
	Analysis of Alkaline-Surfactant Phase Behavior	493
Chapte	r 13 Alkaline-Surfactant-Polymer Flooding	501
13.1	Introduction	501
13.2	Synergy of Alkali, Surfactant, and Polymer	501
13.3	Interactions of ASP Fluids and Their Compatibility	501
	Alcohol Effect on AS Compatibility	502
	Alkaline and Surfactant Effects in ASP Systems	502
	Polymer Effect in ASP Systems	503
	Factors Affecting Phase Separation	504
	Factors Affecting IFT	506
	Factors Affecting Wettability	508
13.4	Relative Permeabilities in ASP	509
13.5	Emulsions in ASP Flooding	510
	Types of Emulsions	511
	Properties of Emulsions	513
	Factors Affecting Emulsion Stability	518
12.6	Diagle compared Mandeman	521
13.0	Displacement mechanisms	521
13.7	Effect of Alkali and Surfactant Concentration Cradiente	522
	Produced Surfactant Injection	522
12.8	Amounts of Chemicals Injection	522
13.0	Vertical Lift Methods in ASP Flooding	525
13.10	Problems Associated with ASP	520 527
10110	Chromatographic Separation of Alkali Surfactant	527
	and Polymer	528
	Chromatographic Separation of Surfactant Compositions	530
	Precipitation and Scale Problems	534
	Formation Damage	535
	Produced Emulsions	536
13.11	ASP Examples of Field Pilots and Applications	536
	Daqing ASP Pilot Test in Sa-Zhong-Xi (S-ZX)	536
	Daging ASP Pilot in Xing-5-Zhong (X5-Z)	540
	ASP Pilot in Xing-Er-Xi (X2-X)	542
	Daqing's Largest ASP Application (X2-Z)	545
	Daqing ASPF Pilot Test	549
	Shengli Gudong ASP Pilot	553
	Shengli Gudao ASP Pilot	556
	Karamay ASP Pilot	558

xi

Jilin Honggang ASP Pilots	562
Zhongyuan Huzhuangji ASP Pilot	563
Yumen Laojunmao A/S/P Pilot	565
References	569