SAPERE: Self-aware Pervasive Service Ecosystems

Franco Zambonelli
Università di Modena e Reggio Emilia

STREP – 3 years

www.sapere-project.eu

AWARE Meeting - December 14, 2010
The Consortium

- Università di Modena e Reggio Emilia
 - Franco Zambonelli & Marco Mamei
- Birkbeck College University of London
 - Giovanna Di Marzo Serugendo
- Alma Mater Studiorum – Università di Bologna
 - Mirko Viroli & Andrea Omicini
- St. Andrews University
 - Simon Dobson
- Johannes Kepler Universitaet Linz
 - Alois Ferscha

AWARE Meeting - December 14, 2010
The Scenario

• Pervasive computing
 – Sensor rich and always connected smart phones
 – Sensor networks and information tags
 – Localization and activity recognition
 – Internet of things and the real-time Web

• Innovative pervasive services arising
 – Situation-aware adaptation
 – Interactive reality
 – Pervasive collective intelligence and pervasive participation

• Open co-production scenario, very dynamic, diverse needs and diverse services, continuously evolving
The Overall Objective

• Develop and demonstrate a highly-innovative theoretical and practical framework for pervasive service ecosystems
 – Adaptivity and self-management as inherent properties of the ecosystem
 – Systemic self-awareness as an observable property of the overall system
 – Long-lasting (eternal) adaptivity
 – Bio-chemical inspiration
• Foundational re-thinking of
 – Service architectures and associated middleware
 – Self-* algorithms and contextual knowledge management
The Architectural Approach

• Open production model
• Smooth data/services distinction
 – LSA → live semantic annotations
• Interactions
 – Sorts of bio-chemical reactions among components
 – In a spatial substrate
• Eco-laws
 – Rule all interactions
 – Discovery + orchestration seamlessly merged
• Built over a pervasive network world
Specific Objectives

• Both of a scientific and technological nature
• Around which the various WPs are organized
Model, Structures, and Knowledge

• Model & Methodology
 – Innovative chemical-inspired semantic model for interactions among components and their dynamic composition/aggregation
 – Semantic (LSA) description and semantic pattern-matching
 – Uniform treatment of data and services
 – Methodological guidelines associated

• Structures & Space
 – Model distributed self-* algorithms via the chemical LSA framework
 – Innovative flexible means for aggregation and composition
 – Define decentralized means to control the behaviour of the ecosystem

• Knowledge & Time
 – Distributed knowledge management algorithms via the LSA framework
 – Define new means to perform distributed recognition of current situations
 – As well as to enable recognition of future situations
Key Challenges for model, structure and knowledge

• Can our chemically-inspired computation model and the eco-laws?
 – Be flexible and general-purpose enough?
 – Effectively deal with the complexity and diversity of modern pervasive scenarios?
 – Be effectively implementable?

• And, for structure and knowledge
 – Can it accommodate all needed distributed aggregation and self-composition algorithms
 – Can it express all needed forms of knowledge management?

• Or should we rather go for application-specific (or location-specific) eco-laws?
Infrastructure and Applications

• Infrastructure
 – A very lightweight infrastructure
 – Ruling all interactions (from discovery to data exchange and synchronization) by embedding the concept of eco-laws
 – To most extent, acting as a recommendation and planning engine
 – Possibly inspired by tuple space coordination models
 – Yet made it more “fluid” and suitable for a pervasive computing continuum substrate \(\rightarrow \) not a network but a continuum of tuple spaces

• Applications
 – The “Ecosystem of Display” as a general and impactful testbed
 – To put at work and demonstrate the SAPERE findings
 – Active and dynamic information sharing in urban scenarios
 – Active participation of citizens to the working of the urban infrastructure
Key Tangible Results (hopefully)

- A novel model and methodology to support the development of complex service systems in open and dynamic pervasive scenarios
- A uniform set of:
 - Self-* algorithms for service/data composition and aggregation (in the form of libraries)
 - Algorithms and tools for distributed management of contextual-knowledge, to enforce present- and future-awareness in the ecosystem
- A novel middleware for pervasive computing scenarios (Open Source)
 - Integrating the stated algorithms in the form of libraries
- A set of released innovative application showcased on the Ecosystem of Displays testbed