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Abstract

The evolution of eukaryotes is accompanied by the increased complexity of alternative splicing which greatly expands
genome information. One of the greatest challenges in the post-genome era is a complete revelation of human
transcriptome with consideration of alternative splicing. Here, we introduce a comparative genomics approach to
systemically identify alternative splicing events based on the differential evolutionary conservation between exons and
introns and the high-quality annotation of the ENCODE regions. Specifically, we focus on exons that are included in some
transcripts but are completely spliced out for others and we call them conditional exons. First, we characterize
distinguishing features among conditional exons, constitutive exons and introns. One of the most important features is the
position-specific conservation score. There are dramatic differences in conservation scores between conditional exons and
constitutive exons. More importantly, the differences are position-specific. For flanking intronic regions, the differences
between conditional exons and constitutive exons are also position-specific. Using the Random Forests algorithm, we can
classify conditional exons with high specificities (97% for the identification of conditional exons from intron regions and
95% for the classification of known exons) and fair sensitivities (64% and 32% respectively). We applied the method to the
human genome and identified 39,640 introns that actually contain conditional exons and classified 8,813 conditional exons
from the current RefSeq exon list. Among those, 31,673 introns containing conditional exons and 5,294 conditional exons
classified from known exons cannot be inferred from RefSeq, UCSC or Ensembl annotations. Some of these de novo
predictions were experimentally verified.
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Introduction

Alternative splicing is one of the most important mechanisms for

higher organisms to expand the information content from genome

to transcriptome. Bioinformatics analyses based on EST sequences

and exon-exon junction microarray studies show that 59%,74%

of human genes are alternatively spliced [1,2]. Previous studies

estimated that cassette exons make up 53%,61% of alternative

splicing events in most species [3,4]. Although EST and

microarray based studies have made much progress in the

prediction of alternative splicing events, they are not sufficient to

detect all splice variants due to the biased sampling and the bias

and noise inherent to EST preparation and microarray technol-

ogy. Leparc et al. used splice-site sequence Markov models and a

Bayesian classifier to identify novel cassette exons from intron

sequences [5]. They successfully predicted and experimentally

confirmed 26 novel human cassette exons which are involved in

intracellular signaling. Sorek et al. assembled 243 alternative and

1,753 constitutive exons that are conserved between human and

mouse [6]. They identified several features differentiating between

alternatively spliced and constitutively spliced exons. The most

important features are the ones based on the sequence similarity

between human and mouse. Yeo et al. used sequence features to

distinguish alternative splicing events conserved in human and

mouse [7]. Therefore, sequence content and sequence conserva-

tion provide alternative ways to study alternative splicing [8].

It has been shown that the evolution rate is lower for exon

regions near the intron-exon boundaries than the middle part of

exons, by estimating the non-synonymous substitution rate and the

synonymous substitution rate from the alignment of human-mouse

sequences [9]. The SNP density is the lowest near the splice sites,

which also indicates that exon regions near the splice sites are

under higher selection pressure [10]. Here, we consider the

conservation score of every site of conditional exons, constitutive

exons and conditional-exon-free introns. The conservation score is

from the PhastCons phylo-hidden Markov model [11] and it is the

posterior probability that the site is conserved across 17 vertebrate

species. We uncovered the position-specific patterns for the

conservation scores and compared conditional exons, constitutive

exons and conditional-exon-free introns. The position-specific

conservation pattern is more efficient in identifying conditional

exons than the overall conservation score of individual exons.

Recently, the pilot project of the Encyclopedia of DNA

Elements (ENCODE) [12] has rigorously identified functional

elements in the 1% region of the human genome. The

GENCODE [13] consortium of the ENCODE project has
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manually prepared a high-quality annotation for transcripts in the

ENCODE regions. In this paper, we utilize the detailed

annotation of the ENCODE regions and assemble the lists of

conditional exons, constitutive exons and conditional-exon-free

introns as training sets. We have two goals: (1) identify novel

conditional exons from intron regions; (2) classify known exons

into conditional exons and constitutive exons. We used the

Random Forests machine learning method [14] to identify novel

conditional exons from intron regions and achieved 97%

specificity and 64% sensitivity. For classifying exons into

conditional exons and constitutive exons, although the sensitivity

is only 32%, the specificity can be as high as 95%.

Results

Position-specific Conservation Pattern for Exons and
Introns

In this paper, we are interested in conditional exons that are

included in some transcripts but are completely spliced out for

other transcripts. These include traditional definition of cassette

exons, mutually exclusive exons, retained introns and other

complicated alternative splicing events, but not alternative 59 or

39 exons. Non-conditional exons are called constitutive exons. Our

data flowchart contains the training with the ENCODE data and

the prediction using the Random Forests classifiers (Fig. 1).

Conditional exons, constitutive exons and conditional-exon-free

introns were assembled from the ENCODE regions. Figure 2A

plots conservation scores along relative positions of exons or

introns. The bias due to the different lengths of exons was

corrected in the following way. For each relative position x, the

average conservation score was calculated only for exons

containing that position. Similar correction was performed for

introns. Compared with introns, both conditional exons (red) and

constitutive exons (black) have much higher conservations. The

conservation scores gradually reduce along the relative positions to

exon edges. On the contrary, the conservation scores of introns

(green) drop quickly and stayed around 0.07 after about 30 base

pair (bp). The 39 positions of introns (247 to 27) have relatively

higher conservation scores than the 59 positions of introns (7 to 47)

(p-values based on one-tailed t tests#0.001), probably reflecting

the branching point and the poly-pyrimidine tract upstream of the

39 splice site. Compared with constitutive exons, conditional exons

have lower conservation scores and the difference is remarkably

more significant for regions near the edges. One-tailed t tests were

performed to compare the conservation scores of conditional

exons and those of constitutive exons. Figure 2B shows the p-value

for each position. It indicates that the selection pressure on the

boundaries of conditional exons is significant lower than that for

constitutive exons. The difference tends to decrease towards the

middle part of exons.

Figure 1. Data flowchart of identifying alternative splicing events based on the ENCODE data and the Random Forests classifiers.
Conditional exons are exons that are included in some transcripts but are completely skipped in others. Non-conditional exons are called constitutive
exons. Our procedures contain the training with the ENCODE data and the prediction using the Random Forests classifiers.
doi:10.1371/journal.pone.0002806.g001
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On the contrary, if we consider the conservation scores of

flanking intronic regions, intronic regions flanking conditional

exons (red) have higher conservation scores than those flanking

constitutive exons (black) (see Fig. 3A). Sorek et al. also reported

that the intronic regions flanking cassette exons are conserved

between human and mouse [6]. In addition, observed from

Figure 3A, the differences for upstream intronic regions of exons

are larger than those for downstream intronic regions. One-tailed t

test was performed to compare the differences for upstream

regions (2100, 210) and the differences for downstream regions

(10, 100). The p-value is 1.161026. Figure 3B plots the position-

specific p-values for those differences. The flanking (246, 218)

Figure 2. Position-specific conservation scores of exons and introns. (A) Conservation score vs. relative position to splicing site. For every
site of exon or intron, x is defined as the position relative to the nearest splice site. It is positive for distances from the 59 edge and negative for
distances from the 39 edge. Y axis is the average conservation score for constitutive exons (upper lines, black), conditional exons (middle lines, red),
and introns (bottom lines, green). The error bar indicates the standard error of the mean for each position. (B) Position-specific p-value for the
difference between conditional exons and constitutive exons (log scale). The p-value is based on a one-tailed t test that conditional exons have lower
conservation scores than constitutive exons.
doi:10.1371/journal.pone.0002806.g002

Figure 3. Position-specific conservation scores of flanking intronic regions. (A) Conservation score vs. position. The upper lines (red) are for
flanking regions of conditional exons and the bottom lines (black) are for flanking regions of constitutive exons. The error bar indicates the standard
error of the sample mean for each position. (B) Position-specific p-value for the difference between conditional exons and constitutive exons (log
scale). The p-value is based on a one-tailed t test that the flanking intronic regions of conditional exons have higher conservation scores than those of
constitutive exons.
doi:10.1371/journal.pone.0002806.g003
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regions are the most conserved regions for conditional exons (p-

values for the differences#10215). Therefore, the upstream

intronic regions and the downstream intronic regions are not

symmetric and the upstream intronic regions of conditional exons

are much more conserved. All of these results show that there are

differences between conditional exons, constitutive exons, and

their flanking intronic regions in terms of conservation levels.

Moreover, these differences are position-dependent and are

functions of the relative positions to the exon-intron boundaries.

We further consider whether there are subpopulations among

those conditional exons. We suspect that conditional exons can be

divided into two groups: functional or non-functional exons. The

assumption is that for those conditional exons with function, their

conservation scores are relatively high and they tend to be highly

regulated. The conservation scores of their regulatory upstream

regions are also high. However, for those conditional exons

produced by alternative splicing as random events, their

conservation scores are low and the upstream intronic regions

tend to be less conserved. Figure 4A shows the violin plots of the

conservation scores of conditional exons and constitutive exons.

Violin plot is similar to boxplot except that it adds the kernel

density plot of the data. It clearly shows that the distribution of

conservation scores of conditional exons is bimodal. Some of the

conditional exons have high conservation scores and some of them

have very low conservation scores. We next consider whether the

upstream intronic regions of those highly conserved conditional

exons are more conserved. Figure 4B shows the relationship

between the conservation level of exon region (X axis) and the

conservation level of upstream intronic region (246, 218) (Y axis)

for conditional exons (upper panel) and constitutive exons (lower

panel). For both constitutive exons and conditional exons, if the

conservation score of exon region is high, the upstream intronic

region is more conserved. Compared with constitutive exons,

conditional exons with the same conservation scores tend to have

more conserved upstream intronic regions. It indicates that they

may be highly regulated and most likely that they are functional.

Discover Novel Conditional Exons from Intron Sequences
We used the Random Forests to learn the classifier for

conditional exons and intron sequences. The Random Forests

consist of many decision trees and each tree is constructed by a

bootstrap sample from the original data. A decision tree can be

treated as a set of Boolean functions of features and these

conjunctions of features partition training samples into groups with

homogenous class label. The output of the Random Forests for

each test sample is the class with majority votes from these trees.

The Random Forests generates an internal unbiased estimate of

classification error based on the out-of-bag data during the Forests

building process. There is no need for cross-validation or a

separate test data. In this study, the high-quality training data were

from the GENCODE project whose ultimate goal is to identify all

protein-coding genes in the human ENCODE regions. We

assembled 1,185 conditional exons and 4,490 intron sequence

fragments with length from 30 to 330 bp. The 330 features we

used were conservation scores of positions: 0, …, 164, 2164, …,

20. The classification error rate is 0.10, the sensitivity is 0.64, the

specificity is 0.97, and the false discovery rate is 0.15. We also

considered the area under the curve (AUC) score that is the value

of the area under the receiver operating characteristic (ROC)

curve. AUC score is a global performance measure by combining

both the sensitivity and the specificity. A perfect classifier will have

AUC = 1 and a random classifier will have AUC = 0.5. Using the

position-specific conservation score, we achieved an AUC score of

0.86.

We assembled 28,324,910 overlapped potential conditional

exons (see Materials and Methods) from the intron regions of

RefSeq gene collection. These potential exons are 30 to 330 bp

long and flanked by AG and GT dinucleotides (the splice sites of

Figure 4. Violin plots of conservation scores of conditional exons and constitutive exons. (A) Exon region conservation. For each exon,
the average conservation score across different positions was used (150 positions close to the 59 edge and 150 positions close to the 39 edge). (B)
Relationship between exon region conservation and upstream intronic region conservation. Exons were divided into six groups according to their
exonic conservation scores (on X axis). Y axis is the conservation score for the upstream intronic region. The upper panel is for conditional exons and
the lower panel is for constitutive exons.
doi:10.1371/journal.pone.0002806.g004
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introns). They have a poly-pyrimidine tract in their upstream

regions. And they don’t introduce in-frame stop codons. Those

potential exons were tested using the trained classifier from the

Random Forests. It resulted in 1,273,698 conditional exons.

Because these predicted conditional exons may be overlapped, we

focused on introns with at least one predicted conditional exon

instead. About 21% (39,640/185,233) of tested introns contain at

least one predicted conditional exon. However, for the ENCODE

regions, about 16% of introns contain at least one conditional

exon (excluding terminal exons). It indicates either a high false

discovery rate in the discovered conditional exons or the

incomplete annotation for the ENCODE regions. Indeed, It has

bee reported that 59,74% of human genes are alternative spliced

and the cassette exons make up 53,61% portion of alternative

splicing events [1–4]. Our results that 21% of known introns

contain at least one conditional exon narrow the gap between

current annotation and experimental predication. By comparing

the annotations of Refseq transcripts themselves, 4,774 introns are

concluded to contain at least one conditional exon. Our Random

Forests classifier predicted 76% of them (3,643/4,774). Based on a

larger transcript annotation set (Refseq [15], UCSC [16] and

Ensembl genes [17]), among the 185,233 tested RefSeq introns,

13,759 introns contain at least one conditional exon. And our

Random Forests classifier predicted 58% (7,967/13,759) of them.

The Random Forests classifier predicted another 31,673 introns

containing conditional exons which can not be inferred from

RefSeq, UCSC and Ensembl annotations.

We used RT-PCR to test our predictions. We designed primers

in the exonic regions flanking the introns which were predicted to

contain conditional exons. These primers were screened against

the provided library of human sequence repeats and have a high

melting temperature (.60uC) to minimize non-specific amplifica-

tion. Since many alternative splicing events occur in a tissue-

specific manner, we harvested total RNA samples from five

different human cell lines: LA-N-5, WERI, HeLa, HEK 293 and

SHSY5Y cells. We randomly picked 15 introns from the top

predictions (all of classification trees vote for conditional exons

instead of introns) and designed specific primer pairs targeting

exons which flank these introns. By RT-PCR, eleven primer pairs

of fifteen yielded only one or no amplicons in these five cell lines.

But the other four showed additional amplicons of higher

molecular weight in one or more cell lines, indicating alternative

transcripts with exon inclusion (Fig. 5A). Sequencing of these

amplicons proved that they partially overlap with the predicted

conditional exons.

Features Distinguishing Conditional Exons and
Constitutive Exons

Next we consider how to classify known exons into conditional

exons and constitutive exons. Besides conservation scores of exon

positions 0, …, 149, 2149, …, 20 and conservation scores of

upstream and downstream 100 bp intronic regions, we also

considered features used in [18]: (1) exon length; (2) exon

divisibility by 3; (3) 3-mer word frequencies for exons, upstream

100 bp and downstream 100 bp intronic regions; (4) position-

dependent single base counts at 59 splice site (23 to +6 positions,

excluding +1 and +2 invariant positions); (5) intensity of the poly-

pyrimidine tract (PPT) that is the number of pyrimidines in a 15

bp window of the last 19 nucleotides of the upstream intron (not

including the last 4 nucleotides of the intron). The ENCODE

training data show that the conservation scores of exon positions

0,112, 2119, 2118, 2102,20 are significantly different

between conditional exons and constitutive exons with t test p-

values#0.01 (the median p-value is 6.2610214). The conservation

scores of upstream intronic positions (298,295, 293,287,

268,213, 23,21) and downstream intronic positions (1,5,

9,58, 60,66, 69,82, 84,86, 94,96) are significantly different

between conditional exons and constitutive exons (the median p-

value is 2.461024). Table 1 lists other significant features with p-

values#0.01 by comparing conditional exons and constitutive

exons. Those 3-mer words and the 59 splice site positions may be

related to splicing cis elements. The exon length and exon

divisibility by 3 are not significant with a t test p-value 0.26 and a

Fisher’s exact test p-value 0.15. Figure 6 shows the boxplots of

importance measures of features. The importance measure is

estimated by the Random Forests. It is the raw importance score

divided by its standard error (z-score). The raw importance score is

determined by comparing the training data and the simulated data

in which the considered feature is randomly permuted and other

features are kept intact. The results indicate that the position-

specific scores are the most important features.

Based on the training data from the ENCODE regions,

although the specificity is high (0.95), the sensitivity is low (0.32),

the AUC score is 0.73, the FDR is 0.27, and the classification error

rate is 0.25. We applied this classifier to exons assembled from

RefSeq genes (excluding 59 terminal and 39 terminal exons). A

total of 8,813 out of 162,941 exons were labeled as conditional

exons. Comparing the annotations of Refseq gene themselves, we

can identify 4,255 conditional exons (excluding terminal exons).

Our Random Forests classifier predicted 36% (1,524/4,255) of

them. The sensitivity is close to our estimate from the training data

(0.32). Considering the combination of Refseq, UCSC and

Ensembl gene annotations, we can infer 20,930 conditional exons

(excluding terminal exons). Our Random Forests classifier only

predicted 17% (3,519/20,930) of them. The Random Forests

classifier predicted another 5,294 conditional exons that cannot be

inferred from gene annotations. The FDR for our training data is

0.27. Using the FDR and the sensitivity, the total number of

conditional exons in the Refseq genes can be estimated as

8,8136(1.0020.27)/0.32 = 20,105. Therefore, about 12%

(20,105/162,941) exons are conditional exons. Given the large

fraction of genes with alternative splicing (59,74%) and the large

fraction of cassette exon events (53,61%), this estimate is

reasonable.

We continued to test our prediction using RT-PCR and

sequencing. We used exon array data across different tissues

(available on the Affymetrix website http://www.affymetrix.com/)

to roughly determine whether a gene was expressed in a specific

tissue before we selected predicted transcripts for validation.

Primers in the exon regions flanking predicted conditional exons

were designed for RT-PCR experiments. These primers were also

screened against the provided library of human sequence repeats

and have a high melting temperature (.60uC) to minimize non-

specific amplification. Of five exons we tested (the five exons are

on the top prediction list), four have apparent PCR products

excluding the predicted conditional exons (Fig. 5B), while the fifth

does not yield any PCR product maybe due to low expression

level. Sequencing of these alternative PCR transcripts proved that

they are exactly the predicted conditional exons. In addition to the

novel predicted conditional exons, examples of known conditional

exons which were predicted by our methods were shown in

Supplementary Figure S1.

Ontology Study for Genes with Many Conditional Exons
After we predicted conditional exons, we were interested to

know whether there is any functional characteristic of genes

enriched with conditional exons. For each RefSeq gene, different

transcripts were combined to assemble non-redundant introns and

Identify Alternative Splicing
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exons. For those introns, we counted the frequency of them

containing conditional exons based on our predictions. For those

exons, we counted the frequency of them being conditional exons

based on our predictions. A total of 837 genes have $15

introns+exons and $20% of those introns and exons are related to

conditional exons. David Functional Annotation tool (2008) [19]

was applied to analyze gene annotations. Table 2 lists the

significant gene annotation terms with at least 10 gene counts

and the p-value after Bonferroni’s correction#0.001. Bonferroni’s

correction is a very stringent multiple comparison correction. Here

it controls the probability of having one or more falsely declared

significant annotation term#0.001. The term ‘‘alternative splic-

ing’’ is a UniProt knowledgebase keyword meaning ‘‘protein for

which at least two isoforms exist due to distinct pre-mRNA

splicing events’’. It is the rank one significant gene annotation with

Bonferroni corrected p-value 3.0610262. The UniProt sequence

feature ‘‘splice variants’’ is also enriched with Bonferroni corrected

p-value 1.6610244. Other significant annotations include GO

Figure 5. Experimental validation for some of predicted novel conditional exons. (A) RT-PCR shows that CAMTA1, ZRANB1, FNBP4 and
MBNL2 contain conditional exons which were previously annotated as intron regions. The cell lines used were HeLa, HeLa, LA-N-5 and SHSY5Y cells
respectively. PCR bands marked with ‘‘#’’ are transcripts of corresponding annotated RefSeq sequences. PCR bands marked with ‘‘*’’ are transcripts
subject to sequencing and proved to contain or overlap with the predicted conditional exons from intron regions. The left lanes show the DNA
molecular weight markers and their size in bp. (B) RT-PCR results show that SMG6, BAI2, CUGBP2 and HNRPM express the predicted transcripts which
exclude de novo identified conditional exons in LA-N-5, LA-N-5, SHSY5Y and LA-N-5 cells. PCR bands marked with ‘‘#’’ are transcripts of the
corresponding annotated RefSeq sequences. PCR bands marked with ‘‘*’’ are transcripts that exclude the predicted conditional exons (proved by
sequencing). The left lanes show the DNA molecular weight markers and their size in bp.
doi:10.1371/journal.pone.0002806.g005
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terms related to nervous system development, synapse, protein

binding, transcription factor activity, etc. This is consistent with

the idea that development and signaling pathways are thought to

involve a large number of alternative splicing events [20,21].

Discussion

In this study, we characterize important features of position-

specific conservation scores across conditional exons, constitutive

exons and introns through the thoroughly annotated ENCODE

genomic regions. Based on such important distinct features, we

predicted many novel conditional exons which were previously

known to be constitutive exons and predicted many introns which

contain conditional exons. Some of these predictions were

validated by RT-PCR followed by sequencing. Our comparative

genomics approach is an important complement to current

experimental technologies in identifying alternative splicing events

at the genomic scale. In addition, our novel predictions provide an

immediate interest of adding corresponding probes into exon

arrays and exon-exon junction arrays.

In this paper, we found that constitutive exons have higher

conservation level in exon regions and lower conservation level in

flanking intron regions compared to conditional exons. This is based

on the high-quality annotations of ENCODE regions and the

conservation scores estimated from the alignment of 17 vertebrates.

Some groups reported opposite results [7,22]. Looking at each

literature’s methods carefully, we found that such discrepancy was

mainly due to different sampling of training data. When sampling

alternative exons, Sorek’s and Yeo’s papers [7,22] selected human-

mouse orthologous exons both of which are flanked by splice sites.

They further required that alternative splicing events occur in both

human and mouse. Such sampling had undoubtedly achieved very

high conservation level of ‘‘alternative exons’’. These ‘‘alternative

exons’’ maintain conserved sequences for human-mouse orthology

and conserved regulatory sequence elements for conserved alterna-

tive splicing. In contrast, our sampling of conditional exons and

constitutive exons did not take into account of neither human-mouse

orthology nor conserved splicing events between human and mouse.

Our sampling completely relied on the high-quality ENCODE

annotation data instead. This allows the hypothesis that human

genome and mouse genome evolve independently to create different

alternative splicing events. And it has no bias of assembling

‘‘conserved sequence’’ to study conservation level. We also found

that the distribution of conservation scores of conditional exons is

bimodal. Some of the conditional exons have high conservation

scores and some of them have very low conservation scores (Fig. 4A).

Most importantly, we found that the differences of conservation

scores are position-dependent. The position-specific conservation

scores of exons and their flanking intronic regions may reflect

functional splicing cis elements. The differences in position-specific

conservation between conditional exons and constitutive exons

and their flanking intronic regions may provide us information

about the subtly different, if not significantly different splicing

mechanisms for conditional exons and constitutive exons. For the

exon region, the differences between conditional exons and

constitutive exons are remarkably more significant in regions near

Figure 6. Boxplots of importance measures of conservation-
score features, triplet-count features and 59-splice-site fea-
tures. Y axis is the importance measures that are the standardized
importance score (z-score) from the Random Forests classifier. The
‘‘conservation’’ features include position-specific conservation scores of
exons, upstream and downstream 100 bp intronic regions. The ‘‘triplet’’
features include 3-mer word frequencies for exons, upstream and
downstream regions. The ‘‘59 splice site’’ features include position-
dependent single base counts at 59 splice site for 23 to +6 positions
(excluding +1 and +2 invariant positions). In addition, the importance
measure is 7.4 for ‘‘exon length’’, 0.3 for ‘‘length divisibility by 3’’, and
2.4 for PPT intensity (not shown in the figure).
doi:10.1371/journal.pone.0002806.g006

Table 1. Features besides position-specific conservation scores
that are significantly different between conditional exons and
constitutive exons (p-values#0.01).

Feature P-value

eACC 3.3861023

eAGA 9.3061023

eTAG 1.9761024

eTCC 5.6061025

eTCG 4.6461025

eTGA 1.3761024

eCAA 3.7361023

eCTC 6.0361024

eCCT 6.0661023

eCGA 9.6961023

eGAA 8.1861024

eGAC 1.2361025

eGGG 6.1561023

in1TGA 7.0261023

in2CCA 5.7261023

T3 4.9761023

A4 5.1861023

C4 2.5561023

The first 15 p-values are based on t tests and the last three p-values are based
on Fisher’s exact tests. eACC, …, eGGG are the ACC, …, GGG frequencies in
exon regions. in1TGA is the frequency of TGA in the upstream 100 bp intronic
region. in2CCA is the frequency of CCA in the downstream 100 bp intronic
region. T3, A4, C4 are position-dependent single base counts at 59 splice site for
position +3,+4 and +4.
doi:10.1371/journal.pone.0002806.t001
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Table 2. Enriched annotation terms for genes with many predicted conditional exons.

Category Term Count Corrected P-value

SP_PIR_KEYWORDS alternative splicing 438 3.0610262

UP_SEQ_FEATURE splice variant 337 1.6610244

SP_PIR_KEYWORDS chromosomal rearrangement 43 5.9610213

GOTERM_CC_ALL synapse 42 9.6610213

SP_PIR_KEYWORDS synapse 36 2.0610212

GOTERM_MF_ALL binding 601 4.8610212

GOTERM_MF_ALL protein binding 389 5.4610212

SP_PIR_KEYWORDS phosphoprotein 281 1.5610211

SP_PIR_KEYWORDS activator 55 6.4610211

GOTERM_CC_ALL synapse part 29 1.8610210

GOTERM_BP_ALL developmental process 213 4.3610210

SP_PIR_KEYWORDS cell junction 43 2.661029

GOTERM_BP_ALL biological regulation 298 1.261028

GOTERM_BP_ALL multicellular organismal development 163 1.361028

GOTERM_BP_ALL anatomical structure development 152 2.661028

GOTERM_BP_ALL regulation of biological process 275 3.561028

GOTERM_CC_ALL cell junction 48 5.361028

GOTERM_MF_ALL transcription regulator activity 115 1.061027

GOTERM_BP_ALL nervous system development 74 1.261027

INTERPRO Extracellular ligand-binding receptor 15 1.761027

SP_PIR_KEYWORDS Transcription regulation 125 1.861027

GOTERM_CC_ALL postsynaptic membrane 24 2.161027

SP_PIR_KEYWORDS Transcription 126 2.561027

SP_PIR_KEYWORDS Postsynaptic cell membrane 22 3.161027

GOTERM_MF_ALL glutamate receptor activity 16 4.161027

GOTERM_MF_ALL ionotropic glutamate receptor activity 11 9.061027

GOTERM_BP_ALL system development 126 1.461026

INTERPRO NMDA receptor 11 1.561026

INTERPRO Glutamate receptor-related 11 1.561026

INTERPRO Ionotropic glutamate receptor 11 1.561026

KEGG_PATHWAY Axon guidance 26 1.661026

SMART PBPe 11 1.861026

GOTERM_MF_ALL extracellular-glutamate-gated ion channel activity 11 3.561026

GOTERM_BP_ALL multicellular organismal process 220 8.561026

GOTERM_BP_ALL cell differentiation 126 1.961025

GOTERM_BP_ALL cellular developmental process 126 1.961025

GOTERM_BP_ALL regulation of cellular process 248 2.361025

GOTERM_MF_ALL transcription factor activity 80 5.061025

SP_PIR_KEYWORDS dna-binding 116 5.561025

SP_PIR_KEYWORDS repressor 36 6.361025

GOTERM_MF_ALL extracellular ligand-gated ion channel activity 17 9.561025

GOTERM_CC_ALL neuron projection 19 1.961024

GOTERM_BP_ALL regulation of metabolic process 177 2.861024

GOTERM_BP_ALL positive regulation of transcription 37 3.261024

GOTERM_BP_ALL cell development 91 3.261024

GOTERM_BP_ALL regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 161 4.761024

GOTERM_BP_ALL regulation of transcription 158 5.261024

GOTERM_BP_ALL synaptic transmission 35 5.561024

GOTERM_BP_ALL cell communication 228 6.061024

GOTERM_BP_ALL positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 37 6.861024
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the boundaries (Fig. 2). This could indicate that constitutive exons

have stronger splicing signals at the boundary and for instance

facilitate exon definition during splicing. For their flanking intronic

regions, the upstream intronic regions and the downstream

intronic regions are not symmetric. The conservation differences

for upstream intronic regions are larger than those for downstream

intronic regions. These may indicates that upstream intronic

regions are more important than downstream intronic regions in

regulating functional alternative splicing. Particularly, the up-

stream 246 to 218 bp intronic regions of conditional exons are

significantly more conserved than those of constitutive exons

(Fig. 3). The enriched sequence motifs in these regions may

participate in the alternative splicing modulation. In addition, we

classified sub-populations of conditional exons. Some conditional

exons are conserved and have highly conserved upstream intronic

regions (Fig. 4), which indicate that they may be highly regulated

and functional. Some conditional exons are less conserved and

lack the highly conserved upstream regions (Fig. 4). They may just

be the products of random splicing events or newly evolved

splicing event. It is also noteworthy that in all introns, the (247,

27) region close to 39 splice site are more conserved than its

corresponding (7, 47) region close to the 59 splice site. Such

asymmetry seems consistent with the importance of polypyrimi-

dine tract right upstream of the 39 splice site.

Based on the high-quality training data set, the Random Forests

classifier achieved specificity as high as of 0.97 and a sensitivity of

0.64 for conditional exon prediction from intron regions. For the

classification of conditional exons from the current exon list, if we

only use the position-specific conservation score, the classification

error rate is about 25.2%. If we ignore the position-specific effect

and use the average conservation score of exon regions, upstream

and downstream intronic regions, the error rate increases to

30.3%. Adding other features such as triplet counts and others

improves the classifier a little (error rate decreases from 25.2% to

25.0%).

Compared with Sorek et al.’s studies [22], in our training data

the exon length and exon divisibility by 3 are not significant.

Although the exon lengths of conditional exons are less than those

of the constitutive exons (average 170.4 bp vs. average 182.2 bp),

the difference is not statistically significant with a t test p-value 0.26

(one-tailed p-value 0.13). Although the portion of exons whose

length is a multiple of 3 among conditional exons is slightly larger

than that among constitutive exons (42% vs. 40%), the Fisher’s

exact test p-value is 0.15 (one-tailed p-value 0.08). There are

several possible reasons: first, the scope of alternative exons and

constitutive exons that we studied is different. We focus on

conditional exons and constitutive exons. The conditional exons

include cassette exons, mutually exclusive exons, retained introns

and other complicated alternative splicing events. Sorek et al’s

cassette exons were those exons included and skipped in one or

more transcripts, and the boundaries of both 59 and 39 flanking

exons are shared in the transcripts that include and skip that exon,

and the skipping events happen both in human and mouse. Their

definition of constitutive exons was those that are supported by at

least four expressed sequences, with no skipping event, both in

human and mouse. These dramatically narrowed down the scope

of either alternative exons or constitutive exons. It has been

reported that there are slightly more exons whose length are exact

multiple of three for alternatively spliced exons. However,

orthologous exons that are alternatively spliced in multiple

organisms showed a substantially increased bias to be exact

multiple of three in length [23,24]. Our definition of conditional

exons does not require them to be orthologous exons so that the

selection pressure for protein reading frame preservation is

relatively low. Secondly, the selection of training data is different.

We used thoroughly annotated ENCODE regions. Sorek et al

used 243 alternative and 1,753 constitutive exons that are

conserved between human and mouse. After all, the 1,753

constitutive exons may still contain a handful of alternative exons

which have not been discovered by meticulous experiments. In the

process of validating our predicted conditional exons, we found

that in most cases the novel predicted transcripts are either not

expressed or expressed at a much lower level than those of known

transcripts. This might be one of the reasons why they have not

been discovered by previous EST sequencing. It may also be the

reason for the low validation rate (4 out of 15) in the case of the

prediction from intron regions. In a world of alternative splicing, it

is difficult to disprove an alternative splicing possibility. This

problem may still exist in the ENCODE annotation, but to a lesser

degree presumably.

Our method has much broader scope and application than

previous alternative exon prediction algorithms. For example, Yeo

et al. focused on alternative splicing events conserved in human

and mouse [7]. Their training sets were limited to orthologous

human-mouse exon pairs with conserved splicing patterns.

Secondly, only orthologous human-mouse exons (,100k) are

eligible for their prediction program. Thirdly, their approach can

not predict novel exon inclusion events, or splicing events from

regions currently annotated as introns. Our prediction of exon

skipping events does not rely on the occurrence of its orthologous

exon skipping in another organism. In addition, we can predict

novel exons from intron regions.

Finally, although we achieved a high specificity (97% and 95%

for the identification of novel exons from introns and the

identification of conditional exons from current exon list

respectively), the sensitivity is still not satisfying (64% for

identifying novel conditional exons from intron sequences, 32%

for identifying conditional exons from current exon list). Future

work will need to explore more features which can differentiate

conditional exons, constitutive exons and introns.

Table 2. cont.

Category Term Count Corrected P-value

GOTERM_BP_ALL regulation of gene expression 165 7.361024

GOTERM_MF_ALL transcription activator activity 35 8.661024

GOTERM_BP_ALL regulation of cellular metabolic process 170 8.661024

GOTERM_BP_ALL regulation of transcription, DNA-dependent 149 9.061024

Those gene annotation terms have at least 10 gene counts and p-values after Bonferroni’s correction#0.001. The p-value is from David Funtional Annotation tool (2008)
and it is based on a modified Fisher’s exact test. The annotation terms considered are from the default settings.
doi:10.1371/journal.pone.0002806.t002
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Materials and Methods

Position-specific Conservation
The high-quality manual annotations in the ENCODE regions

were generated by the GENCODE project and were downloaded

from the UCSC Genome Browser (http://genome.ucsc.edu/).

Non-redundant middle exons (excluding 59-terminal and 39-

terminal exons) and introns were used for further analysis. A total

of 4,187 exons and 5,749 introns were assembled. If one exon is

located in the intron region of other transcripts, it is called a

conditional exon. Otherwise, it is called a constitutive exon. A total

of 1,314 conditional exons and 2,873 constitutive exons were

identified. If an intron doesn’t contain a conditional exon, it is

called a conditional-exon-free intron. A total of 4,800 such introns

were identified. We note that constitutive exons and conditional-

exon-free introns may still have other types of alternative splicing

such as alternative 39 or 59 splice sites.

The conservation score based on a phylogenetic hidden Markov

model for 17 vertebrates [11] was downloaded from the UCSC

Genome Browser. The score of each site is the posterior

probability that the site is in the conserved state of the

phylogenetic hidden Markov model. For every site of exon, define

x as the position relative to the nearest splice site. It is positive for

distances from the 59 exon edge and negative for distances from

the 39 exon edge. For example, an exon with length 50 contains

positions 0, … , 24, 224, …, 20. Similarly, x can be defined for

introns. The conservation score can be found for each x as s(x).

Training Data
The training data for identifying novel conditional exons from

introns were prepared as following. A total of 1,185 conditional

exons with length from 30 to 330 bp in the ENCODE regions

were used as training data. The lengths were recorded as (L1, L2,

…, L1,185). For each conditional-exon-free intron with length$100

bp in the ENCODE regions, we randomly picked up a fragment

with length sampled from (L1, L2, …, L1185). Therefore, those

sampled intron fragments also have length from 30 to 330 bp. In

total, 4,490 intron fragments were created and used as training

data. In addition, a total of 1,314 conditional exons and 2,873

constitutive exons in the ENCODE regions were used as the

training data for classifying exons into conditional exons and

constitutive exons. The training exons and introns can be found in

Supplementary Table S1, S2, S3.

Random Forests Learning
Random Forests machine learning [14] was used to learn the

classifier. The code was downloaded from (http://www.stat.

berkeley.edu/,breiman/RandomForests/cc_home.htm). We built

1,000 trees for each Random Forests. At each node, the number of

variables we considered is the square root of the total number of

features. The features for identifying novel conditional exons from

introns are the position-specific conservation scores: s(0), …, s(164),

s(2164), …, s(20). Thus, we have 330 features. Denote true positive

number as TP, false negative number as FN, true negative number

as TN, and false positive number as FP. The classification error rate:

(FN+FP)/(TP+FN+TN+FP), sensitivity: TP/(TP+FN), specificity:

TN/(TN+FP), and false discovery rate (FDR): FP/(TP+FP) were

recorded. The area under the curve (AUC) score is calculated as

AUC ~

Pnz

i~1

Pn{

j~1 1
f xz

ið Þw f x{
j

� �

nzn{
,

Where n+ is the number of positive samples (e.g., conditional exons),

n2 is the number of negative samples (e.g., constitutive exons), x+ are

the features for positive samples, x2 are the features for negative

samples, f(?) is the scoring function (e.g. the number of votes for

conditional exons), and 1(?) is the indicator function.

The features for classifying exons into conditional exons and

constitutive exons include: position-specific conservation scores of

exon positions (0, …, 149, 2149, …, 20), upstream 100 bp

regions (2100, …, 21) and downstream 100 bp regions (1, …,

100); exon length; exon divisibility by 3 (1: yes, 0: no); 3-mer words

frequencies for exon, upstream 100 bp region and downstream

100 bp region; position-dependent single base counts at 59 splice

site for 23 to +6 positions (excluding +1 and +2 invariant

positions); intensity of the poly-pyrimidine tract (PPT) which is the

number of pyrimidines in a 15 bp window of the last 19

nucleotides of the upstream intron (not including the last 4

nucleotides of the intron). Those non-conservation score features

were also used in Dror et al.’s paper [18]. In their paper, instead of

using position-specific conservation scores, they used the percent

identity when aligned to the mouse counterpart.

Test Data
Known protein-coding genes from the NCBI mRNA reference

sequences collection (RefSeq) [15] were downloaded from the

UCSC Genome Browser (Build hg18). Introns were assembled from

these genes. If two introns share the same positions but they have

different phases, they were still treated as two introns. In other places

of the paper, if two introns share the same positions, we treated them

as redundant introns. For each intron, we scanned it from 59 to 39 to

identify possible exons: (1) with length from 30 to 330 bp; (2) they are

flanked by AG and GT dinucleotides; (3) the intensity of PPT is $9;

(4) they will not cause in-frame stop codons. Those procedures

resulted in 28,324,910 fragments. Conservation scores were assigned

to every position of those fragments. The fragments were classified as

conditional exons or introns according to the classifier we learned

from the training data (with $50% trees voting for conditional exons

or introns). For the classification of conditional exons from current

exon list, we assembled 162,941 unique exons from RefSeq

(excluding terminal exons). They were classified into conditional

exons and constitutive exons according to the classifier learned from

the training data. The test exons and introns can be downloaded

from http://www-rcf.usc.edu/,liangche/research/rfexon/.

Tissue Cell Culture and RNA Preparation
LA-N-5, HeLa, SHSY5Y, WERI and HEK 293 cell lines were

cultured following standard guidelines provided by American

Type Culture Collection. Total RNA samples of these cell lines

were prepared using Trizol according to manufacturer’s protocol

(Invitrogen, CA).

Primer Design and RT-PCR
Primer design was done with the Primer3 online software

(http://frodo.wi.mit.edu). Sequence assembly of a tested transcript

includes the predicted conditional exon and its flanking exons and

the product should include the predicted conditional exon.

Primers are filtered against mispriming human libraries and have

a high melting temperature (.60uC) to minimize non-specific

amplification. Primer sequences are as followed.

CAMTA1: AGAGGCACCGCTGGAACACT (forward), TGG-

GGATGATGGAGGAATGG (reverse); ZRANB1: GCTGTGG-

GAAGCAAGGAGGA (forward), ATCTGCGGTGAGCTGAC-

GTG (reverse); FNBP4: CGGGAAGGGGCTCTTAATGG (for-

ward), GACTCGCCCGACTGTTCGTT (reverse); MBNL2:

AGAGACCGACTGCCGCTTTG (forward), TGAAGAGCAC-

CAGGGGGAAA (reverse); SMG6: CCATCCCATCCACGGT-
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CTTC (forward), TAAGCTGCAGCATGCGGGTA (reverse);

BAI2: GGTCCCCGACTTAGGGATGG (forward), AGGCGC-

AGGGACAGAATCAC (reverse); CUGBP2: GGACCTGATGG-

GCTGAGTCG (forward), CATTGGTGCTGGTGGCTGAG

(reverse); HNRPM: AGGAGGCAATCGCTTTGAGC (forward),

GCATTGCTCTCCTGGCATGTT (reverse).

The RT reaction was done following manufacturer’s instruction

(Invitrogen, CA). 1 mg of total RNA and 50 ng of random

hexamer were used for one RT reaction. After RT, 3 ml of first-

strand cDNA were used for one PCR reaction (50 ml). A program

of 30 cycles of melting (30s at 94uC), annealing (30s at 60uC), and

extension (1 min at 72uC) was used.

PCR Product Extraction and Sequencing
PCR products were separated by electrophoresis on a 2%

agarose gel supplemented with ethidium bromide and were

visualized under a UV light. PCR products were extracted using

Qiagen Gel Extraction kit (Qiagen, CA), ligated into pCR-TOPO

vector and then transformed into chemically competent cells using

TOPO TA Cloning Kit (Invitrogen, CA) according to manufac-

turers’ instructions. Bacteria were plated on LB/x-gal/Amp agar

plates and grown overnight at 37uC. A maximum of 3 colonies

were picked from each plate, amplified and used for sequencing

reaction (www.laragen.com) with forward M13 primers.

Supporting Information

Figure S1 Examples of well known alternatively spliced genes.

For gene APP, there are three RefSeq transcript isoforms:

NM_000484, NM_201413 and NM_201414. Two exons (exon

7 and exon 8) are known to be included in some transcripts and

spliced out for others. Our methods predicted both of them

correctly. There are three RefSeq transcript isoforms for gene

GRIA2: NM_001083619, NM_000826, NM_001083620. Two

exons (exon 14, exon15) are known conditional exons. Our

methods predicted both of them correctly. In addition, our

methods predicted that exon 16 is a conditional exon.

Found at: doi:10.1371/journal.pone.0002806.s001 (0.86 MB TIF)

Table S1 Training conditional exons assembled from the

ENCODE annotations. They are middle exons (excluding 59-

terminal and 39-terminal exons) and they are located in the intron

region of other transcripts. All of them (1,314) were used to train

the classifier to distinguish conditional exons and constitutive

exons. A total of 1,185 conditional exons with length between 30

and 330 bp were used to train the classifier to distinguish

conditional exons and intron sequences.

Found at: doi:10.1371/journal.pone.0002806.s002 (0.01 MB ZIP)

Table S2 Training constitutive exons assembled from EN-

CODE annotations.

Found at: doi:10.1371/journal.pone.0002806.s003 (0.02 MB ZIP)

Table S3 Training intron fragments with length from 30 to 330

bp. They were sampled from conditional-exon-free introns.

Found at: doi:10.1371/journal.pone.0002806.s004 (0.03 MB ZIP)
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