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Currently, more than 170 modifications have been identified on RNA. RNA 
modification mainly regulates RNA splicing, intracellular transport, degradation, 
translation, and stability. Gynecologic cancer (GC) mainly includes cervical 
cancer (CCA), ovarian cancer (OC), Endometrial cancer (EMC), among others, 
is the leading cause of cancer-related death. At present, there is still a lack 
of effective means to eradicate such diseases, so it is important to conduct 
more in-depth research on gynecological cancers. Numerous studies have 
shown that a series of epigenetic changes occur during the development of 
gynecologic cancer. This article reviews the latest findings on the functional 
significance of RNA modification in gynecologic cancer and discusses the 
therapeutic potential of RNA modification-related inhibitors in the treatment 
of gynecologic cancer.
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1 Introduction

Epigenetics is a discipline that specializes in the study of heritable gene expression or cell 
phenotypic changes without changing the nucleotide sequence of inherited genes (1), and 
known epigenetic phenomena include DNA methylation, RNA modification, protein 
acetylation, protein methylation (1–3). Among them, RNA modification has been a research 
hotspot in the field of epigenetics in recent years, and more than 170 types of RNA modification 
have been identified in organisms (4). Among these RNA modification types, the main  
ones are N6-methyladenosine(m6A),5-methylcytosine(m5C), N1-methyladenosine(m1A), 
N7-Methylguanosine(m7G), Pseudouridine(ψ) and adenosine-to-inosine(A-to-I) editing 
modifications (5). More and more research data show that RNA modification plays an 
important role in the occurrence and progression of cancer, such as breast cancer (6), liver 
cancer (7), bladder cancer (8), lung cancer (9). Gynecological cancers mainly include vulvar 
cancer, vaginal cancer, cervical cancer, uterine body cancer, ovarian cancer, of which cervical 
cancer, uterine body cancer and ovarian cancer are the three most common types of 
gynecological cancer.

According to the 2020 Global Cancer Statistics Report, around 1.4 million women were 
diagnosed with gynecological cancers in 2020, resulting in approximately 671,875 deaths (10). 
This imposes a significant burden on women worldwide, both physically and psychologically. 
Although current treatment methods for gynecological cancer primarily involve surgery, 
radiotherapy, and chemotherapy, these approaches still fail to completely address issues such 
as metastasis and recurrence. The current development of medical technology still has no 
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effective way to cure gynecological cancer, therefore, it is necessary 
and urgent to further deepen the research on the unknown mechanism 
of gynecological cancer. Here, we  summarize the recent research 
progress of RNA modification in the field of gynecological cancer, to 
provide new ideas for the early diagnosis and treatment of 
gynecological cancer.

2 m6A modification in gynecological 
cancer

m6A is the most common internal modification mode of 
eukaryotic mRNA, which is the methylation of adenosine at the 
6th position (11). m6A methyltransferase (writer) mediates 
methylation modification on mRNA through m6A, while 
demethylase (eraser) can reverse this modification. Additionally, 
the m6A recognition protein (reader) participates by identifying 
methylation modification information on mRNA, thereby 
influencing splicing, degradation, stability, and translation 
processes (11, 12). Abnormalities in RNA modification processes 
are closely related to the pathogenesis and progression of 
gynecological cancers.

2.1 Writer

According to current studies, METTL3(methyltransferase-like 
3), METTL14(methyltransferase-like 14) (13), WTAP(Wilms’ tumor 
1-associating protein) (14), KIAA1429(vir-Like m6A 
methyltransferase associated) (15), RBM15/15B(RNA-binding motif 
protein 15/RNA-binding motif protein 15B) (16), ZC3H13(Zinc 
finger CCCH-type containing 13) (17) belong to m6A 
methyltransferase. METTL3 and METTL14 are the core components 
of m6A methyltransferase, and METTL3 is often associated with 
METTL14 binding forms a stable heterodimeric core complex form 
involved in the deposition of m6A in mammalian nuclear RNA (18). 
METTL3 it is the only catalytic subunit that binds to the methyl 
donor S-adenosylmethionine (SAM) and catalyzes methyl transfer, 
while METTL14 is often required for METTL3 activation and is used 
to identify substrates RNA plays a key role (13). WTAP is the main 
component involved in the regulation of the m6A methylation 
complex, which interacts with METTL3 and METTL14,assisting 
METTL3 and METTL14 are localized to nuclear spots rich in 
precursor mRNA and is required for the catalytic activity of m6A 
methyltransferase in vivo (18). KIAA1429, also known as VIRMA, 
can recruit METTL3/METTL14/WTAP, the core component of m6A 
to regulate region-selective methylation, VIRMA plays a key role in 
the specific deposition of m6A on 3’UTR (19). Zinc finger protein 
ZC3H13 also plays an important role in mRNA’s m6A methylation 
modification, which is coordinated with WTAP, Virilizer and Hakai 
combine to form complexes that allow WTAP to be  accurately 
localized in the nucleus to promote m6A methylation (17). RBM15 
and/or RBM15B often bind to U-rich sites. During m6A modification 
of mRNA, they bind to WTAP-METTL3 enabling the WTAP-
METTL3 complex to bind to specific mRNA and promote further 
adenosine methylation (16) (Figure 1).

Abnormal modification of m6A methyltransferase is associated 
with the development and progression of gynecologic cancer, and 

its components have been implicated as both cancer promoters and 
cancer suppressors. In cervical cancer, METTL3 plays an important 
role in the different biological processes of cervical cancer by 
regulating the transcription and translation levels of different 
oncogenic targets. For example, in the process of cell cycle, 
METTL3 can enhance the translation of FOXD2-AS1 (lncRNA 
FOXD2 adjacent opposite strand RNA 1) mRNA, recruit the key 
transcription silencing factor LSD1 (lysine-specific demethylase 1) 
to the promoter of p21 to silence the transcription of cell cycle 
inhibitor p21, thus promoting the proliferation and migration of 
cervical cancer and inhibiting the apoptosis of cancer cells (20); In 
addition, CDC25B (cell division cyclin 25B) is an important factor 
affecting the activation of cyclin-dependent kinases (21). METTL3 
can also affect the translation of CDC25B mRNA which will 
accelerate the process of cell cycle and promote the growth of 
cervical cancer cells (22). During the aerobic glycolysis of cancer 
cells, Pyruvate dehydrogenase kinase 4 (PDK4) is one of the most 
important factors which can direct carbon flux into glycolysis from 
oxidative phosphorylation (OXPHOS) (23) and HK2 (hexokinase 
2) is a key rate-limiting enzyme in aerobic glycolysis (24). The 
modification of its coding region by METTL3 can enhance its 
translational efficiency, thereby facilitating glycolysis in cervical 
cancer and promoting the progression of the disease (25, 26). 
METTL14, also an oncogene in cervical cancer, enhanced its m6A 
methylation levels by being mediated by piRNA-14633 (PIWI-
interacting RNA-14633) to activate the piRNA-14633/METTL14/
CYP1B1 axis which promoting the proliferation, invasion and 
metastasis of cervical cancer cells (27). The importance of the m6A 
pathway in cervical cancer is well established and, as a general 
effect, m6A methylation is necessary to maintain high levels of 
translation of key transcripts in cervical cancer.

Surprisingly, in ovarian cancer, m6A methyltransferase appears to 
play a contradictory role. It is well known that microRNAs (miRNAs) 
play an important role in tumor-related diseases (28, 29). Studies have 
shown that METTL3 can inhibit the expression of PTEN (phosphatase 
and tensin homolog) by promoting the maturation of pre-miRNA-
126-5p (pre-microRNA-126-5p) to deactivate PI3K/Akt/mTOR 
pathway (30). Or inhibiting CCNG2 (cyclin G2) activity by promoting 
the maturation of pre-miR-1246 (pre-microRNA-146) (31). Thus, they 
all ultimately led to the enhancement of the proliferation, migration 
and invasion ability of ovarian cancer cells, and inhibited cell 
apoptosis. In addition, VIRMA has also been found to be  highly 
expressed in ovarian cancer tissues, and its expression level is 
negatively correlated with the survival rate (32, 33). Although the 
specific mechanism of action has not been clarified, some researchers 
have considered that VIRMA may be related to the WNT signaling 
pathway process in ovarian cancer (32). Unlike these two, METTL14 
has the opposite effect in ovarian cancer. Overexpression of METTL14 
can reduce the mRNA stability of target gene by mediating m6A 
methylation modification which will reduce the expression of 
trophinin-associated protein (TROAP), thus placing ovarian tumor 
cells in the G1 phase of the cell cycle and inhibiting their 
proliferation (34).

In endometrial cancer, METTL3 and METTL14 exhibit a tumor 
suppressor function. Either the mutation of METTL14 or the 
downregulation of METTL3 expression can impact on the mRNA 
stability of PHLPP2 (PH domain and leucine rich repeats protein 
phosphatase 2) and mTORC2 (Mechanistic target of rapamycin kinase 

https://doi.org/10.3389/fmed.2024.1314075
https://www.frontiersin.org


He et al. 10.3389/fmed.2024.1314075

Frontiers in Medicine 03 frontiersin.org

complex 2) that the key members within the AKT pathway which 
leads to the activation of the AKT signaling pathway and promotes the 
proliferation, invasion, metastasis, and colony formation of 
endometrial cancer cells (35).

In summary, m6A methyltransferase has important oncogenic and 
tumor suppressor effects in different types of gynecological cancer. 
The expression of its major functions is likely to be mainly dependent 
on the downstream target of its specific action (Table 1).

2.2 Eraser

The m6A methylation modification process of RNA in the nucleus 
is dynamic and reversible, and it can be reversed by m6A demethylase. 
FTO (fat-mass and obesity-associated protein) and ALKBH5(a-
ketoglutarate-dependent dioxygenase alkB homolog 5) are the two 
most important m6A demethylases currently known. Among them, 
FTO was the first m6A demethylase to be discovered, which is mainly 
made by Fe (II) and α- Ketoglutaric acid (αKG)-dependent 
demethylation of m6A in substrate mRNA (36). ALKBH5 is a member 
of the ALKB family as the second known m6A demethylase, mainly by 
making nuclear RNA (mainly m6A demethylation on mRNA), thereby 
affecting nuclear RNA output and metabolism (37). Abnormal 
expression of FTO and ALKBH5 is closely associated with the 

occurrence of various diseases, such as leukemia (38), infertility (39), 
and obesity (40), bladder cancer (41), etc. m6A demethylase also plays 
an important role in gynecological cancers.

FTO acts as an oncogene in cervical cancer. Its demethylation 
enhances the translation of E2F1 (E2 promoter binding factor 1) and 
Myc which promotes the proliferation and migration of cervical 
cancer cells (42). Besides, FTO also plays an oncogene role in 
endometrial cancer. It can reduce HOXB13 (Germline homeobox 
B13) mRNA decay by catalyzing the demethylation of HOXB13 
mRNA 3’UTR region to eliminate the recognition of m6A modification 
by YTHDF2 protein which increases the expression of HOXB13 
protein. Thus, the WNT signaling pathway is activated, and the 
expression of WNT pathway-related proteins c-myc, snail, MMP2, 
MMP7 and MMP7 is increased, which enhances the ability of tumor 
metastasis and invasion (43). However, in ovarian cancer, 
overexpression of FTO reduces m6A levels and mRNA transcript 
stability which inhibits the hydrolysis of the second messenger cAMP 
mediated by two phosphodiesterases, PDE1C (phosphodiesterases 
1C) and PDE4B (phosphodiesterases 4B). The increase of cAMP level 
inhibited the ability of ovarian cancer stem cells to self-renew, 
proliferate and spheroid formation (44). This may be related to the 
epigenetic reprogramming caused by CAMP-induced PKA activation, 
which promotes differentiation of tumor stem cells and loss of tumor 
initiation ability (45).

FIGURE 1

m6A modification-related enzymes in mRNA and their major biological functions.
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TABLE 1 Role of RNA epigenetic modifications in gynecologic cancer.

RNA 
modification

Category Cancer type Molecular mechanism Functional role Refs

m6A

METTL3 Writer Cervical cancer Enhance the translation of FOXD2-AS1 

mRNA

Promote the proliferation and migration 

of cancer cells and inhibit apoptosis

(20)

Affect the translation of CDC25B mRNA Accelerate the process of cell cycle and 

promote the growth of cervical cancer 

cells

(22)

Enhance the translation of PDK4 mRNA Accelerate glycolysis of tumors (25)

Enhance the translation of HK2 mRNA Accelerate glycolysis of tumors (26)

Ovarian cancer Promote the mature targeting of miR-126-5p 

to inhibit the expression of PTEN, thereby 

activating the PI3K/Akt/mTOR pathway

Promote the proliferation, migration and 

invasion of cancer cells, and inhibit 

apoptosis

(30)

Promote the mature targeting of miR-1246 to 

inhibit CCNG2 activity

Promote the proliferation, migration and 

invasion of cancer cells, and inhibit 

apoptosis

(31)

Endometrial cancer Affect the stability of PHLPP2 and mTORC2 

mRNA, which leads to the inhibited of AKT 

signaling pathway

Inhibit the proliferation, invasion, 

metastasis and colony formation of 

cancer cells

(35)

VIRMA Writer Ovarian cancer Unknown Inversely correlated with survival (32, 33)

METTL14 Writer Cervical cancer activate the piRNA-14633/METTL14/

CYP1B1 axis

Promote the proliferation, invasion and 

metastasis of cervical cancer cells

(27)

Ovarian cancer Reduce the stability of TROAP mRNA Keep ovarian tumor cells in G1 phase of 

cell cycle and inhibit their proliferation.

(34)

Endometrial cancer Affect the stability of PHLPP2 and mTORC2 

mRNA

Inhibit the proliferation, invasion, 

metastasis and colony formation of 

cancer cells

(35)

FTO Eraser Cervical cancer Enhance the translation of E2F1 and MYC Promote the proliferation and migration 

of cancer cells

(42)

Ovarian cancer Reduces m6A levels and mRNA transcript 

stability which inhibits the hydrolysis of the 

second messenger cAMP mediated

Inhibit the ability of ovarian cancer stem 

cells to self-renew, proliferate, and 

spheroid formation

(44)

Endometrial cancer Reduce HOXB13 mRNA decay and increases 

HOXB13 protein expression, thereby 

activating WNT signaling pathway

Promote tumor metastasis and invasion (43)

ALKBH5 Eraser Ovarian cancer Enhance the stability of bcl-2 mRNA, 

thereby promoting the interaction between 

bcl-2 and Beclin1

Inhibit autophagy of EOC and 

promoting the proliferation and invasion 

of cancer cells

(46)

Endometrial cancer Inhibit the decay of IGF1R transcript and 

promote the expression of IGF1R, thereby 

inducing the expression of COL1A1and 

MMP9

Enhance the proliferation, invasion and 

migration of endometrial cells

(47)

YTHDF2 Reader Ovarian cancer Promote the attenuation of m6A modified 

transcript, thereby down-regulating the 

expression level of pro-apoptotic protein 

BMF

Promote tumor proliferation and inhibit 

apoptosis

(58)

Endometrial cancer promote the degradation of Long noncoding 

RNA FENDRR, thereby up-regulating the 

protein expression level of SOX4

Promote the proliferation of cancer cells 

and inhibit cell apoptosis

(60)

(Continued)

https://doi.org/10.3389/fmed.2024.1314075
https://www.frontiersin.org


He et al. 10.3389/fmed.2024.1314075

Frontiers in Medicine 05 frontiersin.org

ALKBH5, another m6A demethylase, is highly expressed in 
human epithelial ovarian cancer (EOC) (46). ALKBH5 demethylated 
the mRNA of Bcl-2 (B-cell lymphoma-2), which inhibits apoptosis, 
and increased its stability, thus promoting the interaction between 
Bcl-2 and Beclin1, inhibiting the autophagy of EOC and promoting 
the proliferation and invasion of cancer cells. In endometrial 

carcinoma, demethylase activity of ALKBH5 can inhibit the decay of 
IGF1R transcript and promote the expression of IGF1R (insulin-like 
growth factor 1 receptor), thereby inducing the expression of 
COL1A1(collagen type I  alpha 1 chain) and MMP9(matrix 
metallopeptidase 9) which enhances the proliferation, invasion, and 
migration of endometrial cells (47).

TABLE 1 (Continued)

RNA 
modification

Category Cancer type Molecular mechanism Functional role Refs

YTHDF1 Reader Ovarian cancer promote the translation and overall output of 

EIF3C mRNA

Promote tumor proliferation, invasion, 

and metastasis

(61)

IGF2BP1 Reader Endometrial cancer Binding to the m6A site of SOX2 mRNA 

3’UTR, promote mRNA stability and 

inhibition of attenuation which enhance the 

expression of oncogene SOX2

Promote colony formation, invasion and 

migration of endometrial cancer

(63)

IGF2BP2 Reader Cervical cancer recognize m6A modification sites in MYC 

mRNA in cervical cancer cell lines to 

promote MYC expression

Enhance cancer cell proliferation, 

migration, invasion and aerobic 

glycolysis

(67)

IGF2BP3 Reader Endometrial cancer enhance the stability and inhibited the 

attenuation of E2F3 mRNA

promote the proliferation, migration and 

invasion of cancer cells

(64)

m5C

NSUN2 Writer Cervical cancer Promote m5C methylation on KRT13 mRNA 

and recruit YBX1 to stabilize KRT13 mRNA 

resulted in increased KRT13 expression

Promote the invasion and migration of 

cervical cancer cells

(76)

YBX1 Reader Epithelial ovarian 

cancer

YBX-1 is degraded by SIAH1-mediated 

ubiquitination, resulting in instability of 

target mRNA m5C modifications

Enhance the sensitivity of epithelial 

ovarian cancer to cisplatin and inhibit 

the proliferation, invasion and migration 

of cancer cells

(77)

m1A

ALKBH3 Eraser Ovarian cancer The half-life of CSF-1 mRNA is prolonged 

and CSF-1 expression is increased

Enhances the invasion ability of cancer 

cells

(91)

TRMT10C Writer Ovarian and 

cervical cancer

Unknown promote the proliferation, colony 

formation and migration of cancer cells

(92)

A-to-I editing

ADAR1 Cervical cancer Unknown The increased expression of ADAR1 is 

associated with the malignant 

progression of cancer cells

(103)

Ovarian cancer ADAR1 prevent the accumulation of R ring 

in ovarian cancer, avoid the DNA damage of 

cancer cells and the activation of ATR-Chk1 

cell cycle checkpoint, so that the cell cycle of 

G1/G0 phase does not stall.

Promote the growth of cancer cells (104)

ADAR2 Endometrial cancer Unknown Positively correlated with tumor 

aggressiveness. The increased expression 

of ADAR2 promote the proliferation and 

migration of cancer cells and inhibit 

apoptosis

(105)

Pseudouridine

DKC1 Writer Endometrial cancer Possibly by disrupting normal translation 

mechanisms

Decreased DKC1 expression was 

associated with tumor proliferation and 

low patient survival

(125)

PUS7 Writer Ovarian cancer May interact with NOC3L and PUS1 to 

regulate DNA replication and cell cycle

Promote the proliferation of ovarian 

cancer

(128)
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All these reports indicate that the function of FTO and 
ALKBH5 in gynecologic cancer mainly depends on the demethylation 
of m6A, and they play an important role in the occurrence and 
development of gynecologic cancer.

2.3 Reader

m6A modification of RNA is dynamically and reversibly regulated 
by methyltransferases and demethylases, while m6A recognition protein 
participates in downstream target gene biology processes by recognizing 
m6A methylation modification information in mRNA. m6A recognition 
proteins are mainly YT521-B homology (YTH) domain-containing 
family proteins, including YTHDC1 (YTH domain containing 1), 
YTHDC2 (YTH domain containing 2), YTHDF1 (YTH domain family 
protein 1), YTHDF2 (YTH domain family protein 2) and YTHDF3 
(YTH domain family protein 3). In addition, insulin-like growth factor 
2 mRNA-binding proteins (IGF2BPs, including IGF2BP1/2/3), 
heterogeneous nuclear ribonucleoprotein family (HNRNP family, 
including HNRNPA2B1/HNRNPC/HNRNPG) and eIF3 (eukaryotic 
translation initiation factor 3) are also part of the m6A recognition 
protein (48). They can be achieved by influencing RNA degradation (49), 
translation and decay (50), splicing (51), nuclear transport (52), stability 
(53) or facilitating the processing of precursor miRNAs (54) plays an 
important role. m6A binding proteins play an important role in the 
development of a variety of cancers (55–57) by specifically recognizing 
changes in m6A modification levels on target mRNA and regulating 
specific target genes after modification.

YTHDF2 is highly expressed in human ovarian cancer, and its 
expression level is positively correlated with the development of 
ovarian cancer (58). High levels of YTHDF2 can down-regulate the 
expression of BMF, a pro-apoptotic protein (59), by promoting the 
attenuation of m6A modified transcript, thus promoting the 
proliferation of ovarian cancer cells, and inhibiting cell apoptosis. On 
the other hand, in endometrial cancer, YTHDF2 can also promote the 
degradation of tumor suppressor gene Long noncoding RNA 
FENDRR, thereby up-regulating the protein expression level of 
SOX4(SRY-related HMG box transcription factor 4), promoting the 
proliferation of cancer cells, and inhibiting cell apoptosis (60).

YTHDF1 is also abnormally high expressed in human ovarian 
cancer. As an oncogene, YTHDF1 can affect the overall protein 
translation in ovarian cancer cells by promoting the translation and 
overall output of protein translation initiation factor EIF3C mRNA, 
thus promoting the proliferation, migration, and invasion of ovarian 
cancer cells (61).

As another important family member of m6A recognition proteins, 
IGF2BP1, IGF2BP2 and IGF2BP3 are mainly composed of two major 
domains. The K homology domain is mainly responsible for RNA 
binding, while the RNA recognition motif domain is responsible for 
stabilizing the IGF2BP-RNA complex (62). IGF2BP preferentially 
recognizes m6A-modified mRNAs and promotes the stability and 
translation of the target mRNA in an m6A-dependent manner (53). For 
example, in endometrial cancer, IGF2BP1, by binding to the m6A site of 
SOX2 mRNA 3’UTR, promotes mRNA stability and inhibition of 
attenuation which enhances the expression of oncogene SOX2(sex-
determining region Y-box 2), thus promotes the colony formation, 
invasion and migration of endometrial cancer (63). In addition, 
IGF2BP3 can also promote the proliferation, migration, and invasion of 

cancer cells in human endometrial carcinoma by enhancing the stability 
and inhibiting the attenuation of E2F3(E2F transcription factor 3) 
mRNA (64). Recent studies have found that MYC is a key regulator of 
aerobic glycolysis and is associated with malignant progression of 
tumors as an oncogene (65, 66). IGF2BP2 can recognize m6A 
modification sites in MYC mRNA in cervical cancer cell lines to 
promote MYC expression, thereby enhancing cancer cell proliferation, 
migration, invasion, and aerobic glycolysis (67).

In summary, these proteins usually exist as carcinogenic 
components in different gynecological cancers, and they are involved 
in the malignant progression of cancer by affecting the stability, 
translation, decay, or output and so on of target mRNA by relying on 
the recognition of m6A.

3 m5C modification in gynecological 
cancer

m5C modifications are ubiquitous in RNA, including mRNA, 
tRNA, and rRNA, and are currently used for DNA or the determination 
of m5C levels in RNA can generally be quantified by bisulfite sequencing 
(68). A variety of enzymes associated with 5-cytosine methylation 
modification have been identified, including NOL1/NOP2/sun family 
(including NSUN1/2/3/4/5/6/7) and DNMT2/TRDMT1 (DNA 
methyltransferase member 2/tRNA methyltransferase 1), but no clear 
studies have found enzymes that demethylate m5C (69), and m5C’s 
recognition protein is predominantly ALYREF(Aly/REF export factor, 
an mRNA transport adaptor) (70) and YBX1 (Y-box binding protein 1) 
(71) (Figure 2). Among m5C methylation modification enzymes, 
NSUN1 and NSUN5 are responsible for m5C methylation of cytoplasmic 
28S rRNA, NSUN3 and NSUN4 are responsible for methylate 
mitochondrial tRNA and rRNA, and NSUN7 is responsible for 
methylate enhancer RNA (eRNA) (72). NSUN2, NSUN6 and DNMT2 
are mainly responsible for methylate cytoplasmic tRNA, besides, 
NSUN2 can also methylate mRNA and vault RNA (VtRNA) (72). In the 
m5C recognition protein, ALYREF mainly recognizes the m5C 
modification site on mRNA edited by NSUN2, which is promoted The 
mRNA is output from the nucleus to the cytoplasm (70), while YBX1 is 
output by recognizing m5C on the mRNA moddifications thereby 
recruiting Pabpc1a enhance mRNA stability (71). Recently, many 
studies have shown that abnormal m5C modification promotes cancer 
proliferation, invasion or metastasis, such as hepatocellular carcinoma 
(73), bladder cancer (74), Squamous cell carcinoma of the esophagus 
(75). In gynecologic cancers, abnormalities in the RNA m5C 
modification are also associated with the progression of its malignancy.

Some studies have found that NSUN2 is highly expressed in 
human cervical cancer tissues, and by enhancing the methylation 
modification of m5C of oncogene KRT13 (keratin 13) mRNA and 
recruiting YBX1 to further stabilize KRT13 mRNA, the expression 
of KRT13 is increased, and the invasion and migration of cervical 
cancer cells are promoted (76). In addition, in epithelial ovarian 
cancer (EOC), SIAH1 (seven in absentia homolog 1), a 
ubiquitinating ligase, ubiquitinates YBX1 at K304 via the RING 
domain, making EOC sensitive to cDDP and inhibiting cancer cell 
proliferation, invasion, and migration (77). It may be  that 
ubiquidization of YBX1 leads to instability of m5C modification of 
E2F5, YY1 and RCC2 mRNAs, thus accelerating the degradation 
of these target mRNAs.
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At present, the research on m5C modification in gynecological 
cancer is very limited, what role other m5C modification related 
enzymes play in the development of gynecological cancer, and 
whether the potential role of NSUN2 in cancer can be mediated by 
tRNA modification still need to be further explored and studied.

4 m1A modification in gynecologic 
cancer

Modification of m1A occurs mainly in cytoplasmic and 
mitochondrial tRNAs, with 1-methyladenylation usually occurring at 
positions 58 and 9 of the tRNAs (78, 79). The modification can also 
occur on mRNA and rRNA. According to current studies, it is known 
that m1A methyltransferases mainly include TRMT10C(tRNA 
methyltransferase 10 homolog C) (80), TRMT61B(tRNA 
methyltransferase 61 homolog B) (79), TRMT6/61A(tRNA 
methyltransferase 6/tRNA methyltransferase 61 homolog A) (81), 
m1A main demethylases are ALKBH1(alkylation repair homolog 1) 
(82), ALKBH3(alkylation repair homolog 3) (83) and the recognition 
proteins are mainly YTHDF1-3,YTHDC1 (84). m1A modification on 
tRNA has been shown to promote tRNA structure stability and induce 
correct tRNA folding (85), and in mitochondrial mRNA, it mainly 
inhibits mRNA translation through TRMT61B methyltransferase 
(81). Abnormal expression of m1A modification on RNA is also closely 
related to the pathogenesis of the disease (85, 86).

CSF-1, a macrophage colony stimulating factor, regulates the 
migration, proliferation, differentiation and survival of 

macrophages and their precursors by activating its receptor 
CSF-1R (87). Overexpression of CSF-1/CSF-1R plays an important 
role in the malignant development of cancer (88–90). In ovarian 
cancer, ALKBH3 can extend the half-life of CSF-1 mRNA and 
enhance the expression of CSF-1 by making CSF-1mRNA near the 
origin of translation 5’UTR region m1A demethylation, thereby 
improving the invasion ability of ovarian cancer cells (91). In 
addition, TRMT10C is highly expressed in cervical cancer and 
ovarian cancer tissues, promoting the proliferation, colony 
formation and migration of ovarian cancer and cervical cancer 
cells, which may be related to the regulation of C-MYC-related 
pathways (92).

This evidence supports the important role of m1A modification in 
the development of gynecological cancers, but the information on the 
key players in the regulation of m1A modification is very limited, and 
there are still unknown potential key enzymes of m1A modification 
that have yet to be discovered.

5 A-to-I editing in gynecological 
cancer

RNA editing events were first identified in the sequence of 
COXII. transcripts in trypanosomes mitochondria (93). In the animal 
world, A-to-I RNA editing is the most common, and it is mainly 
mediated by ADAR enzymes to convert double-stranded RNA 
(dsRNA) substrate in adenosine is converted to inosine (94). Among 
them, ADAR1(Adenosine deaminase acting on RNA 1) (95) and 

FIGURE 2

m5C, m1A, ψ, and A-to-I modifications on RNA.
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ADAR2(Adenosine deaminase acting on RNA 2) enzymes (96) have 
been shown to have A-to-I editing activity. A-to-I editing modifications 
in RNA may lead to the production of nonsynonymous codons, 
leading to the diversity of translation proteins, associated with the 
development of diseases such as Aicardi-Goutières syndrome (97) and 
cancer (98, 99). Besides, A-to-I editing works by altering dsRNA in 
pri-miRNA structure, thereby inhibiting the processing and 
maturation of pri-miRNA by Drosha (100).

In recent years, the role of A-to-I editing enzymes in gynecological 
cancers has gradually begun to be discovered. ADAR1 prevents type 
I interferon in human cells by inhibiting the production of endogenous 
double-stranded DNA (dsRNA) in the host. The loss of ADAR1 can 
lead to the accumulation of dsRNA, induce Type I interferon (IFN), 
promote apoptosis and growth arrest (101). Therefore, in tumors, the 
high expression of ADAR1 is conducive to the immune escape of 
cancer cells. Recent studies have also confirmed that the loss of 
ADAR1  in tumors enhances tumor sensitivity to immunotherapy, 
thereby overcoming resistance to immune checkpoint blocking (102). 
In gynecological cancers, ADAR1 mainly acts as an oncogene. In 
cervical squamous cell carcinoma, the increased expression of ADAR1 
is associated with the malignant progression of cancer cells, and its 
specific molecular mechanism needs to be further studied (103). In 
addition, ADAR1 is also highly expressed in human ovarian cancer 
tissues and is inversely associated with progression-free survival. The 
presence of ADAR1 maintains normal dsRNA editing, prevents R ring 
accumulation in ovarian cancer, avoids cancer cell DNA damage and 
ATR-Chk1 cell cycle checkpoint activation, prevents G1/G0 phase cell 
cycle stagnation, and promotes the growth of cancer cells (104). This 
study revealed a new ADAR1/R-loop/ATR pathway that is crucial for 
ovarian cancer progression, and the exploration of ADAR1 inhibitors 
and ATR inhibitors may be a good direction for future treatment of 
ovarian cancer.

The mechanism of action of ADAR2 in gynecological cancer has 
not been well described. Existing studies have found that ADAR2 is 
overexpressed in endometrial cancer, and its expression level is 
positively correlated with tumor aggressiveness. The increased 
expression of ADAR2 promote the proliferation and migration of 
cancer cells and inhibit apoptosis (105).

Overall, these results demonstrate that adenosine to inosine 
editing is an important regulatory mechanism in the development of 
gynecologic cancers, and targeting this pathway, specifically ADAR1, 
is a promising possibility for gynecologic cancer treatment.

6 Pseudouridine nucleoside 
modification in gynecological cancer

Pseudouridine nucleoside modification occurs after 
transcription and is one of the most common modifications in 
RNA (106), and it was first discovered in yeast (107). Pseudouridine 
nucleoside modification plays an important role in the functional 
output of tRNA and rRNA. Loss of pseudouridine nuclear 
modification will lead to decreased expression level of rRNA and 
enhanced read through activity of stop codon (108), and also affect 
the translation output of tRNA (109). In addition, pseudouracil 
nucleosidation modification can also be  found in Mt-tRNA, 
snRNA, miRNA, and lncRNA (110). There is currently no clear 
research evidence for whether mRNA has naturally occurred 

pseudouridine modifications, but studies have found that 
artificially pseudouridation of mRNA can promote non-canonical 
base pairing at the ribosome decoding center and change the 
genetic code, resulting in increased protein diversity (111, 112). 
The main method to identify whether RNA contains pseuduridine 
modification is the specific binding of pseuduracil nucleoside to 
n-cyclohexyl-N ‘-(2-morpholine ethyl) carbodiimine methyl-p-
toluenesulfonate (CMCT) (113). At present, it is known that 
enzymes involved in pseudouridine modification mainly include 
PUS1(pseudouridine synthases 1), PUS2(pseudouridine synthases 
2), PUS3(pseudouridine synthases 3), PUS4(pseudouridine 
synthases 4), PUS6(pseudouridine synthases 6), PUS7 
(pseudouridine synthases 7), PUS9(pseudouridine synthases 9), 
DKC1(Dyskerin pseudouridine synthase 1) et al. (113, 114). The 
abnormalities of their modifier enzymes are involved in 
straightening the development process of bowel cancer (115), lung 
adenocarcinoma (116), neurodevelopmental disorders (117), 
congenital dyskeratosis (118) and other diseases. There are no 
known erasers or readers for pseudouridine nucleoside 
modification in eukaryotic cells (119).

Dyskerin protein is a pseudouracil synthetase encoded by 
DCK1 gene, which can convert specific uracil on ribosomal RNAs 
(rRNAs), nuclear RNAs (snRNAs) and messenger RNAs (mRNAs) 
into pseudouracil (120), and participate in many biological 
processes, including protecting telomere integrity and maintaining 
ribosomal biogenesis (121). The abnormal expression of Dyskerin 
is related to the poor prognosis of patients in most cancer research 
at present (122, 123), and it is considered that Dyskerin maintains 
high telomerase activity and promotes the proliferation of cancer 
cells (124). Different from the previous research results, Dyskerin 
is low in endometrial carcinoma, and the decrease of Dyskerin 
expression is related to the proliferation of endometrial carcinoma 
and the low survival rate of patients (125). It is considered that the 
loss of abnormal Dyskerin may promote the development of 
endometrial cancer by disturbing the normal translation 
mechanism (126, 127). In addition, some studies have also found 
that PUS7 is highly expressed in human ovarian cancer tissues. 
Through the analysis of gene pathway data, it is considered that 
PUS7 may interact with NOC3L and PUS1 to promote the 
proliferation of ovarian cancer by regulating DNA replication and 
cell cycle (128).

At present, the research progress of pseudouridine modification 
in gynecological cancer is very limited, and the specific molecular 
mechanism of pseudouridine synthase in gynecological cancer has not 
been studied in detail in known studies. Further research is needed to 
fully explore the role of pseudouridine modification in gynecological 
cancer in the future.

7 RNA-modifying enzyme-related 
inhibitors and gynecologic cancer

At present, the exploration of small molecule inhibitors of m6A 
has made great progress. In the study of m6A methyltransferase 
inhibitors, some researchers discovered STM2457 as a candidate 
specific inhibitor catalyzed by METTL3 can cause damage to AML 
mouse model modeling and prolong the survival time of mice (129). 
In addition, through drug library screening, quercetin can also act as 
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an inhibitor of METTL3 to inhibit the proliferation of pancreatic and 
liver cancer cells (130). A newly synthesized compound, UZH2(lead 
compound 22) (131), has also been shown to have the inhibitory 
activity of the METTL3 enzyme. Inhibitors of m6A demethylase, such 
as meclofenamic acid (MA) (132), Rhein (133), R-2HG (134), FTO-04 
(135), FB23 and FB23-2 (136), have been discovered in recent years. 
They all have FTO enzyme inhibitory activity and can be used in AML 
(134, 136), Glioblastoma (135) and other cancers have shown 
significant antitumor activity. MV1035 (137) and ALK-04 (138) as 
inhibitors of ALKBH5 also show tumor suppressor effects in 
glioblastoma and melanoma. For inhibitors of the m6A-recognition 
protein, a compound called “7,773” has been found to bind IGF2BP1 
and inhibit its interaction with KRAS RNA (139), thereby reducing 
the expression of KRAS protein and downstream signaling, inhibiting 
the cancer-promoting activity of IGF2BP1. BTYNB (140) inhibited 
the malignant process of ovarian cancer by weakening the stability of 
IGF2BP1 on E2F1 mRNA, thus limiting the protein translation of 
E2F1. MO-460 (141), a newly synthesized similar based on (R)-(−)-
Moracin-O, acts on the glycine-rich C-terminal domain of 
hnRNPA2B1 and inhibits binding of hnRNPA2B1 to the 
3′-untranslated region of HIF-1αmRNA. The inhibition of HIF-1α 
translation can play an anticancer role.

As for inhibitor studies of other RNA-modifying enzymes, 
RUS0207-A006, RUS0202-G005 and JK0395-B007 have been found 
to have inhibitory activity of YBX1 recognition protein (142), and 
RUS0207-A006 and JK0395-B007 inhibited malignant melanoma 
cells, Proliferation of colon cancer cells and breast cancer cells. In 
addition, azacytidine (143) has also been found to act as an inhibitor 
of the RNA methyltransferase DNMT2, inhibiting the main substrate 
of DNMT2, tRNA (Asp) Methylation of the C38 site. and 2,3-diaryl 
indenones (144) as ALKBH3, a selective inhibitor that plays a 
significant inhibitory role in the proliferation of lung cancer cells.

More and more RNA-modifying enzyme-related inhibitors are 
gradually being synthesized or discovered, and their anti-cancer 
effects in a variety of tumors are gradually being shown to us, but 
their specific tumor suppression mechanisms need to 
be further explored.

8 Future perspectives

With the discovery and functional study of RNA modification 
types and various RNA modification-related regulators, the 
understanding of RNA modification has been greatly improved. 
Despite tremendous progress, there are still many unknowns about 
our understanding of RNA modifications and their specific 
regulatory mechanisms in gynecologic tumors. From a macro 
perspective, many of the authors, readers, and erasers of 
modifications are still unknown, which hinders further research into 
the functional mechanisms of these modifications. In addition, the 
mechanisms by which many known writers, readers, and erasers can 
selectively identify, install, or remove modifications, as well as the 
mechanisms by which their specific environments and 
spatiotemporal manipulations are regulated, remain unknown. The 
full range of regulatory and biological roles of mRNA modification 
remains largely unexplored. In some cases, one enzyme produces 
opposite effects in different cancer types, or even in the same cancer 

type. Given the diversity of RNA modifications and the sheer 
number of modified coding RNAs and ncrRNAs, it may not seem 
surprising that this contradiction sometimes arises. Therefore, more 
relevant studies are needed to further validate and explain the 
specific mechanism of RNA methylation in cancer, and to explain 
more rationally some of the existing conflicting studies. In addition, 
RNA modifications have greatly contributed to the development of 
therapeutics, including antisense oligonucleotides, RNA aptamers, 
and short-interfering RNA drugs. Given the great success of 
Ψ-modified mRNA vaccines for infectious diseases, the development 
of modified vaccines for the treatment of cancer has bright prospects. 
In addition, we  believe that the development of small molecule 
inhibitors targeting RNA modification sites and RNA-modifying 
enzymes is very promising, which will provide a new and more 
targeted approach to cancer treatment. Specific to the field of 
gynecologic oncology, we believe that there are still many issues that 
need to be clarified: (1) the changes of RNA modification in different 
stages of gynecological cancer development are not clear; (2) Does 
the same RNA modification between different types of RNA (mRNA, 
rRNA, tRNA, lncRNA) produce different biological functions? (4) 
The carcinogenic and tumor suppressor functions of RNA 
modification regulators sometimes play opposite roles in different 
cancers, and their complex regulatory mechanisms need to 
be further studied; (5) it would be interesting to elucidate crosstalk 
or competition between different types of RNA modifications; (6) 
Whether the changes in RNA modification can be used as a predictor 
of treatment response in patients with gynecologic tumors needs to 
be studied; (7) Although drugs targeting RNA-modified enzymes 
have shown potential to promote the efficacy of chemotherapy or 
immunotherapy in preclinical studies, related research is still in its 
infancy, and rigorous clinical trials are needed to prove their efficacy 
in the future. (8) The prediction of prognostic RNA modification-
related molecules is often based on bioinformatics and database 
mining, and further experimental verification and prospective 
clinical trials are needed.
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