CSci8715 – Spatial databases: Project (Formal Proposal)
Group: G4
Nipun Garg (4282567)
Surabhi Mithal (4282643)

Introduction:

Spatial data warehouses aim at effective and efficient querying of spatial data. Spatial databases are suited for answering regular transactional queries where there is not a lot of historical component or aggregation. The class of queries that are needed to support the decision making process are difficult on spatial data bases. This gave a rise to the field of spatial data warehouses which is idea of combining the traditional data warehouses with spatial databases. We would be doing a survey on spatial data warehouses with a focus on topics like conceptual models, Indexing, Aggregation and general SOLAP concepts.

Questions:

1. What are spatial data warehouses and what is the need for spatial data warehouses?
2. What are the models for representation of spatial data warehouses?
3. How are spatial data warehouses made more effective?
4. What are the benchmarks for evaluation of queries on spatial data warehouses?
5. What are the latest trends in spatial data warehouses?

Motivation and Related Work:

Spatial data warehouses and SOLAP is widely gaining importance due to the capabilities it provides. To our knowledge, there is no recent survey paper in literature on spatial data warehouses. There exists some literature on overview of general concepts of spatial data warehouses [19] [20] but we could not find a recent detailed survey which covers all the important aspects of a spatial data warehouse. There are many open research issues in spatial data warehouses and we would like to classify them and present them in a consolidated manner. We would be also analysing trends like spatiotemporal data warehouses and why they are gaining importance.

Key Concepts: Survey topics and description

Our survey would cover the following broad topics and the papers. Description of the paper is also briefly mentioned here:

1. Indexes for Spatial Data warehouses:
 Below are some proposed Index structures for spatial data warehouses or SOLAP:
1. **aR-tree [8]**: Aggregation R tree is an extension of R tree which stores aggregates for each MBR.
2. **GIST [27]**: Extending GIST and its query algorithm to favour OLAP aggregation queries.
3. **R*a-tree [10]**: Extension of the R*-tree for efficient OLAP range queries.
4. **aR-tree Implementation [7]**
5. **Spatiotemporal indexes [9]**: aRB-tree, generalization of aRB-trees, aHRB-tree and a3DRB-tree.

2 **Conceptual Models for Spatial Data warehouses**
Conceptual models like ER or even pictograms cannot be used to represent hierarchies needed for spatial data warehouses. Conceptual models for spatial data warehouses have spatial dimensions and measures.

2. Spatial multidimensional model [1]: Convert spatial measures to spatial dimensions.
3. Mapping of Conceptual model to Physical schema[3]
4. Extension of MultiDimER for Continuous fields [6].

3 **Aggregation in Spatial Data warehouses**
Aggregating of data in spatial data warehouses is required to for OLAP operations like drill up, drill down. As the hierarchies for spatial data may be irregular, aggregation of data poses a challenge.

1. Problems and solutions in Pre aggregation over Irregular OLAP hierarchies [28] [30].
2. Formal model for spatial aggregation [29].

4 **Selective materialization**
Materialization of a data cube means pre computation of results of queries so that the when they are run by the user, the execution is very fast. The selective materialization of a spatial data cube is partial materialization of spatial objects resulting from spatial operations.

1. General Selective materialization [31]

5 **Spatial OLAP: SOLAP**
The techniques for efficient processing of data in a spatial data warehouse for analysis and querying is called Spatial OLAP. SOLAP are meant to be client applications sitting on top of a multi-scale spatial data warehouse [19].

1. User Centric SOLAP [21]
2. Analysis of SOLAP tools [20] [32]
3. Extension of OLAP Cubes [18]
4. Products: Microsoft Terraserver [17]
6 Benchmarking Spatial Data warehouses
Evaluation of query performance of spatial data warehouses

I. Extension of star schema benchmark (SSB) for spatial Data warehouses [25].

7 Trends: Spatio temporal Data warehouses
I. General concepts [13] [14] [16] [20]

Validation Methodology

As we are doing a survey paper we would be analyzing the papers according to the key concepts/topics we have mentioned above.

For every topic we would:

- Summarize the approach discussed in the papers.
- Compare the limitations of one approach over the other (if applicable).

Criteria for comparison (may vary):

- Performance
- Storage
- Scalability
- Robustness

Key assumptions

- When applicable, the topics can be evaluated on the basis of the comparison criteria listed above.

References

[3] IMPLEMENTING SPATIAL DATARESOURCE HIERARCHIES IN OBJECT-RELATIONAL DBMSs Elżbieta Malinowski and Esteban Zimányi
ACM GIS ’09 November 4-6, 2009. Seattle, WA, USA Copyright 2009
[7] Materialized aR-Tree in Distributed Spatial Data Warehouse Marcin Gorawski * and Rafal Malczok
[8] Efficient OLAP Operations in Spatial Data Warehouses Dimitris Papadias, Panos Kalnis, Jun Zhang and Yufei Tao
[9] Indexing Spatio-Temporal Data Warehouses
Dimitris Papadias, Yufei Tao, Panos Kalnis, and Jun Zhang

[10] The R*a-tree: An improved R*-tree with Materialized Data for Supporting Range Queries
on OLAP-Data - Marcus J’urgens, Hans-J. Lenz

Nebojsa Stefanovic, Member, IEEE Computer Society, Jiawei Han, Member, IEEE Computer Society, and Krzysztof Koperski, Member, IEEE Computer Society

[12] Spatial Data Warehouses: Some Solutions and Unresolved Problems
Elzbieta Malinowska* and Esteban Zim’anyi

[13] RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE
WANG Jizhou, LI Chengming

[14] Spatio-Temporal Data Warehouse Design for Human Activity Pattern Analysis
L. Savary, T. Wan, K. Zeitouni

[15] Balanced Spatio-Temporal Data Warehouse with R-MVB,STCAT and BITMAP Indexes
Marcin Gorawski, Michal Gorawski

[16] What is Spatio-Temporal Data Warehousing?
Alejandro Vaisman and Esteban Zimanyi

[17] Microsoft TerraServer: A Spatial Data Warehouse
Tom Barclay, Jim Gray and Don Slutz

[18] Map Cube: A Visualization Tool for Spatial Data Warehouses
S. Shekhar, C.T. Lu, X. Tan, S. Chawla, and R. Vatsavai

[19] Fundamentals of spatial data warehousing for geographic knowledge discovery
Yvan Bédard, Tim Merrett and Jiawei Han

exploration and analysis
S. Rivest, Y. Bédard, M.J. Proulx, M. Nadeau

[21] On the Requirements for User-Centric Spatial Data Warehousing and SOLAP
Ganesh Viswanathan & Markus Schneider

[22] THE RESEARCH OF METADATA ON SPATIAL DATA WAREHOUSE
Zou, Y., Zhang, L. and Zhu, Z.M

[23] Spatial OLAP Modelling: An Overview Base on Spatial Objects Changing over Time
Gabriel Pestana Miguel Mira da Silva Yvan BCdard

Pérez David, Somodevilla Maria J., Pineda Ivo H.,

[25] Benchmarking Spatial Data Warehouses
Thiago Luís Lopes Siqueira1,2, Ricardo Rodrigues Ciferri2, Valéria Cesário Times3, Cristina Dutra de Aguiar Ciferri

[26] Efficient OLAP Operations for Spatial Data Using Peano Trees
Baoying Wang Fei Pan Dongmei Ren Yue Cui Qiang Ding William Perrizo

[27] Spatial Hierarchy and OLAP-Favored Search in Spatial Data Warehouse
Fangyan Rao, Long Zhang, Xiu Lan Yu, Ying Li, Ying Chen

[28] Pre Aggregation in Spatial Data Warehouses
Torben Bach Pedersen and Nektaria Tryfona

[29] Spatial Aggregation: Data Model and Implementation
Sofie Haesevoets, Bart Kuijpers and Alejandro Vaisman

[30] The TreeScape System: Reuse of Pre-Computed Aggregates over Irregular OLAP
Hierarchies - Torben Bach Pedersen, Christian S. Jensen and Curtis E. Dyreson

[31] Selective Materialization: An Efficient Method for Spatial Data Cube Construction
Jiawei Han, Nebojsa Stefanovic, and Krzysztof Koperski

[32] TOWARD BETTER SUPPORT FOR SPATIAL DECISION MAKING: DEFINING THE
CHARACTERISTICS OF SPATIAL ON-LINE ANALYTICAL PROCESSING (SOLAP)GEOMATICA Vol.