Reasoning about Complex Networks: A Logic Programming Approach

Gerardo I. Simari
Department of Computer Science, University of Oxford, UK

Joint work with:
Paulo Shakarian and Devon Callahan
United States Military Academy at West Point, USA

29th International Conference on Logic Programming (ICLP 2013)
Istanbul, Turkey – August 26–29, 2013
Complex Networks

- **Multi-attribute** time-series (1952–2012) author/paper network; authors colored green and papers red.
- Data extracted from *Thomson-Reuters Web of Knowledge*.
Introduction

• Reasoning about complex networks has many applications:
 – Adoption of commercial products
 – Spread of disease
 – Diffusion of ideas, etc.

• We identified seven criteria that formalisms for this kind of reasoning “should satisfy”, and propose:
 – a formalism that satisfies all criteria;
 – algorithms for finding minimal models; and
 – study the problem of deciding group membership in social networks.
Seven Desiderata (1)

1. **Multiple** labels and weights for nodes and edges:
 - Most existing formalisms assume a single type of node that may become “active” or “mutate”; and
 - Only one type of relationship between nodes.
 - In reality, this is an oversimplification: nodes can be complex, relationships can be strong/weak, etc.

2. **Explicit representation of time:**
 - Existing works usually assume static models or simple models of temporal decay.
 - We seek a rich model of temporal relationships between conditions in the network structure, state of cascades, etc.
Seven Desiderata (1)

1. Multiple labels and weights for nodes and edges:
 - Most existing formalisms assume a single type of node that may become “active” or “mutate”; and
 - Only one type of relationship between nodes.
 - In reality, this is an oversimplification: nodes can be complex, relationships can be strong/weak, etc.

2. Explicit representation of time:
 - Existing works usually assume static models or simple models of temporal decay.
 - We seek a rich model of temporal relationships between conditions in the network structure, state of cascades, etc.
Seven Desiderata (2)

3. Non-Markovian temporal relationships:
 - “Memoryless” mode of Markov processes is insufficient to model dependencies that span multiple time units.

4. Representation of uncertainty:
 - In practice, it is not always feasible to judge all attributes of all individuals.
 - In connection to point 7, management of uncertainty should not come at a high computational cost.

5. Competing cascades:
 - Real-world situations often present competing network processes, where the success of one depends on another’s failure.
Seven Desiderata (2)

3. Non-Markovian temporal relationships
 – “Memoryless” mode of Markov processes is insufficient to model dependencies that span multiple time units.

4. Representation of uncertainty:
 – In practice, it is not always feasible to judge all attributes of all individuals.
 – In connection to point 7, management of uncertainty should not come at a high computational cost.

5. Competing cascades:
 – Real-world situations often present competing network processes, where the success of one depends on another’s failure.
Seven Desiderata (2)

3. Non-Markovian temporal relationships
 - “Memoryless” mode of Markov processes is insufficient to model dependencies that span multiple time units.

4. Representation of uncertainty:
 - In practice, it is not always feasible to judge all attributes of all individuals.
 - In connection to point 7, management of uncertainty should not come at a high computational cost.

5. Competing cascades:
 - Real-world situations often present competing network processes, where the success of one depends on another’s failure.
Seven Desiderata (3)

6. **Non-monotonic** cascades:
 - A common assumption is to only allow the number of nodes attaining a certain property to increase.
 - Competing processes are not compatible with such an assumption.

7. **Tractability**:
 - Social networks of interest today often have millions/billions of nodes.
 - Any framework for dealing with reasoning problems in such networks must be reasonably tractable.
 - In general, we take this to mean (low-degree) PTIME.
Seven Desiderata (3)

6. Non-monotonic cascades:
 - A common assumption is to only allow the number of nodes attaining a certain property to increase.
 - Competing processes are not compatible with such an assumption.

7. Tractability:
 - Social networks of interest today often have millions/billions of nodes.
 - Any framework for dealing with reasoning problems in such networks must be reasonably tractable.
 - In general, we take this to mean (low-degree) PTIME.
The MANCaLog Formalism (1)

• Preliminaries:
 – Assume a directed graph (network) \(G = (V,E) \)
 – Set of labels \(L = L_f \cup L_{nf} \) (fluent and non-fluent);
 labels are assigned to either nodes or edges in the network.
 – Network components: the set of all nodes and edges.

• Network atoms:
 Given label \(L \) and interval \(bnd \in [0,1] \), \(\langle L, bnd \rangle \) is a network atom.

• A world \(w \) is a set of network atoms s.t. for each \(L \in L \) there is exactly one atom of the form \(\langle L, bnd \rangle \) in \(w \).
The MANCaLog Formalism (2)

- Network formulas are defined over network atoms with the standard connectives (\land, \lor, \neg);
- Satisfaction:
 - World w satisfies atom $\langle L, bnd \rangle$ iff there exists $\langle L, bnd' \rangle \in w$ such that $bnd \subseteq bnd'$;
 - satisfaction of formulas is defined inductively as usual.
- Facts:
 - Time is considered as discrete points in range $[0, t_{max}]$.
 - Facts are of the form $(A, C):[t_1, t_2]$, where A is an atom, C is a network component, and $[t_1, t_2] \subseteq [0, t_{max}]$.
 - If A is formed with a non-fluent label, we allow only $[0, t_{max}]$ as the temporal annotation.
The MANCaLog Formalism (3)

Rules in the language are of the form:

\[L \xrightarrow{\Delta t} f, (g_{edge}, g_{node}, h)_{ifl} \]

where:

- \(L \) is a label;
- \(\Delta t \geq 0 \);
- \(f \) is a formula over non-fluent network atoms;
- \(g_{edge}, g_{node} \) are non-fluent formulas (formed over edge and node atoms, resp.);
- \(h \) is a conjunction of (possibly fluent) network atoms;
- \(ifl \) is an influence function
The MANCaLog Formalism (3)

Rules in the language are of the form:

\[L \overset{\Delta t}{\leftarrow} f, (g_{edge}, g_{node}, h)_{ifl} \]

Intuitively, this rule is read as follows:

“The \(L \) label of nodes meeting criteria described by \(f \) are influenced (within \(\Delta t \) time steps) by a set of neighbors that meet criteria described by \(g_{edge}, g_{node}, \) and \(h \) to a degree determined by function \(ifl \).”
Influence Functions

• **Influence functions** are of the form $ifl: \mathbb{N} \times \mathbb{N} \rightarrow [0,1] \times [0,1]$

• Intuitively, ifl takes the number of neighbors and the number of *qualifying* neighbors and returns a new interval for the weight of the label in question.

• Example influence functions:

 Tipping:

 $tip(x,y) = \begin{cases}
 [1,1] & \text{if } x/y \geq 0.5 \\
 [0,1] & \text{otherwise}
 \end{cases}$

 Soft tipping:

 $st(x,y) = \begin{cases}
 [0.7,1] & \text{if } x/y \geq 0.5 \\
 [0,1] & \text{otherwise}
 \end{cases}$
Semantics

- Network interpretations map network components to worlds.
- Interpretations map time points to network interpretations.
- Models: Interpretations that satisfy all rules in a program.
- We define a partial ordering over equivalence classes of interpretations, which allows to define minimal models.
- Minimal models allow us to answer consistency and entailment queries.
- We developed a fixpoint operator for computing minimal models in PTIME.
Conclusions

• We outlined a set of **desirable criteria** for a language to model diffusion processes in complex networks.

• Essentially, we want to better understand how information and other phenomena **diffuse** in a network while leveraging information **beyond** network **topology**.

• Proposed the MANCaLog language, designed with these criteria in mind.

• Ongoing work involves experiments with real-world **police data** to address the problem of **group membership** in social networks.
A Comparison of Models

<table>
<thead>
<tr>
<th>Criterion</th>
<th>MANCaLog</th>
<th>IC/LT</th>
<th>SNOP</th>
<th>CD</th>
<th>EGT/VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Labels</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Explicit Representation of Time</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Non-Markovian Time</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4. Uncertainty</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Competing Processes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Non-monotonic Processes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7. Tractablity</td>
<td>PTIME</td>
<td>#P-hard</td>
<td>PTIME</td>
<td>PTIME</td>
<td>NP-hard</td>
</tr>
</tbody>
</table>

IC/LT: Independent Cascade / Linear Threshold (Kempe et al., 2003) [2];

SNOP: Social Network Optimization Problems (Shakarian et al., 2010) [3];

CD: Competitive Diffusion (Broecheler et al., 2010) [4];

EGT/VM: Evolutionary Graph Theory / Voter Model (Liberman et al., 2005 and Sood et al., 2008) [5,6].
References

