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Abstract

Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate
post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales
and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial
structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether
microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was
conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies
lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully
probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-
bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation
range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and
cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included
variables describing fungal and bacterial abundance, although explained variance was low (R2,0.29). Unraveling complex
spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining
post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies
by mid 21st Century.
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Introduction

Fire is a complex spatial event that both responds to and

produces heterogeneity in ecological systems [1,2]. This complex-

ity is characterized by variation in fire size, severity, frequency,

and the location and timing of ignition factors [3,4]. In turn, these

complexities in fire regimes lead to spatial and temporal variability

in post-fire effects such as gaseous emissions, vegetation dynamics,

and biogeochemical cycling [5,6,7]. Complexity in fire patterns

has been described at global and landscape scales [8,9]. Yet,

despite increased understanding of heterogeneity at broad scales,

there is a paucity of studies that explore fine-scale spatial

patterning in post-fire environments.

Fires modify the distribution and mass of nutrient elements in

ecosystems through pyrolysis (thermal decomposition of organic

matter by fire), volatilization (gaseous loss through combustion),

and ash deposition [10]. As a result, fires modify nutrient

availability [11], carbon storage [12], and ecosystem productivity

[13]. Post-fire nutrient cycling also is modified by shifts in abiotic

conditions, such as changes in soil moisture [14], temperature

[15], pH [16], biotic substrate quality and quantity [17], and

charcoal deposition [18]. Agents of these biogeochemical trans-

formations in post-fire environments are the soil microbial

organisms that are active following fire. In the absence of

disturbance, soil microbial communities are spatially patterned

at multiple, often hierarchical scales [19,20,21]. At fine scales (e.g.,

,1 to ,10 m), microbial communities may vary in response to

soil and root structure, plant species, litter inputs, nutrient cycling

[22], and local microbial population dynamics [20,23], while at

broad scales (e.g., .10 m) patterns may reflect gradients in

topography, vegetation type, land use, or soil [24,25,26].

Following disturbances such as fire, microbial abundance and

community composition can be changed because of disruption of

microbial microhabitats and altered resource availability

[17,27,28]. Studies in agricultural or fertilized systems have

reported changes in spatial variation and community structure

[29], some of which may persist for decades [30]. However,

despite repeated calls for increased understanding of ‘microbial

biogeography’ [31], the scale(s) at which microbial communities

are structured is unknown [32] and remains a key priority for

understanding the ecological consequences of disturbance such as

fire [33].

To characterize the role of microbial communities in these post-

fire locations, we asked: what is the spatial structure of microbial

communities in forest stands recently affected by stand-replacing

fire? Spatial structuring of microbial lipids could be present in
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post-fire stands because of patchy microbial mortality caused by

the fire event, or patchiness in post-fire soil resources; alternatively,

homogenization of microbial communities could be expected in

post-fire stands if fire reduced coupling between aboveground

cover and soil N [34]. To explore this question, we used model-

based geostatistics in a hierarchical Bayesian framework [35] to

explore the spatial structure of microbial communities. A variety of

classical kriging methods exists, including simple kriging which

assumes a known constant spatial trend underlying the data,

ordinary kriging which assumes an unknown constant trend, and

universal kriging which assumes a general linear trend model [35].

In contrast, Bayesian kriging allows uncertainty in the model

parameters to be reflected in the widths of the prediction intervals,

thus providing a more reliable and realistic prediction of the

spatial parameters of interest than traditional kriging methods

[36]. Bayesian kriging also removes underlying spatial trends from

the data prior to calculating range distances, allowing for more

conservative inferences of spatial autocorrelation. Finally, by

integrating observed data into spatial models, this approach allows

for the estimation of ranges below the sampling grain (i.e.,

minimum distance between samples, 2 m), where traditional

methods would detect insignificant spatial structure.

In addition to quantification of post-fire spatial structure of

microbial communities, we asked: does microbial community

information improve predictive models of soil N transformation?

Given that microbes regulate nutrient mineralization, we expected

that microbial community information could explain patterns of in

situ net N mineralization rates [17]. The influence of microbial

communities on post-fire N cycling is relevant in northern

coniferous forests in the Rocky Mountains, where stand-replacing

fires dominate the natural disturbance regime [37] and where

ecosystem productivity appears to be limited by soil N availability

[38]. Large fires are expected to become more common for these

subalpine forests as a result of increased climate warming and

drying [39].

This study builds upon an earlier study by Turner et al. [34]

that analyzed fine-scale (2–20 m) spatial patterns of in situ net N

mineralization, N pools, and aboveground cover during the first 4

years following fire in the Greater Yellowstone Ecosystem (GYE,

Wyoming, USA). In this study, Turner et al. [34] used semivar-

iograms to explore autocorrelation scales between N cycling and

the cover of bare mineral soil, charred litter, live vegetation, and

fresh litter. Results indicated little congruence in spatial range

scales between soil N and aboveground cover, although coupling

of aboveground cover and soil N was apparent at the individual

sample point. Previously, Turner et al. [40] reported elevated rates

of ammonium (NH4
+) immobilization two years following fire, and

Smithwick et al. [41] concluded that microbial community

structure best explained patterns of gross ammonium (NH4
+)

mineralization across 20 mature forest stands in the GYE. These

latter studies indicate a strong role of microbial dynamics at

landscape scales in governing N dynamics. But because microbial

community composition was not included in the fine-scale study

by Turner et al. [34], it is unknown whether this information aids

prediction of post-fire N cycling at fine spatial scales during the

immediate post-fire years.

Understanding the influence of microbial communities on post-

fire N cycling may shed light on patterns of post-fire vegetation

recovery and further elucidate the relationship between above-

and below-ground function in disturbed environments. This study

therefore reports on new microbial data collected as part of the

study described by [34]. We use new statistical approaches that

rely on probabilistic spatial models (rather than semivariograms) to

calculate range distances for in situ net N mineralization, cover,

soil, and microbial variables. We also include the microbial

information in predictive models of N mineralization, using N

values reported by Turner et al. [34], to improve understanding of

autocorrelation scales of microbial communities and N cycling two

years following stand-replacing fire. Finally, we report on rates of

laboratory isotopic pool dilution at two of the plots described by

Turner et al. [34] in order to corroborate plot-level patterns in

mineralization and microbial consumption following crown fire.

Methods

Four plots previously described by Turner et al. [34] were

selected for intensive microbial analysis. The plots represented two

of the dominant forest types in the GYE (lodgepole pine (Pinus

contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea

engelmannii Parry/Abies lasiocarpa Hook. Nutt.)), and two severities of

stand-replacing fire (canopy vs. surface). Two of the plots were

centered on the 1280-ha Glade Fire (hereafter referred to as

Glade, 44u 59 18.93699 N, 110u 439 23.93199 W), which burned

a mosaic of 120 and 150-yr old forest dominated by lodgepole pine

that had developed after fires in 1879 or 1856 [42]. Elevation is

approximately 2150 m and soils are derived from very infertile

rhyolite substrates. Another two plots were centered on the 840-ha

Moran fire (hereafter referred to as Moran, 43u 529 33.19199 N,

110u 439 26.36199 W) on the western shore of Jackson Lake. Prior

to this fire, the plots were dominated by Engelmann spruce and

subalpine fir (although lodgepole pine was locally present) and had

not burned for .200 yrs. The substrate at Moran consists of

glacial moraine deposits, including Precambrian crystalline and

Paleozoic sedimentary rocks. Soils are characterized as Typic

Chryocrepts. All four plots (Glade-crown, Glade-surface, Moran-

crown, Moran-surface) experienced stand-replacing fire in late

summer 2000 with 100% tree crown mortality and almost 100%

consumption of the soil O horizon but were either crown fires, in

which needles were consumed during the fire, or severe-surface

fires, in which needles were killed and fell to the forest floor

following the fire. Two years following the fire, during summer

2002, a 50 m650 m intensive sampling grid [34] was used in each

plot to sample fine-scale spatial variability of microbial commu-

nities. Sampling locations were spaced 2 m, 4 m, or 8 m apart

along one of 9 rows, which were separated by 2 m. Each row had

9 cores, for a total of 81 soil cores per grid (plot). The sampling

design was reversed in the middle three rows to account for

anisotropy. This sampling design facilitated the study of spatial

patterning by creating comparable power at different lag distances

and maximizing sampling efficiency.

At each of 81 sampling locations per plot, clean PVC cores

(5 cm radius615 cm long) were used to collect soil samples for

microbial analysis. Samples were kept cool in the field and shipped

overnight to the University of Wisconsin (Madison, WI), where

they were frozen for microbial analysis or stored at constant

temperature prior to pool dilution analysis. Microbial lipid analysis

(extraction of signature lipid biomarkers from the cell membrane

and wall of microorganisms [43]) was used to assess the microbial

community composition at each sampling location. Microbial lipid

analysis is used for characterizing microbial communities because

of its ability to capture a unique microbial ‘fingerprint’, estimate

microbial biomass, and isolate microbial ‘biomarkers’ [21,44]. The

method is based on extraction and purification of phospholipid

fatty acids (PLFA) from microbial cell membranes. Specific

chemical and analytical methods have been described previously

[41,45]. Cores that did not have lipid 16:0 present were deleted

from the analysis (9 cores) and only lipids with chain lengths ,20

were included. The ratio of i15:0 to a15:0 was calculated as

Postfire Patterns of Microbes and Mineralization
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a metric that may represent physiological responses to changes in

temperature [46]. The fungi-to-bacteria ratio was calculated as

(18:1v9c+16:1v5)/(a15:0+i15:0+15:0+i16:0+15:1v8c

+16:1v7c+cy17:0+a17:0,+17:1v7c). The common fungal biomark-

er, 18:2v6,9, was not a dominant lipid in our samples, as observed

for mature lodgepole pine forests in the GYE [41]. Gm+ bacteria

lipid markers included: i15:0, a15:0, i16:0, a17:0, i17:0. Gm- lipid

markers included: 15:1v8, 16:1v7, 17:1v7, 19:1v8t, and 15:1v9.

Annual rates of in situ net N mineralization were collected using

the resin core incubation method [47] and methods are fully are

described in Turner et al. [34], who reported annual rates

between 2001 and 2004. Here, we incorporated results from the

2002–03 year of incubation when microbial samples were

collected. As an independent assessment of soil N cycling

dynamics, rates of NH4
+ and NO3

2 transformations were

quantified using 15N isotope dilution [48,49] at two of the plots

(crown fire plot at Glade and Moran, n = 81/plot), following the

methodology described in Smithwick et al. [41]. Aboveground

cover (detrital and abiotic: % rock, %unburned litter, % charred

litter, % mineral soil, % coarse woody debris, and live plant: %

Lupinus, % Ceanothus, % forbs, % graminoids, % shrubs) was

recorded in a 0.25-m2 circular sampling frame centered on each

core, and soil samples were collected at each sample point for pH

(see methods in Turner et al. [34]).

Statistics
To explore the spatial structure of independent soil and cover

characteristics, microbial communities, and N cycling rates, a fully

probabilistic spatial process model [35,50] was used. The model

assumes that, conditional on a Gaussian underlying process S(u),

the observed variables Y(u) are independent and exponentially

distributed (evaluated using covariates). The model and observed

data were assimilated in a Bayesian framework and posterior

distribution was computed from a predefined grid of correlation

parameters (w and s2) and relative nugget (t2.rel). In this study,

a 1006100 correlation parameter grid was used to obtain 100,000

posterior draws. The model can be expressed in a hierarchical

framework as follows: Level 1: Y(u) =Xb+S(u); Level 2: S(u) ,
normal(0, s2R(h; w)); Level 3: prior(b, s2, w). The first level

describes a spatial linear trend (b= trend parameter) for

coordinates (X) or other available spatial covariate data; the

second level describes a stationary Gaussian spatial process (S(u))

with mean = 0, variance = s2 and correlation function R(h; w),

where w is correlation parameter (range of spatial autocorrela-

tion = 3 w) and h is lag distance (vector distance between two

locations); and the third level specifies the prior for the model

parameters. We chose an exponential correlation function: R(h;

w) = exp(2h/w). Flat prior were chosen for b and Q and a reciprocal

prior for s2. The mean and variance of variables were estimated at

individual locations from the predictive distribution using the

krige.bayes function of geoR library in R version 2.15.0 [52].

Leave-One-Out cross-validation strategy was used for model

validation. Please see [35] for further modeling details.

Stepwise selection (forward and backward) using.stepAIC()

function in MASS [51] package of R [52] was used to find the

best candidate model for predicting net N mineralization using

microbial variables, soil properties, and cover variables as

predictors.

Results

PLFA revealed 26 individual lipid biomarkers that could be

uniquely identified across the four plots (Table 1). The most

dominant lipids (based on relative mole fraction) included

15:1v8c, 16:0, 17:1v7c, 18:1v9c, and 19:1v8c. The relative

abundance of individual lipids varied significantly across plots.

One lipid (15:1v8c) was more common in plots that experienced

severe-surface burns compared to crown fires, but no other lipid

showed consistent patterns at the site-level, e.g., between plots at

Glade versus Moran, or between severity classes (crown versus

surface). Microbial lipid abundance varied from 205615.65 nmol

at the Glade crown fire plot to 374625.03 nmol at the Moran

crown fire plot (Table 2). The fungi to bacteria ratio averaged

0.88 at the two Glade plots and 0.49 at the Moran plots. Both

Gm+ and Gm- bacteria were lowest at the Glade crown fire plot,

but did not significantly differ across the other three plots. The

stress ratio, i15/a15, was lowest at the crown fire plots compared

to the surface plots.

Laboratory isotopic rates of gross nitrification were higher at the

Moran crown fire plot compared to Glade (0.3860.09 mg NO3
2

g21 d21 versus 0.0660.02 mg NO3
2 g21 d21) but rates of NH4

+

and NO3
2 consumption were also higher at the Moran crown fire

plot (0.8360.14 mg NH4
+ g21 d21 and 0.6160.10 mg NO3

2 g21

d21) versus Glade (0.4460.07 mg NH4
+ g21 d21 and

0.0960.02 mg NO3
2 g21 d21). As a result, net NH4

+ and

NO3
2 mineralization was lower (p,0.013) at Moran

(20.4760.11 mg NH4
+ g21 d21 and 20.2460.13 mg NO3

2 g21

Table 1. Relative mole percent (mean (61 SE), n = 81) of
dominant, individual lipids at the post-fire crown and severe-
surface burn plots, two years following fire.

Lipid Glade-crown Moran-crown Glade-surface Moran-surface

11:0 0.72 (0.04) 0.93 (0.08) 0.72 (0.15) 0.46 (0.05)

12:0 2.90 (0.11) 2.08 (0.07) 3.43 (0.11) 2.17 (0.07)

14:0 4.35 (0.20) 2.16 (0.07) 3.49 (0.19) 2.90 (0.13)

15:0 1.21 (0.09) 1.04 (0.05) 0.97 (0.05) 1.07(0.04)

15:0anteiso 3.02 (0.10) 2.70 (0.10) 2.55 (0.10) 3.22 (0.14)

15:0iso 3.13(0.10) 2.91 (0.09) 2.86 (0.09) 3.90 (0.13)

15:1v8c NA 6.66 (0.66) 19.82 (0.00) 16.22 (1.75)

15:1v9c 7.75 (0.88) 3.72 (0.36) 8.64 (0.60) 5.64 (0.38)

16:0 12.15 (0.31) 8.35 (0.20) 10.25 (0.32) 10.03 (0.19)

16:02OH 1.47 (0.09) 2.56 (0.45) 1.82 (0.24) 1.74 (0.12)

16:0iso 1.61 (0.06) 1.37 (0.05) 1.45 (0.05) 1.68 (0.06)

16:1v5c 1.35 (0.07) 1.04 (0.04) 1.25 (0.06) 1.29 (0.04)

16:1v7c 5.43 (0.35) 4.92 (0.31) 4.73 (0.21) 5.12 (0.23)

17:0anteiso 1.65 (0.07) 1.80 (0.07) 1.46 (0.06) 1.79 (0.07)

cy17:0 2.55 (0.17) 2.26 (0.20) 2.45 (0.14) 2.59 (0.13)

17:0iso 0.79 (0.05) 0.53 (0.03) 0.76 (0.05) 0.72 (0.03)

17:1v8 1.28 (0.17) 1.29 (0.09) 1.68 (0.13) 1.21 (0.08)

17:1v7c 3.41 (0.34) 9.57 (0.89) 6.90 (0.86) 7.16 (0.67)

18:0 4.11 (0.16) 3.00 (0.14) 3.13 (0.15) 2.47 (0.07)

18:02OH 3.30 (0.43) 4.18 (0.31) 3.20 (0.17) 3.54 (0.19)

18:1v9c 16.10 (0.88) 9.08 (0.50) 12.89 (0.67) 11.45 (0.56)

18:2v6c 4.08 (0.13) 2.49 (0.11) 3.34 (0.17) 3.50 (0.17)

18:3v6c 2.71 (0.13) 1.59 (0.09) 2.14 (0.08) 2.01 (0.07)

19:0 0.25 (0.02) 1.82 (0.17) 0.17 (0.02) 0.27 (0.03)

cy19:0 0.47 (0.03) 0.40 (0.04) 0.09 (0.03) 0.49 (0.04)

19:1v8t 7.57 (0.54) 9.08 (0.55) 9.84 (0.80) 9.48 (0.52)

doi:10.1371/journal.pone.0050597.t001
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d21) versus Glade (20.2460.04 mg NH4
+ g21 d21 and

20.0360.01 mg NO3
2 g21 d21).

The best predictors of in situ net N mineralization across all four

plots included both microbial and aboveground cover variables

(Table 3). The fungi-to-bacteria ratio was correlated negatively to

in situ net N mineralization in all final models (i.e., higher relative

bacterial abundance was correlated with higher rates of net

mineralization). Similarly, fungal abundance, bacterial abundance,

or both, were additionally included in final models. Cover

variables included in the models were downed coarse wood and

Lupinus (Glade crown), forbs (Moran crown), or shrubs (Glade

surface). Predictive power was low across all models (adjusted R2

ranged from 0.11 to 0.29).

The ratio of noise to variance (nugget/(nugget+sill)), as well as

the cross-validation parameter, indicated strong and significant

spatial models given the data (Table 4 and Figure 1). Calculated

spatial autocorrelation ranges varied from 1.5 to 13.8 m for

microbial lipid abundance, fungi-to-bacteria ratios, in situ net N

mineralization, total vegetative cover, and total non-vegetative

cover (Table 4) and R2 values were between 0.87 and 0.98. The

one exception to this was the calculation of spatial range for

microbial lipid abundance in the Moran surface plot, in which the

long calculated range (78.9 m) indicates all points were spatially

autocorrelated within this plot; notably, variance of the model,

though significant, was high (R2 = 0.56). The Glade crown fire plot

had higher range values across all variables (e.g., 13.8 m for in situ

N mineralization, compared to an average of 1.9 m across the

other 3 plots). Kriged maps of key variables highlight the longer

length scales in the Glade crown fire site (Figure 2). Patchiness at

sub-meter scales across some variables and plots indicates

substantial heterogeneity at grains finer than originally sampled

(2 m).

Discussion

Laboratory isotopic pool dilution at the crown fire plots

confirmed the general patterns of in situ N mineralization reported

by Turner et al. [37]. Although isotopic pool dilution was not

performed at the surface fire plots (because of cost constraints),

consistent differences across both approaches at the crown fire sites

is reassuring. In general, both resin-core methods and laboratory

isotopic pool dilution indicated that nitrification rates were higher

at the Moran crown fire site in year 2 compared to the Glade

crown fire plot. Higher nitrification at Moran is supported by

evidence of larger substrate (NH4
+) pool size for the nitrifier

community, and higher pH, both of which are commonly invoked

as mechanisms that induce nitrification following fire [17,53].

Moreover, high rates of nitrification two years following fire is

consistent with expected patterns of N cycling following severe fire

reviewed by Smithwick et al. [10]. Greater rates of microbial

immobilization of NH4
+ revealed by isotopic pool dilution

elucidate the potential reason that resin-core net N mineralization

rates were lowest at this site. Observed higher levels of microbial

lipid abundance and lower fungi-to-bacteria ratios may explain the

higher levels of microbial activity.

The inclusion of microbial lipid data into predictive models of

net N mineralization two years following severe fire (Table 3)

supports earlier work showing the importance of fungal and

bacterial composition and abundance for explaining post-fire

nutrient cycling [17,54]. In this study, the fungi-to-bacteria ratio

was negatively related to net N mineralization rates, which may

simply indicate the importance of total bacterial abundance [53] in

governing N cycling activity, although differences in C:N between

fungi and bacteria and their relative dominance cannot be

discounted [55]. Other factors such as pH and charcoal are

generally considered important for influencing post-fire N cycling

[41,56,57]. Soil pH ranged from 4.58 to 5.44 (average 4.960.2

(61 SE)), not significantly different than that in mature stands in

Table 2. Microbial characteristics (mean (61 SE), n = 81) of plots two years following the Moran and Glade crown and severe-
surface fires in the GYE. Assignment of lipids to microbial groups is explained in the text.

Glade-crown Moran-crown Glade-surface Moran-surface

Abundance (nmol) 205.25 (15.65) 374.19 (25.03) 363.90 (28.00) 301.73 (17.80)

Fungi/Bacteria 0.93 (0.06) 0.43 (0.03) 0.83 (0.06) 0.55 (0.03)

Gm+ 0.010 (0.001) 0.016 (0.001) 0.014 (0.001) 0.015 (0.001)

Gm- 0.020 (0.002) 0.048 (0.005) 0.049 (0.005) 0.040 (0.004)

i15/a15 1.04 (0.03) 1.12 (0.03) NA 1.28 (0.03)

doi:10.1371/journal.pone.0050597.t002

Table 3. Best predictors of total net nitrogen mineralization in the post-fire crown and severe-surface burn plots.

Glade-crown Moran-crown Glade-surface Moran-surface

2 Coarse Wood (%)*** + Forbs (%)* 2Shrub (%)**

2 Lupinus** 2 Gm2. 2 Bacteria** 2 Bacteria****

+ Fungi** + Fungi* + Fungi**

2 Fungi/Bacteria*** 2 Fungi/Bacteria** 2 Fungi/Bacteria** 2 Fungi/Bacteria**

Notes:+and – signs indicate the type of correlation and * represents statistically significant relationship at P = 0 ‘****’, P,0.001 ‘***’, P,0.01 ‘**’, P,0.05 ‘*’. Model with
best predictors is selected based on minimum AIC value. G and M refer to Glade and Moran sampling locations respectively. The following variables were used in
stepwise regression: Rock (%), Charred Litter (%), Fresh Litter (%), Exposed mineral soil (%), Coarse woody debris (%), Lupinus (%), Ceanothus (%), Forbs (%), Graminoids
(%), Shrubs (%), Pinus contorta (%), Non-vegetative cover (%), Vegetative cover (%), pH, Abundance, Fungi, Bacteria, Fungi/Bacteria, Gm+, Gm2.
doi:10.1371/journal.pone.0050597.t003
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the GYE (5.1, [41]) indicating that fire resulted in few differences

in soil pH at the plot level two years following fire. Charcoal was

not directly assessed in this study, although charred litter was

measured and has previously shown to be important in influencing

N cycling in the GYE [18,34]. However, neither pH nor charred

litter was selected in the final models.

Aboveground cover was shown previously by Turner et al. [34]

to influence net N mineralization rates and pools at individual

sampling locations, although the strength of these relationships

differed across years and among variables. Here we showed that at

the plot-level, Lupinus or Ceanothus, shrubs, forbs, and the percent of

coarse wood influence net N mineralization when microbial

variables are included in the analysis. This supports the

conclusions by Turner et al. [34] and others [45,58,59] that the

recovery of biotic and abiotic structure following fire may

influence post-fire soil N pools and rates. More specifically,

aboveground cover variables appear to be useful proxies of site

conditions, such as burn severity [45]. Cover conditions are easily

measured and applied in field and modeling approaches, especially

those that require intensive spatial sampling designs as required

here. Yet it is important to recognize that microbial transforma-

tions of soil nutrients are likely mediated by other, more

mechanistic variables that are only indirectly correlated with

aboveground cover.

Spatial structure of microbial communities and net N miner-

alization was found to be significant two years following fire. Using

semi-variograms, annual net N mineralization was not found to be

spatially structured during the 2002–3 incubation year by Turner

et al. [34]. However, by using a probabilistic spatial model and

cross-validation statistics, we were able to uncover spatial de-

pendence that ranged from 1.5 to 13.8 m across plots (Table 4;
Figure 2). Turner et al. also reported spatial dependence for

individual biotic and abiotic cover variables that varied from 2.0 to

22.9 m across variables and plots in 2002. Similarly, in this study,

the 5% and 95% quantile-based credible interval predicted ranges

of total vegetative cover to be between 0 and 26.1 m (Table 4),

which bounds the earlier results. On average, the predicted range

was comparable (1.5 to 9.9 m) to that found for cover variables in

Turner et al. in 2003 (1.6 to 4.5 m).

Congruence in aboveground and belowground patterns, espe-

cially those relating microbial characteristics to the nutrient cycling

processes they mediate, is a long-standing and key priority for

unraveling complex ecosystem dynamics [26,31,60,61]. Results

here indicated substantial congruence in the scale of patchiness

among key variables in both crown and severe surface fire plots

two years following fire. Range scales were generally ,5 m

indicating fine-scale spatial structuring in these post-fire environ-

ments. Notably, the Glade crown fire plot appeared to have

broader patterns (bigger patches, ,10–14 m) following fire, but

these range scales were also consistent across mineralization,

cover, and microbial variables. The fact that spatial structure was

similar among ecological variables is suggestive of coupling

between pattern (cover, microbial communities) and process

(nitrogen mineralization) in these burned plots. We caution

however that mean responses hide complex patterns among

individual variables and through time [34].

Figure 1. A representative (a) semivariogram, and (b) leave-one-out cross-validation exploring spatial autocorrelation of in situ net
N mineralization (mg N kg-soil21 yr21), where the dotted line is the 1:1 line and the solid line is the linear regression fit, and (c–f)
posterior distribution of parameters estimated from semivariogram. b is trend, Q is range parameter (range (unit: m) = 3Q), s2 is sill (unit:
(mg N kg-soil21 yr21)2), and t2 (unit: (mg N kg-soil21 yr21)2) is nugget. Blue lines at the bottom of the histogram indicate the tick marks at the actual
data values.
doi:10.1371/journal.pone.0050597.g001
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In previous studies, fine-scale patterns of microbial community

organization have varied at scales less than 15 cm [62] to scales

comparable to those observed in this study (,5 m, [63]).

Moreover, several studies have observed structural variance at

multiple scales [62,64,65], suggesting that factors affecting

microbial community structure and activity (environmental

factors, biotic cover, and topographical features) may operate

conjointly at several nested scales. Similarly, soil N dynamics have

been observed at scales as fine as 2 to 4 mm [66]. In grazed and

ungrazed grassland soils, variability of N availability was observed

,0.4 m [67]. In an even-aged Norway spruce (Picea abies) forest,

spatial dependence of N mineralization was 60–95% [65]. The

range of variability in soil nitrification has been found to be

between 74 cm under wheat cultivation and 10 cm under poplar

forests [68]. As with microbial patterning, spatial dependence of

nutrient availability has been attributed to patterns at broader

scales also, including the spacing of individual trees [68], litter

quality [69], and topography or soil type [70].

In this study, the probabilistic spatial models also resulted in

calculation of range distances that were less than the 2 m grain of

the sampling design, indicating substantial spatial structure at very

fine scales. Finer-scale patterns, for example enzymatic activity

[71], are likely critical for inferring mechanisms governing

microbial and nitrogen dynamics following fire. Model results

indicate some locations in which the predicted range was less than

the minimum sampling distance (discontinuities or ‘hot spots’ in

otherwise continuous gradients) that are suggestive of these finer

scale processes and/or the lack of data for continuous spatial

prediction. Exploring these patterns would complement the

increasing understanding of fire as a modifier of microbial

communities and abundance through both direct (e.g., soil heating

and oxidation) and indirect (e.g., microclimate, post-fire vegetation

dynamics) mechanisms [17,72]. At the same time, understanding

how these mechanisms scale to the plot-level, e.g., the focus of the

current study, is needed so as to increase predictive understanding

of fire on ecosystem function.

There are several important caveats that should be noted based

on the results of our study. First, sites were selected to represent

characteristic post-fire environments in the GYE, but because of

the necessity of spatially intensive sampling within plots, our sites

do not capture landscape-level variation in post-fire environments

in the GYE. Other studies have indicated substantial variation in

microbial community composition across landscape gradients such

as tree species composition [73]. Moreover, our study was

restricted to a single year and we are unable to make inferences

about annual or seasonal changes in microbial community

composition or abundance through time following fire. Chron-

osequence studies in the GYE that include microbial community

composition [41] indicate that microbial communities shift with

stage age and ecological succession. In all these microbial studies,

consideration of the choice of lipids used for characterizing the

microbial community must be weighed carefully, as signature

lipids for microbial biomarkers are known to be inconclusive and

to vary among methods. In this study we present individual lipid

signatures used in the analysis and characterize the microbial

community with several metrics, but future efforts should consider

Figure 2. Kriged maps of a–d) in situ net nitrogen mineralization rate (mg N kg-soil21 yr21), e–h) Fungi/Bacteria ratio, i–l) total
vegetative cover (%), and m–p) microbial lipid abundance (nmol) in the post-fire crown and severe-surface burn plots. Note:
discontinuities in mapped patterns reflect locations in which the range was predicted to be less than the minimum sampling distance, or that there
was not enough data for continuous spatial prediction.
doi:10.1371/journal.pone.0050597.g002
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alternative approaches (e.g., genetic), and alternative metrics for

comparison. In addition, we did not include analysis of spatial

patterns of other nutrients (e.g., P, Ca) or nitrogen cycling

pathways (e.g., organic N) that likely influence spatial patterns of

mineralization, N pools, and microbial communities, largely due

to the analytical costs of the spatially intensive sampling design.

Together with an absence of understanding of finer-scale

mechanisms, exclusion of these variables may explain the relatively

low amount of explained variance in the predictive models of net

N mineralization at the plot-level. Unraveling these complex and

multi-scalar spatial patterns remains challenging.

Conclusions
Spatial heterogeneity is a critical factor for understanding

behavior of macroorganisms and the structure of ecosystems [74].

Understanding complex spatio-temporal interactions in soil is

often required to explain and predict these ecosystem processes

[75,76], yet little is known about the scales at which microorgan-

isms are structured [19,31]. Understanding how microorganisms

self-organize in response to disturbance and how this organization

affects biogeochemical reactions [77] may help elucidate the

mechanisms governing post-disturbance function. In this study, we

observed congruent spatial structures (i.e., patchiness) of microbial,

cover, and N mineralization variables, suggestive of strong linkages

between pattern (microbial abundance, aboveground cover) and

process (N mineralization) in burned plots. Moreover, despite low

explained variance, microbial variables such as the ratio of fungal

to bacterial lipid biomarkers resulted in significant predictive

models of in situ net N mineralization. However, there was also

evidence that spatial patterns were multi-scalar (varying at scales

below the minimum sampling distance as well as between 2 and

10 m) and complex among fire plots and variables. This study

highlights the potential for developing spatially predictive models

of post-fire recovery. Particularly interesting might be studies that

compare changes in spatial structure prior to and following a large-

scale disturbance event, which may allow for a deeper un-

derstanding of the role of disturbance in structuring complex post-

fire succession. This may be especially important in heterogeneous

landscapes such as those created by fire in the Greater Yellowstone

Ecosystem which is expected to experience dramatic changes in

fire severity and frequency in coming decades.
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Table 4. Posterior parameter estimates (mean (5%, 95% CI)) of spatial models in the post-fire crown and severe-surface burn plots.
Live plant cover includes % Lupinus, % Ceonothus, % forbs, % graminoids, % shrubs.

Trend Range (m) Sill Nugget
Nugget/
(Nugget+Sill) R2

Microbial Lipid Abundance (nmol)

Glade-crown 204.3 (99.8, 272.9) 4.5 (0.0, 132.9) 10864 (7098, 20234) 7672.2 (3137.4, 15153.3) 0.79 (0.24, 0.99) 0.94

Moran-crown 373.3 (314.8, 423.4) 1.5 (0.0, 100.5) 29362 (20854, 50591) 19549.9 (6444.1, 39124.7) 0.73 (0.16, 0.98) 0.98

Glade-surface 363.5 (156.6, 574.3) 3.0 (0.0, 142.2) 39545 (24616, 71824) 27732.2 (10019.0, 53868.1) 0.80 (0.23, 0.99) 0.93

Moran-surface 313.5 (145.8, 495.4) 78.9 (7.8, 145.2) 20413 (13262, 35273) 16429.6 (10235.0, 22418.8) 0.83 (0.45, 0.99) 0.56

Fungi-to-Bacteria Ratio

Glade-crown 0.9 (0.7, 1.2) 10.5 (1.8, 27.6) 0.14 (0.10, 0.22) 0.10 (0.05, 0.15) 0.78 (0.28, 0.99) 0.89

Moran-crown 0.4 (0.4, 0.5) 3.6 (0.3, 9.6) 0.03 (0.02, 0.05) 0.02 (0.01, 0.03) 0.72 (0.17, 0.98) 0.97

Glade-surface 0.8 (0.7, 0.9) 1.5 (0.0, 6.0) 0.14 (0.10, 0.22) 0.09 (0.03, 0.14) 0.72 (0.16, 0.98) 0.98

Moran-surface 0.5 (0.5, 0.6) 5.1 (1.2, 21.6) 0.03 (0.02, 0.05) 0.02 (0.01, 0.03) 0.75 (0.19, 0.98) 0.94

In situ net N mineralization (mg N kg-soil21 yr21)

Glade-crown 17.1 (-3.7, 36.1) 13.8 (6.9, 27.0) 1101 (750, 1869) 686.2 (286.1, 1018.0) 0.65 (0.18, 0.97) 0.87

Moran-crown 4.5 (-4.5, 13.5) 2.4 (0.0, 13.8) 792 (562, 1254) 540.6 (190.8, 832.7) 0.74 (0.17, 0.98) 0.97

Glade-surface 17.1 (10.7, 23.8) 1.5 (0.0, 10.5) 558 (402, 866) 379.8 (129.1, 573.7) 0.73 (0.16, 0.98) 0.98

Moran-surface 22.1 (16.8, 27.2) 1.8 (0.0, 6.0) 358 (257, 561) 240.4 (80.6, 354.4) 0.72 (0.16, 0.98) 0.98

Total live plant cover (%)

Glade-crown 29.5 (17.5, 13.3) 9.9 (4.2, 26.1) 413 (290, 669) 282.38 (117.16, 419.5) 0.73 (0.21, 0.98) 0.89

Moran-crown 23.6 (19.3, 28.0) 1.5 (0.0, 4.8) 285 (206, 443) 190.96 (62.18, 277.32) 0.72 (0.15, 0.98) 0.98

Glade-surface 30.2 (25.9, 34.3) 1.8 (0.0, 9.9) 226 (163.0, 351) 153.97 (53.27, 232.56) 0.74 (0.17, 0.98) 0.98

Moran-surface 24.4 (17.5, 30.2) 4.2 (0.3, 23.1) 273 (196, 422) 195.02 (80.41, 299.53) 0.77 (0.22, 0.99) 0.95

Total detrital+abiotic cover (%)

Glade-crown 70.4 (60.5, 82.1) 9.9 (4.2, 26.1) 413 (290, 669) 282.4 (117.1, 419.5) 0.73 (0.21, 0.98) 0.89

Moran-crown 76.3 (71.9, 80.6) 1.5 (0.0, 4.8) 285 (206, 443) 191.0 (62.2, 277.3) 0.72 (0.15, 0.98) 0.98

Glade-surface 69.8 (65.6, 74.0) 1.8 (0.0, 9.9) 226 (163, 351) 154.0 (53.3, 232.6) 0.74 (0.17, 0.98) 0.98

Moran-surface 75.5 (69.5, 82.2) 4.2 (0.3, 23.1) 273 (196, 422) 195.0 (80.4, 299.5) 0.77 (0.22, 0.99) 0.95

Detrital and abiotic cover includes % rock, charred litter, fresh litter, coarse woody debris, and mineral soil.
Note: Adjusted cross-validation R2 is reported. Units of nugget and sill are squared units of the corresponding variables.
doi:10.1371/journal.pone.0050597.t004
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