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Abstract: Pattern baldness has been associated with the male hormone, dihydrotestosterone. In this
study, we tried to determine how the overall metabolic pathways of pattern baldness differ in patients
and in normal controls. Our study aimed to identify alterations in hair metabolomic profiles in order
to identify possible markers of pattern baldness according to sex. Untargeted metabolomics profiling
in pattern baldness patients and control subjects was conducted using ultra-performance liquid
chromatography-mass spectrometry. To identify significantly altered metabolic pathways, partial
least squares discriminant analysis was performed. Our analysis indicated differences in steroid
biosynthesis pathway in both males and females. However, there was a remarkable difference in the
androgen metabolic pathway in males, and the estrogen metabolic and arachidonic acid pathways
in females. For the first time, we were able to confirm the metabolic pathway in pattern baldness
patients using hair samples. Our finding improves understanding of pattern baldness and highlights
the need to link pattern baldness and sex-related differences.

Keywords: hair metabolomics; ultra-performance liquid chromatography-mass spectrometry; pat-
tern baldness; female; male

1. Introduction

Pattern baldness is a well-known condition that tends to increase in male hormone
secretion [1]. It is suggested that increased formation and exposure of dihydrotestosterone
to hair follicles is a possible causative factor of male pattern baldness [2]. The hair growth
cycle progresses gradually through the anagen, catagen, and telogen phases [3,4]. Baldness
occurs as this cycle rate gradually decreases, and the hair follicles gradually become
smaller [5]. Pattern baldness involves a clear progression from the hairline and scalp
vertex parts [6–8], with decreasing central scalp hair density and gradual thinning of hair.
Pattern baldness is of great interest as it can have psychosocial effects in early and severe
cases [9]. Female pattern baldness has a postpubescent onset with variable progression
in rapidity [10]. Clinical presentation of female pattern baldness differs from that of
male pattern baldness [11]. The pathogenesis of female pattern baldness is not as easily
recognizable as that in males and its diagnosis is difficult [12]. The causes of female pattern
baldness are not as clear as male pattern baldness. Female pattern baldness is probably a
genetically determined multifactorial trait and both androgen-dependent and -independent
mechanisms may contribute to the phenotype [13]. In addition, the serum testosterone
level in female pattern baldness patients is typically normal [14–16]. It is significant to note
that hyperandrogenemia does not necessarily lead to female pattern baldness [17].

Metabolomics is the scientific approach of comprehensively analyzing metabolites
and metabolic pathways in a biological system [18,19] and metabolomics data can be used
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to detect thousands of features. However, extracting meaningful results and interpretation
of metabolomics data is challenging. To overcome dimensionality problems, multivariate
statistical analyses are required to arrive at biologically relevant conclusions from a given
metabolomics dataset. Untargeted metabolic approaches have focused on collecting data
from as many species as possible and reviewing known or unknown metabolic changes [20].
Then, these approaches are used to confirm altered pathways and search for possible
biomarkers. Therefore, in this study, we examined whether there is a correlation between
metabolic pathways and pattern baldness patients and healthy controls according to sex
using untargeted metabolomics.

We conducted experiments using hair samples that are non-invasive and easy to
collect. These samples can be stored for long periods of time before analysis without deteri-
oration [21]. Hair analysis can be used to assess current exposure and past episodes related
to health and nutrition, even if the action has already been stopped [22]. In particular, hair
analysis can be used to construct basic biological matrices for drug testing in forensic toxi-
cology [23]. Till now, research on endogenous compounds in hair has mainly focused on
targeting methods for specific compounds such as testosterone, dihydrotestosterone [24,25],
cholesterol [26], or cortisol [27].

In this study, hair metabolomics profiling was conducted in pattern baldness patients
and normal controls in males and females because of the difference in mechanism of hair
loss between the sexes. We aimed to detect altered biochemical pathways that clearly distin-
guished patients and controls and to investigate the possibility of performing metabolomics
using hair samples.

2. Results
2.1. Metabolic Patterns Detected in Hair Samples of Pattern Baldness Patients

In male groups, the score plots of the partial least squares discriminant analysis (PLS-
DA) were used to separate patients and normal controls in positive mode. The value
of multiple correlation coefficient (R2) is an index showing how much data variation is
explained by the model, and the value of cross-validated R2 (Q2) is an index showing the
prediction diagram of the model when a new variable is applied. We calculated R2 and Q2
to check the suitability and predictability of the model, by setting the missing data value at
run time of the model to 60%. The score plot of PLS-DA with positive mode showed an
accuracy of 98%, R2 of 0.93 and Q2 of 0.76 (Figure 1a). In negative mode with male groups,
score plots were also clearly separated. The accuracy of PLS-DA was 96.7%, that of R2 was
0.96, and that of Q2 was 0.78 (Figure 1b).

Female groups were also clearly separated in ionization mode. The score plots of
PLS-DA in positive mode showed an accuracy of 97.7%, those of R2 showed an accuracy of
0.98, and those of Q2 showed an accuracy of 0.77 (Figure 1c). In negative mode, PLS-DA
score plots showed an accuracy of 97%, those of R2 showed an accuracy of 0.96, and those
of Q2 showed an accuracy of 0.78 (Figure 1d).

Cross validation method was applied 10-fold CV. We also performed the permutation
test to confirm whether the PLS-DA data were statistically significant. We used the ratio of
the sum of the squares between and the sum of squares within (B/W-ratio). As shown in
Figure 2, the blue bar shows the original samples. The farther right it is to the position of
the red arrow, the more significant is the separation between groups [28].

On the basis of variable importance in projection (VIP) values and t-test of the metabo-
lites of the PLS-DA model, possible biomarkers that could distinguish patients and normal
controls were selected as shown in Table 1 with male groups and in Table 2 with female
groups. In male groups, 42 metabolites met these criteria (positive mode: 39 of 1171 metabo-
lites, negative mode: two of 109 metabolites) with VIP > 1 and p < 0.05. Whereas in female
groups, 26 metabolites met these criteria (positive mode: 20 of 260 metabolites, negative
mode: 6 of 109 metabolites). We corrected all the missing metabolite entries and obtained a
total of 1018 values (626 values in male groups and 392 values in female groups) with zero.
As shown in Tables 1 and 2, we calculated fold-change (FC) values representing the differ-
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ence between patients and controls. We calculated the FC values using the average of each
metabolite peak area: (average values obtained from pattern baldness patients)/(average
values obtained from normal controls). If the FC value was greater than 1, the metabolites
were upregulated in patient groups.
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Figure 1. Partial least squares discriminant analysis (PLS-DA) score plots showing discriminant
different patterns in controls (red circles) and pattern baldness patients (green circles). (a) PLS-DA
in positive mode with male groups, (b) PLS-DA in negative mode with male groups, (c) PLS-DA in
positive mode with female groups, and (d) PLS-DA in negative mode with female groups.
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Figure 2. Permutation test to validate partial least squares discriminant analysis score. Permutation numbers were set to
100. X-axis showed the permuted class labels and Y-axis shows optimal number of components by cross validation in (a)
male groups and (b) female groups.
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Table 1. Differentially regulated metabolites in patients with pattern baldness and normal controls in male groups.

Metabolites Related Pathways VIP p-Value FC Regulation

L-Ornithine Arginine and proline
metabolism 1.1985 0.003 1.5919753 Up

Cholesterol Steroid hormone biosynthesis 1.0319 0.004 2.0443951 Up
Progesterone Steroid hormone biosynthesis 1.8311 <0.0001 10.00754 Up
Androsterone Steroid hormone biosynthesis 1.0189 <0.0001 23.17902 Up

Prostaglandin F2alpha Arachidonic acid metabolism 3.0556 0.001 0.2634053 Down
Tryptophan Unknown 2.2307 <0.0001 2.4243554 Up

Estradiol Steroid hormone biosynthesis 3.8042 <0.0001 9.6410812 Up
N-Acetylserotonin Tyrptophan metabolism 2.237 <0.0001 15.45131 Up

5-Aminopentanamide Unknown 1.2417 <0.0001 48.086484 Up
Unknown (RT = 5.21) Unknown 1.0823 0.023 3.6537206 Up

Lanosterol Steroid biosynthesis 1.1285 0.038 0.488275 Down
Pregnenolone Steroid hormone biosynthesis 2.3772 0.001 0.4563306 Down

2-Methylmaleate Unknown 1.2134 <0.0001 2.6569257 Up

L-Cystathionine Cystein and methionine
metabolism 1.2592 <0.0001 0.346639 Down

3-Oxododecanoic acid Unknown 1.828 <0.0001 8.1830723 Up
Nonane-4,6-dione Unknown 1.4105 0.015 0.0427089 Down
Dodecanoic acid Fatty acid biosynthesis 1.6129 0.005 27.655866 Up

L-Palmitoylcarnitine Fatty acid degradation 4.6032 <0.0001 15.272926 Up
Dopamine Tyrosine metabolism 1.4983 <0.0001 28.58511 Up

5alpha-Dihydrotestosterone Steroid hormone biosynthesis 4.0064 0.004 12.736311 Up
Diethyl 2-methyl-3-oxosuccinate Unknown 1.4048 <0.0001 16.252694 Up
17alpha-Hydroxypregnenolone Steroid hormone biosynthesis 11.727 <0.0001 5.4864425 Up

Adrenosterone Steroid hormone biosynthesis 2.4995 <0.0001 2.4143371 Up
17alpha,20alpha-

Dihydroxycholesterol Steroid hormone biosynthesis 1.6553 0.002 0.1035019 Down

L-Metanephrine Tyrosine metabolism 1.2238 <0.0001 211.3841 Up
Tetradecanoic acid Fatty acid biosynthesis 1.126 <0.0001 11.466312 Up

p-Cymene Unknown 7.1135 <0.0001 24.273712 Up
Unknown (RT = 3.76) Unknown 1.264 0.011 2.7952495 Up
Unknown (RT = 4.15) Unknown 1.7684 <0.0001 0.4185244 Down

Docosanoic acid Unknown 1.4008 <0.0001 6.895777 Up
Humulene Unknown 1.2381 <0.0001 24.509825 Up

beta-Citronellol Unknown 1.2889 <0.0001 2.2233273 Up
Thymol Unknown 1.2472 0.02 6.2627942 Up

Tridecane Unknown 1.4906 0.013 5.6917082 Up
4-Propylphenol Unknown 1.2452 <0.0001 0.3275366 Down

Tetraethylenepentamine Unknown 1.6745 <0.0001 8.9096476 Up
Traumatic acid Unknown 4.0178 0.007 3.5804527 Up

Unknown (RT = 5.43) Unknown 2.2358 <0.0001 339.30032 Up
Neocnidilide Unknown 1.4039 0.002 1.4515461 Up
Testosterone Steroid hormone biosynthesis 4.334 0.002 0.4662096 Down

7alpha-Hydroxytestosterone Unknown 2.3012 <0.0001 1.8760545 Up
5beta-Dihydrotestosterone Steroid hormone biosynthesis 2.5426 0.01 6.9586924 Up

The colored boxes on the right indicate the relative concentrations of the correspond-
ing metabolite in each group. We used MetaboAnalyst version 5.0 software to confirm
top 20 scores of variable importance in projection (VIP) values visually (Figure 3). We
could visually confirm the alterations of metabolites divided in each row, separated into
upregulated or downregulated metabolites.

2.2. Metabolic Pathway Analysis

Among the detected compounds, pathway analysis was conducted with 38 metabolites
in male groups and 24 metabolites in female groups using MetaboAnalyst 5.0 library. As
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shown in Figure 4a, pathway analysis was conducted in male groups to confirm the most
differed metabolic pathways between male pattern baldness patients and male controls.
As shown in Figure 4b, similarly, pathway analysis was conducted and used to identify
the most differed metabolic pathways between female pattern baldness patients and
female controls.

Table 2. Differentially regulated metabolites in patients with pattern baldness and normal controls in female groups.

Metabolites Related Pathways VIP p Value FC Regulation

L-Ornithine Arginine biosynthesis 1.3668 <0.0001 11.910219 Up
Thymine Pyrimidine metabolism 1.9371 0.025 15.622769 Up

Progesterone Steroid hormone biosynthesis 1.1846 <0.0001 17.966704 Up
N1-Acetylspermidine Unknown 1.8138 <0.0001 5.4335943 Up
Prostaglandin F2alpha Arachidonic acid metabolism 1.0325 0.045 0.5604433 Down

Estrone Steroid hormone biosynthesis 1.7482 <0.0001 10.18276 Up
Octadecanal Unknown 1.14 0.001 4.7250936 Up

Pregnenolone Steroid hormone biosynthesis 9.4143 <0.0001 6.1234272 Up

L-Cystathionine Glycine, serine and threonine
metabolism 1.2179 <0.0001 0.3661377 Down

Unknown (RT = 5.22) Unknown 1.1014 <0.0001 7.8823964 Up
5beta-Androstane-3,17-dione Steroid hormone biosynthesis 2.7125 <0.0001 3.8285677 Up
7alpha-Hydroxytestosterone Unknown 1.273 <0.0001 0.3856094 Down

Tetradecanoic acid Fatty acid biosynthesis 6.6464 <0.0001 6.082907 Up
Unknown (RT = 4.48) Unknown 1.6103 0.002 1.4591549 Up

Tetracosanoic acid Unknown 4.0729 0.007 0.6894739 Down
Fucosterol Unknown 4.3796 0.011 0.7134959 Down
Ribalinium Unknown 1.108 <0.0001 4.9206557 Up
Teprenone Unknown 1.5799 <0.0001 9.3409894 Up
Episterol Steroid biosynthesis 1.3281 0.043 0.4078797 Down

Estriol Steroid hormone biosynthesis 2.5591 <0.0001 0.5797319 Down
Ceramide Sphingolipid metabolism 1.2892 0.01 9.651607 Up
Estradiol Steroid hormone biosynthesis 5.5694 0.04 0.8441624 Down

Leukotriene B4 Arachidonic acid metabolism 1.2626 <0.0001 22.611004 Up
11-Deoxycorticosterone Steroid hormone biosynthesis 3.5377 <0.0001 18.558709 Up

2-OH-Estradiol Steroid hormone biosynthesis 2.3525 0.02 13.21151 Up
20-HETE Arachidonic acid metabolism 2.0165 0.02 1.3674874 Up
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Figure 4. Differentiated metabolic pathways between patient groups and controls can be visually confirmed. Dark red
indicates that the pathways were significantly different, with red circles indicating more significance than yellow circles.
Light yellow means a less significant than yellow. The Y-axis represents the –log p values, whereas the X-axis represents the
pathway impact values. (a) Pathway analysis based on 42 metabolites in male groups from an untargeted analysis and
(b) pathway analysis based on 26 metabolites in female groups from an untargeted analysis.

3. Discussion

In this study, untargeted metabolomics analysis was conducted to identify multiple
differentially altered pathways in pattern baldness patients and controls using UPLC-MS.
In addition, we divided subjects according to sex to determine the metabolic pathways that
differ in pattern baldness. Our novel metabolomics approach employed hair samples from
patients with pattern baldness for the first time. The most significantly altered pathway
was steroid hormone biosynthesis in both males and females; female groups showed that
arachidonic acid metabolism was altered between patients and control groups.

In male groups, steroid hormone biosynthesis and androgen metabolism were sig-
nificantly altered (Figure 5a). To show a more accurate correlation between patients and
control groups, Figure 5b presents relative quantitation using cytoscape. As androgens are
correlated with male pattern baldness, especially testosterone and dihydrotestosterone,
their analysis is useful for pattern baldness. We have conducted previous studies on hair
loss with respect to genetic factors such as androgens [24,25,29]. This study showed altered
levels of downregulated testosterone levels and upregulated dihydrotestosterone levels in
hair samples between pattern baldness patients and controls in males. High levels of dihy-
drotestosterone are known to occur in patients with hair loss [30]. However, progesterone
receptor expression does not significantly increase or decrease in in mesenchymal cells in
male pattern baldness [31].

In addition to the well-known steroid pathways, we analyzed whether neurotrans-
mitters exhibited significant changes in these groups. Upregulation of N-acetylserotonin,
dopamine, metanephrine, and tryptophan were observed in different metabolic pathways
between male patients and male controls. This may be due to the stress caused by hair
loss [32]. Male pattern baldness is known to cause significant psychosocial effects in pa-
tients [33]. However, more research is needed because the direct quantitative analysis of
hair loss related to psychosocial effects has not yet been studied.

In female groups, steroid metabolism was also altered between patients and controls.
However, unlike males, it was confirmed that there were significant changes in estrogen
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hormones and their metabolites in females (Figure 6). Estrogen plays an important role in
retaining hair strength by activating hair growth factors and inhibiting hair loss factors [34].
It also reduces the amount of 5α-dihydrotestosterone [35]. Thus, estrogen helps to maintain
the hair status in women with hair loss [36]. The ratio of estradiol and free testosterone and
the ratio of estradiol to dehydroepiandrosterone sulfate were significantly lower in female
pattern baldness patients [37]. Various therapeutics have been employed for the treatment
of female pattern hair loss but treatment outcomes are not always satisfactory [38]. There
are also studies confirming the efficacy of estradiol as a new treatment for female hair
loss [39]. However, there are few studies related to female pattern baldness; therefore, more
research is required.
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We found that arachidonic acid metabolism differed between patients and control
groups in females. Leukotriene B4 and 20-hydroxyeicosatetraenoic acid (20-HETE) were
found to be higher in female patients. Arachidonic acid metabolism is correlated with
hair growth and plays a role in promotion of hair growth by increasing the expression
of growth factors in human dermal papilla cells and enhancing follicle proliferation [40].
20-HETE has a wide range of effects on the vascular system, including the regulation of
blood vessels. However, since leukotriene B4 has not been studied with relation to hair
loss, further research is needed.

Prostaglandin F2α was altered in both males and females and was lower in patient
groups. Prostaglandin F2α and its products promote hair growth in the anagen stage
and are involved in initiating hair regrowth [41]. Latanoprost (analogue of prostaglandin
F2α), which is used for the treatment of glaucoma and ocular hypertension, stimulates
hair growth in pattern baldness with topical daily application for five months [42]. We
confirmed it to be downregulated in both male and female patients. This suggests that there
is an association between a decrease in prostaglandin F2α levels and hair loss, which is not
sex-related. However, accurate quantitative analysis is required for detailed pathogenesis
of pattern baldness.

In addition, we found that ornithine was significantly altered in both male and female
groups and was upregulated in both patient groups. Ornithine is known to be involved in
the biosynthesis of polyamines and cell proliferation. Ornithine decarboxylase inhibitor
prevents hair loss and partially normalizes skin histology [43]. In particular, ornithine
decarboxylase, a key enzyme in the synthesis of polyamines, is expressed in the vicinity
of the hair follicle bulge [44]. Therefore, we conducted analysis of polyamines, which
are biosynthesized via ornithine, and their relation to different types of hair loss such as
androgenic alopecia and alopecia areata [45]. We also conducted polyamine profiling of
different scalp regions [46].

We confirmed that well-known metabolic pathways such as steroid biosynthesis were
altered between pattern baldness patients and normal controls. However, the differences
in androgens were remarkable in males, and differences in estrogen hormones were clear
in females. In addition, in female groups, arachidonic acid metabolism pathways, which
are related to inflammation, were altered. We also confirmed that the changes in ornithine
levels were common to males and females. However, a comparative study of subjects of
different races and a larger cohort is needed for a complete understanding of the pathways
involved in baldness pattern. Though validating biomarkers were not used in this study,
the results of our study can be used to identify possible markers. In the future, we plan to
conduct quantitative analysis on various metabolites that differed significantly in this study.

In conclusion, we offer a study of the extensive metabolic alterations associated with
pattern baldness according to sex. Further, our study suggests that obtaining hair samples
from subjects is non-invasive and easy and can be used to perform metabolomics study of
pattern baldness. We demonstrated that pattern baldness was related to steroid hormone
biosynthesis in both sexes. However, androgen metabolism was found to be significantly
altered in males, whereas the estrogen metabolism was found to be significantly altered in
females. In addition, it was confirmed that metabolic pathways of arachidonic acid were
significantly altered in females. Thus, we confirmed that various metabolic pathways are
involved in the cause of pattern baldness and the pathogenesis of hair loss differs according
to sex, suggesting that further studies on the correlation between pattern baldness and
various metabolites according to sex are needed.

4. Materials and Methods
4.1. Patients

Untargeted profiling was conducted using 140 human hair samples, i.e., male pattern
baldness patients (n = 40, aged 10 to 19 years, mean 15.9) and female pattern baldness
patients (n = 40, aged 15 to 44 years, mean 27.7), male controls (n = 30, aged 20 to 26 years,
mean 22.1), and female controls (n = 30, aged 21 to 43 years, mean 30.1). Exclusion criteria
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included the presence of hormone-related disease other than pattern baldness or severe
inflammatory disease. The inclusion criteria enabled the selection of pattern baldness who
did not meet the exclusion criteria. Controls did not have any known disease and did not
take any medication.

4.2. Hair Sample Collection

Hair samples were collected from scalp hair as close to the scalp as possible with
scissors. These hair samples were obtained from subjects at Kyung Hee University at
Gangdong. Thin and short miniaturized hair of pattern baldness patients were acquired.
The collected hair included normal terminal hair that were thinner than the normal. Hair
samples were stored at room temperature until analysis. The study was approved by the
Ethics Committee of the Kyung Hee University Hospital at Gangdong (IRB No. 2007-
03-004). Written informed consent was acquired from all participants prior to sample
collection, and consent was acquired from a parent or legal guardian prior to participation
by minors in this study.

4.3. Chemicals and Materials

All chemicals we used were obtained from Sigma Aldrich (St. Louis, MO, USA). High
performance liquid chromatography grade isopropyl alcohol, methanol, and acetonitrile
were obtained from Burdick & Jackson (Muskegon, MI, USA). Water was purified using
Millipore Milli-Q Water Purification System (Bedford, MA, USA). Homogenization of hair
samples was performed using TissueLyser from Qiagen (West Sussex, UK).

4.4. Sample Preparation

Hair samples were cleaned with water and isopropyl alcohol and dried at 60 ◦C. After
drying, the samples were pulverized and extracted using methanol at 40 ◦C. Before analysis,
the samples were centrifuged using Ultrafree-MC-VV centrifugal filters (Burlington, MA,
USA) at 1100× g for 5 min.

In order to validate system stability and repeatability, pooled quality control (QC)
samples were prepared by mixing equal amounts of samples. To ensure system stability,
10 QC samples were injected prior to analysis, and solvent blank and QC samples were
injected after every 10 sample injections to verify system reproducibility.

4.5. Experimental Conditions

The experimental conditions were the same as those previously established [47,48].
Table 3 shows detailed information of experimental conditions used. The data from these
instruments were collected using MassLynx 4.1 software from Waters (Milford, MA, USA).

4.6. Statistical Analysis

Statistical analysis was performed as described previously [47,48]. Retention time
and m/z were calculated using MassLynx 4.1 software. Raw data were collected and
processed with baseline correction, scaling, peak alignment, and matrix manipulation
using MassLynx. Chromatographic peaks, ion intensity identification, and data matrix
constriction were also analyzed using MassLynx. Subsequently, MassTRIX was used to
search m/z values of possible markers with a maximum error of 0.05 Da. The data of divided
IDs and compounds were attached to other data spreadsheets. Accurate mass queries were
raised in compound databases such as Metlin, Human Metabolome Database, PubChem,
ChemSpider. Fragmentation patterns were found in spectral databases such as MassBank
and NIST2014 for structural identification with molecular formulas. MetaboAnalyst 5.0
software (McGill University, Montréal, QC, Canada) was used to perform PLS-DA analysis.
Candidate markers were obtained with the conditions of VIP > 1, pathway search results,
and p < 0.05. Student’s t-test was performed using SPSS Statistics 18 software (IBM,
Armonk, NY, USA). p-values were corrected using the Benjamini and Hochberg false
discovery rate adjustment.
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Table 3. Liquid chromatography-mass spectrometry instrumental conditions.

LC Condition

Instrument ACQUITY™ ultra-performance liquid chromatography
Column ACQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 µm)

Column Temperature 40 ◦C
Sampler Temperature 4 ◦C

Injection Volume 5 µL
Flow Rate 0.35 mL/min

Mobile Phase A: 0.1% formic acid water
B: 0.1% formic acid acetonitrile

Gradient System Time (min) %A %B
0 95 5
3 50 50
10 5 95

11.5 5 95
12 95 5
14 95 5

MS Condition

Instrument Q-Time of flight Premier™ quadrupole/
time-of-flight hybrid mass spectrometer

Scan Type Full scan (m/z range: 50–1200)
Cone Voltage 2.5 kV

Capillary
Temperature 120 ◦C

Desolvation
Temperature 350 ◦C

Cone Gas Flow 30 L/h
Capillary Voltage 2.5 kV

Desolvation Gas Flow 600 L/h
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