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A direct data domain deterministic approach utilizing a
nonuniform array to adaptively estimate the signal
strength of an incoming signal in the presence of strong
jammers, clutter, and thermal noise is presented. This
method is based on choosing a weighted difference of
neighboring antenna outputs, based on the direction of
arrival of the signal of interest, in such a way that only the
unwanted components remain. These unwanted signals
are then nulled by adaptive weights. These weights are
then used to estimate the signal strength for a set of
sampling time instants. This approach is suited for a
highly changing environment, particularly in the presence
of blinking jammers and where clutter characteristics
change rapidly, provided the signal of interest does not
change significantly during the observation interval. Two
main deterministic approaches are presented—one based
on the solution of a generalized eigenvalue problem, the
other based on the solution of a set of linear equations
utilizing the conjugate gradient method. These methods
are applied to nonuniform as well as uniform 2D arrays,
and the results are compared. r 1998 Academic Press

I. INTRODUCTION

Consider an array of antenna elements placed in a
plane and not necessarily uniformly spaced. Further,
narrowband signals consisting of a signal of interest,
jammers, and multipath, with a center frequency fs,
are assumed to impinge on this array. The signal we
are interested in is assumed to arrive from a known
direction with respect to the axes. This paper deals
with the estimation of signal amplitude in the pres-

ence of jammer, noise, and multipath (clutter) sig-
nals. The signal is to be extracted from the measured
voltages at the antenna elements of a nonuniform
array of antennas placed in various configurations.

The approach followed is that of the deterministic
least squares as in [1,2]. This work then is a continua-
tion of the ideas presented in [2]. Whereas in [2] uniform
linear arrays were discussed, the work presented here is
mainly concerned with nonuniform arrays in a plane.

Section II will deal with the models used for the
signal, jammer, clutter, and noise. Also the configura-
tion of the antenna elements shall be made clear.
Section III deals with the actual approach followed
in order to estimate the signal parameter of interest.
Section IV explains the eigenvalue approach to
signal parameter estimation. In Section V we pre-
sent a few examples for which these approaches have
been used and the results are discussed therein.
Finally we conclude with Section VI.

II. SIGNAL MODEL

The signal of interest, SOI, has a phasor represen-
tation of the form

S 5 0S 0e jus. (1)

Here, S is the complex amplitude of the SOI, 0S 0 is
the magnitude of the same, and us is the phase. It is
assumed that the signal is constant during the
observation interval, as a function of time of interest.

There are several jammers assumed to be imping-
ing on the array, and each is of the form

Jammer 5 J [1 1 m sin (2pfmt 1 fm )]

3 sin (2pfct 1 fc ). (2)
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The above form of the jammer signals is that of an
amplitude modulated signal, with the carrier fre-
quency equal to that of the SOI, a modulating
frequency of fm, and a modulating index m. Further-
more each of the jammer signals, of amplitude J, is
assumed to arrive at the array from a direction
different from that of the SOI, with t being the time
variable.

In addition to the above, there are clutter signals
coming in at various angles to the array. We have
modeled the clutter contribution as a number of
amplitude modulated waves, identical to the jammer
model elucidated above, and whose amplitudes and
phases are sampled from a uniform distribution.
Thermal noise contribution exists at each antenna
element and is modeled as a real quantity, sampled
from a uniform distribution between 0 and 1, and a
phase, again sampled from a uniform distribution
between 0 and 2p.

Thus the net signal received at each antenna
element at a particular instant of time is of the form

NetSignal 5 SOI 1 Jammer

1 Clutter 1 ThermalNoise. (3)

Antenna Configuration
We are basically interested in four kinds of configu-

rations. Each of these is an arrangement of antenna
elements in a plane. The four different arrangements
we have used are as follows:

● A nonuniform array placed in the x-y plane
(Fig. 1).

● A circular array (Fig. 2).
● Asinusoidally spatially modulated array (Fig. 3).
● A hexagonal array (Fig. 4).

In each of the above cases the distance between
neighbouring antenna elements is chosen to be less
than half a wavelength corresponding to the fre-
quency of the SOI.

III. DETERMINISTIC DIRECT DATA DOMAIN
APPROACH

1. Forward Method
The basic idea behind this approach has been

explained in [1]. What follows is an extension of the
same to our case of nonuniform as well as uniform
2-D arrays in a plane.

Consider N antenna elements placed in the x-y
plane at locations (xi, yi), i 5 1, 2, . . . , N. The SOI is

FIG. 1. Nonuniform array in the plane.

FIG. 2. Circular array.

FIG. 3. Sinusoidal array.
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assumed to arrive at the array from a known direc-
tion cs with respect to the x-axis. The signal strength
is unknown and is the parameter to be estimated, in
the presence of the jammer, clutter, and noise. The
directions of arrival of the jammer and clutter are
unknown but they are assumed to be different from
that of the SOI. The amplitudes of the jammer and
clutter are assumed unknown.

Let vi
p denote the net output voltage of the ith

antenna element at the pth sampling instant and let
0s 0e jus denote the incoming signal, where 0s 0 denotes
the magnitude, and us, the phase. ni

p is the term
accounting for the jammer, clutter and thermal noise
contribution at the ith antenna element, at the pth
instant of time. Thus we have

vi
p 5 zi 0s 0e jus 1 ni

p (4)

zi 5 e j 52p[xi sin cs1yi cos cs ]6/l. (5)

The z’s in the above equation indicate the contribu-
tion due to the progression of the signal phase front
across the array elements. l is the wavelength
corresponding to the frequency of the SOI. cs is the
angle of arrival of the SOI with respect to the x-axis.
(xi, yi) indicate the coordinates of the ith antenna
element in the plane.

Now, consider the following weighted difference
between the voltages induced in two particular an-
tenna elements, j and ( j 1 1), at the same sampling
instant, p:

vj
p

zj
2

vj11
p

zj11
. (6)

The above weighted difference does not contain

any contribution due to the SOI and is only a
weighted difference of the unwanted components in
the voltages at the two elements. In light of the
above fact consider the following system of equa-
tions:
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In the above system of equations, the first row is a
constraint equation on the set of weights, wi. This
fixes the gain of the array along the direction cs. It is
seen in the above that for a set of M weights, we need
M time snapshots of at least M antenna voltages.
This is so that we have at least M equations to solve
for in M variables.

Once the weights are solved for by using the above
set of equations, the signal strength can be esti-
mated from

s̃ 5
1

N o
i51

N

o
p51

P vi
p

zi
wp, (8)

where N is the total number of antenna elements, P
is the total number of time samples utilized in
forming the system matrix above, and wp are the set
of adaptive weights.

To solve the above system of equations efficiently,
we use the conjugate gradient method, as noted in
[1]. For the solution of [A ][W ] 5 [Y ], this method
starts with an initial guess, [W ]0, and defines

R0 5 Y 2 AW0 (9)

P0 5 G0 5 A*R0. (10)

A* denotes the adjoint operator for A and is defined
by

(Au, v) 5 (u, A*v). (11)

FIG. 4. Hexagonal array.
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For i 5 0, 1, 2, . . . , let

ai 5
\Gi \

2

\APi \
2

(12)

Wi11 5 Wi 1 aiPi (13)

Ri11 5 Ri 1 aiAPi (14)

Gi11 5 A*Ri11 (15)

Pi11 5 Gi11 1 biPi (16)

bi 5
\Gi11 \2

\Gi \
2

. (17)

\ · \ defines the norm of a vector as

\v\ 5 [v]H [v], (18)

where the superscript H denotes the complex conju-
gate and transpose operations.

The above iterations are performed until a desired
error criterion is met. In our case this criterion is
defined as

\[A ][W ]i 2 [Y ]\

\Y \
# 1026. (19)

Further characteristics of the conjugate gradient
method are discussed in [1] and [3].

2. Backward Method
The above deterministic direct data domain method

can be applied to the antenna outputs in three different
ways. One is the forward method, indicated in the
previous section. Another is the backward method,
where the sampled sequence is estimated by observing
it in the reverse direction. For this, we have to conjugate
the data and form the reverse sequence. We thus end up
with the system of equations
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where the superscript * denotes the complex conju-
gate of the signal.

The estimate for the signal strength remains the
same as before. Also the requirements in terms of
number of time snapshots and number of weights
remains the same as for the forward case.

3. Forward–Backward Method
In this method, the number of equations to work

with is doubled by considering the data in both the
forward and the reverse directions. This method
works because we are dealing with a signal which is
assumed to be of the form of an exponential function
with a purely imaginary argument, which has some
noise terms associated with it. In the absence of this
noise term this method would not yield an extra set
of independent equations.

Thus, as the number of independent equations
increases, the number of adaptive weights also in-
creases, in comparison to the forward (and the
backward) method. The system of equations that
needs to be solved is

where k 5 [M 2 1]/2, [X ] indicates the largest inte-
ger less than or equal to X, and k 1 l 5 M 2 1.

Upon solving for the weights in the above system,
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the estimate for the signal strength is computed as
before. Also note that in the forward–backward (FB)
method, for the same number of degrees of freedom,
the number of data samples can be reduced by half.
Alternatively, if the number of data samples remains
the same, a set of least squares equations can be
formed to improve the accuracy of the solution.

IV. METHOD BASED ON THE SOLUTION OF AN
EIGENVALUE EQUATION

We consider the same problem, of estimating the
signal strength of a signal coming in at a known
angle of arrival to the array, in the presence of noise,
clutter, and jamming signals. Using the same nota-
tion as earlier for these various components, we
apply the matrix pencil

[V ] 2 a[S ], (22)
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and
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1 1 · · · 1

1 1 · · · 1

···
···

···
···

1 1 · · · 1
4
M3M

. (24)

The difference at each element, Vi 2 aSi, repre-
sents the contribution due to the unwanted compo-
nents of the incoming signal, viz. jammer, clutter,
and thermal noise. Every term of the form Vi/zi

reduces to

Vi

zi
5 1 1

(J 1 C 1 N ) i
p

zi
, (25)

where the zi’s are as defined before. (J 1 C 1 N ) i
p

represents the jammer, clutter, and thermal noise
contribution at the ith antenna element at the pth
instant of time.

Now, for our adaptive process of estimation, the
weights [W ] are chosen in such a way that the
contribution due to the unwanted components is
nulled out [2]. Thus, if the following is defined as a
generalized eigenvalue problem,

[R ][W ] 5 ([V ] 2 a[S ]) · [W ]5 0, (26)

then a is the estimate for the strength of the signal,
and is given by the generalized eigenvalue of the
above system. The adaptive weights, [W ], are given
by the generalized eigenvector of the system. Since
we have to deal with only one SOI, the matrix [S ] is
of rank unity and therefore the eigenvalue problem
has only one eigenvalue, which is the estimate we
are looking for at the pth instant of time.

It can be observed in the above system that the
number of weights, M, is related to the number of
antenna elements, N, as

N 5 2M 2 1. (27)

V. APPLICATIONS TO SOME SELECTED
EXAMPLES

Example 1: Jammer Only Case
First, we consider a case where we have five

jammer signals arriving at the array along with the
SOI. Thermal noise and clutter contributions are
neglected in this first example. The power levels of
the jammer signals, with respect to the power of the
SOI, are 50.5, 60.1, 56.5, 68.8, and 59.5 dB above the
level of SOI, respectively. Each of these arrives at the
array at the following angles of incidence, with
respect to the x-axis: 93°, 49°, 98°, 160°, 100° each.
The SOI is incident at an angle of 90° at a frequency
of 300 MHz. The Jammer signals are assumed to be
amplitude modulated waveforms as indicated in Eq.
(2), with the following parameters:

m1 5 0.5, fm1 5 1000 Hz, fm1 5 30°,

fc1 5 300 MHz, fc1 5 40°

m2 5 0.1, fm2 5 2000 Hz, fm2 5 20°,

fc2 5 300 MHz, fc2 5 99°

m3 5 0.8, fm3 5 1500 Hz, fm3 5 120°,

fc3 5 300 MHz, fc3 5 160°

m4 5 0.35, fm4 5 900 Hz, fm4 5 90°,

fc4 5 300 MHz, fc4 5 90°

m5 5 0.6, fm5 5 800 Hz, fm5 5 60°,

fc5 5 300 MHz, fc5 5 46°.
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For this input, the signal strength was estimated
correct to four decimal places. The sampling fre-
quency was chosen to be 10 times the frequency of
the signal. All three methods, forward, backward,
and forward–backward, were used and similar re-
sults were achieved. Also the methods were applied
to all four antenna configurations and the estimate

was obtained correct to four decimal places in each of
these cases. In all the examples in this paper, the
number of antenna elements in the nonuniform,
circular, hexagonal, and sinusoidal configurations
has been taken to be 12. The number of time samples
has been taken to be one less than the number of
antenna elements, for the three deterministic meth-

FIG. 5. Nonuniform array.

FIG. 6. Circular array.
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ods based on a direct solution of the linear system of
equations.

Example 2: Clutter and Thermal Noise Added
Now we consider the contribution of clutter and

thermal noise in addition to the jamming signals and
analyze the performance of the estimation method.

Thermal noise is added to each antenna output
and is taken to be of the form of a complex signal
whose magnitude is a uniformly distributed random
variable between 0 and 1, and whose phase is a
uniformly distributed random variable between 0
and 2p. The signal-to-total-thermal-noise ratio is
fixed at 20 dB. The clutter is modeled as explained

FIG. 7. Sinusoidal array.

FIG. 8. Hexagonal array.
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earlier, and the clutter-to-signal (SOI) ratio is fixed at 20
dB; i.e., the clutter is 20 dB above the level of the SOI.

The SOI is taken to arrive at the array at an angle
of 90° to the x-axis. The clutter signals are assumed
to arrive at the array at intervals of 0.1°, at all angles
between 120° and 130°. The jamming signal is taken
to be a single source, arriving at an angle of 49° with

respect to the x-axis. The power level of the jammer
is varied from SOI level, to 80 dB above SOI level, at
intervals of 0.5 dB. For a particular jammer power
level, 25 iterations were carried out for each method,
and the average output signal-to-noise ratio was
computed. The number of adaptive weights has been
taken to be one less than the total number of

FIG. 9. Nonuniform 1-D array.

FIG. 10. Uniform 1-D array.
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antenna elements, and the number of time samples
is equal to the number of adaptive weights.

The output signal-to-noise ratio is an indicator of
the accuracy of our estimate. It is defined as

OSNR 5 20 log10

0S 0

0S 2 S̃ 0
, (28)

where S is the actual signal strength, and S̃ indi-
cates the estimate. 0 · 0 indicates absolute value.

The results are shown in Figs. 5–8 for all four
different configurations, for the methods indicated.
In each of these figures, the results obtained from
the three direct methods have been plotted. The
x-axis corresponds to the SOI-to-jammer power level,

FIG. 11. Nonuniform array.

FIG. 12. Circular array.
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while the y-axis corresponds to the output signal-to-
noise ratio, as defined above.

The eigenvalue method did not yield meaningful
OSNR for this case, probably due to numerical
instabilities in the MATLAB generalized eigenvalue
routine that we used. Use of better algorithms, like
the QZ algorithm, could alleviate this problem.

It can be observed in these figures that the forward–
backward method shows much better performance
than either the forward or the backward method. For
obtaining the results plotted in these figures, we
have used an overdetermined system of equations
for the FB method and consequently used an SVD
method to solve the resulting least squares problem.

FIG. 13. Hexagonal array.

FIG. 14. Sinusoidal array.
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Another point to be noted from these figures is the
consistently high level of performance that all three
methods have achieved for the arrays under cond-
sideration. In particular, these methods yield
much higher levels of OSNR for the nonuniform
array case.

Finally, for the sake of comparison we have shown

a set of results for a one-dimensional uniform as well
as nonuniform, array. Each of these arrays is of the
same total length, and each contains 12 antenna
elements. These results (Figs. 9 and 10) indicate that
the performance of the deterministic methods is
almost identical for both the uniform and the nonuni-
form 1-D case.

FIG. 15. Uniform 1-D array.

FIG. 16. Nonuniform 1-D array.
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Example 3: Clutter and Thermal Noise Only
(Jammer Absent)
In this example we consider the performance of

the methods in the presence of the clutter and noise,
but with the jammer being absent. In Figs. 11–14 we
plot the OSNR versus the SOI-to-clutter power level,
for each of the four antenna configurations. The
SOI-to-noise power level, at a given SOI-to-clutter level
is 40 dB above the given SOI-to-clutter power level.

It can be observed from the figures that the
eigenvalue method does the worst among the deter-
ministic methods. The forward and the backward
method do almost the same, while the FB method
yields the best results. Once again, the FB method
used here utilizes an SVD solution for an overdeter-
mined system of equations.

Again, for the sake of comparison we have shown a
set of results for a one-dimensional, uniform as well
as nonuniform, array. Each of these arrays is of the
same total length, and each contains 12 antenna
elements. These results (Figs. 15 and 16) again
indicate the comparable performance in the two
cases, as in the last example.

VI. CONCLUSIONS

The results obtained above indicate that the direct
data domain method is an effective method for
solving the signal strength estimation problem in an
adaptive antenna framework. This approach can

deal effectively with nonstationary jammer environ-
ments. Further, the computational complexity is
reduced by using techniques such as the conjugate
gradient method for solving the resulting system of
equations.

Among the two broad deterministic methods
discussed—eigenvalue and direct solution of a
matrix equation—the latter is more robust to high
jammer powers. Selected examples have been
discussed to indicate the performance of these meth-
ods.
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