
Quantitative Models of the Mechanisms That Control
Genome-Wide Patterns of Transcription Factor Binding
during Early Drosophila Development
Tommy Kaplan1, Xiao-Yong Li2, Peter J. Sabo3, Sean Thomas3, John A. Stamatoyannopoulos3, Mark D.

Biggin4*, Michael B. Eisen1,2,4*

1 Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States of America,

2 Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America, 3 Department of Genome Sciences, University of

Washington, Seattle, Washington, United States of America, 4 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America

Abstract

Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of
genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have
tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo,
our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a
thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the
binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on
DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ,0.4 with experimental measurements of in
vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by
modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the
prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin.
To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively
restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of
0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence,
accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can
be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions.
We suggest that a combination of experimentally determined chromatin accessibility data and simple computational
models of transcription factor binding may be used to predict the binding landscape of any animal transcription factor with
significant precision.
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Introduction

In vivo crosslinking studies show that animal transcription factors

each bind to many thousands of DNA regions throughout the genome

(e.g. [1–18]). While many of the strongest binding events are at

functional cis regulatory modules and are evolutionary conserved,

many thousands of other genomic regions that are bound at lower

levels do not appear to be functional targets [2,13,14,16,18,19]. In

addition, factors with unrelated biochemical or functional properties

bind to the same genomic regions with surprisingly high frequency

[2,16,20], while the biological specificities of factors appear to be

determined in part by quantitative differences in occupancy between

proteins at these commonly bound sites [2,16,21,22].

It is a fundamental challenge to determine the biochemical

mechanisms that direct these complex, quantitative patterns of factor

occupancy. Animal transcription factors bind to short (5–12 bp)

sequences of DNA that occur with high frequency throughout the

genome [23], yet most occurrences of these recognition sequences

are not detectably bound in vivo [2,5,13,24,25]. This discrepancy

between predicted and observed factor binding has been attributed

to several mechanisms that could alter the simple behavior of a

factor, including: (1) competitive inhibition of binding at those DNA

regions that overlap sites occupied either by other sequence specific

factors [26,27] or by nucleosomes and chromatin associated proteins

[28–33]. (2) Direct and indirect cooperative interactions between

factors bound at physically proximal sites that increase their affinity

at those sites [34–42]. The relative influence that each of these

biochemical mechanisms on the overall pattern of factor binding in

vivo, however, is currently a matter of debate.

The anterior-posterior (A-P) patterning system in early

Drosophila melanogaster development offers an excellent system for

addressing the question of transcription factor targeting in an
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animal regulatory network. Prior to gastrulation, the Drosophila

embryo is a syncytium of ,6,000 nuclei distributed around its

periphery [43]. Extensive genetic and molecular analyses have

established that a simple regulatory cascade involving the

morphogens Bicoid (BCD) and Caudal (CAD), and the gap

transcription factors Hunchback (HB), Giant (GT), Kruppel (KR)

and Knirps (KNI) directs the expression of numerous target genes

in complex three dimensional patterns across the embryo, which

in turn establish the segmental body plan in the trunk of the

developing fly [44–46].

To analyze this network at a systems level, we have previously

established a complementary set of quantitative datasets describing

key aspects of the network. We have measured the widespread,

overlapping in vivo binding of these and other early regulatory

factors genome wide [13,16,18], In addition, we have character-

ized DNA affinities of these proteins from in vitro selection

(SELEX) experiments (Berkeley Drosophila Transcription Network

Project, unpublished data), measured the relative concentration of

each of these transcription factors in every embryonic nucleus

[47], and determined the accessibility of DNA regions throughout

the genome.

Here we incorporate this series of datasets into quantitative

models of transcription factor binding to measure the impact of

different biophysical forces on occupancy levels. Many previous

studies have used computational approaches to predict the

locations of genomic regions bound by transcription factors [48–

68]. While these studies have discovered a number of important

principles, they have not sought to quantify the contribution of

various factor-targeting forces in the context of the highly

overlapping, widespread binding seen in animal systems. For

example, many have produced qualitative predictions of which

genomic regions might be occupied, and thus do not provide

information on the levels of expected factor occupancy, which

have been shown to be critical for relating binding patterns to

biological function [2,16,21,22]. In addition, while some studies

have focused on determining the biochemical mechanisms

targeting factors to DNA [57,58,60], many others have used

additional biological information such as microarray expression

data or DNA recognition site conservation to predict only those

sites that are functional [59,63,65,67,68], and thus do not, strictly

speaking, attempt to predict binding per se. Finally, when

predictions of quantitative occupancy levels have been made,

these were either part of more complex models of transcriptional

output patterns that did not compare the binding models to any

experimental in vivo binding data [66,69–71], or were made to

coarse in vivo binding information from yeast [58,62].

Therefore, we have set out to establish a computational

framework that predicts the levels of factor occupancy in a way

that allows the effect of various proposed biophysical mechanisms

influencing factor binding to be quantified. Our results support a

long standing model that suggest that animal transcription factors

are expressed at sufficiently high concentrations in cells that they

can bind to their recognition sites in accessible parts of the genome

without the aid of direct cooperative interactions with other

proteins [31,72,73]. In this view, the dominant force in cells that

modifies the intrinsic DNA specificity of transcription factors is the

inhibition of DNA binding by chromatin structure. Because of the

high frequency of factor recognition sites in most short accessible

regions of the genome, this model explains why animal factors

show such widespread, overlapping binding.

Results

Quantitative Models of Transcription Factor Binding
We developed a probabilistic framework to infer the occupancies of

one or more transcription factors across any DNA sequence given the

concentration of these factors and their DNA binding preferences

(Figure S1). Our model is based on the formalism of generalized hidden

Markov models (gHMMs; [49,53,55,62,69,70,74]), which allow efficient

integration of the different forces that may influence transcription factor

binding into the model.

This class of models offers several prominent advantages.

gHMMs have very few parameters and are therefore easy to

optimize. And, unlike most probabilistic graphical models, they

offer exact inference of posterior probabilities in linear time, using

the forward-backward dynamic programming algorithm [75].

Finally, gHMMs are related to thermodynamic equilibrium

models, with the ensemble of all possible configurations of bound

factors viewed as a Boltzmann distribution and each configuration

assigned a weight (or probability) depending on its energetic state.

The probability that a factor is bound at a given location is

assumed to be the fraction of configurations (weighted by their

probabilities) in which it is bound [50,55,56,62,69,76–80].

The Markovian property of gHMMs prevents them from

considering the full context in which binding occurs, and thus they

offer only an approximation of the full thermodynamic model. We

overcome this limitation with a sampling procedure (see below).

In Vitro and In Vivo DNA Binding Data
To model the DNA binding affinities of the five factors

considered in this study (HB, BCD, KR, GT and CAD), we used

in vitro specificities (expressed as position weight matrices; PWMs)

measured using SELEX-Seq by the Berkeley Drosophila Transcrip-

tion Network Project (bdtnp.lbl.gov).

For in vivo binding data, we used ChIP-seq measurements of

formaldehyde crosslinked HB, BCD, KR, GT and CAD from

blastoderm embryos of Drosophila melanogaster (Oregon R) [18]. A

range of controls establishes that these data provide a quantitative

measure of the relative levels of transcription factor directly bound

to different genomic DNA regions [2,13,16,18,31,81]. In partic-

ular, in vitro controls using purified transcription factors and

naked DNA, where binding at individual sites is expected to be

proportional to the affinity of the factor for that site, show that

relative levels of crosslinking closely correlate with relative DNA

affinity [81]. ‘‘Spike in’’ experiments using ,200 kb BAC DNAs

show that the ChIP-seq post immunoprecipitation processing steps

Author Summary

During early stages of development, regulatory proteins
bind DNA and control the expression of nearby genes,
thereby driving spatial and temporal patterns of gene
expression during development. But the biochemical
forces that determine where these regulatory proteins
bind are poorly understood. We gathered experimental
data on the activities of several key regulators of early
development of the fruit fly (Drosophila melanogaster) and
developed a computational method to predict where and
how strongly they will bind. We find that competition,
cooperativity, and other interactions among individual
regulatory proteins have a limited effect on their binding,
while the global accessibility of DNA to protein binding
has a significant impact on the binding of all factors. Our
results suggest a practical method for predicting regula-
tory binding by combining experimental DNA accessibility
assays with computational algorithms to determine where
will binding occur among the accessible regions of the
genome.

Predicting Transcription Factor Binding
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accurately preserve the relative enrichment levels of different

genomic regions, with the enrichments of DNA samples prior to

and post processing showing a correlation of 0.997 and a linear fit

of slope of 1.14 (Figure S2). In vivo UV crosslinking results show

that similar data are obtained when protein/protein crosslinking is

absent [2,16]. And the genomic regions identified as bound by

factors in our ChIP-seq experiments are not preferentially

enriched in the crosslinked DNA initially used as input to the

immunoprecipitations [18].

This latter observation is particularly important, as Auerbach et

al have reported that some methods of DNA isolation can

introduce a bias that adversely affects ChIP-seq data [82]. In

particular, they found that the sonication of intact nuclei leads to

the preferential enrichment of regions of open chromatin.

Although the crosslinked DNA used in our ChIP-seq experiments

is sonicated only after it has been purified away from non-

crosslinked proteins by buoyant density centrifugation [13], and

thus is unlikely to suffer the above DNA extraction bias, we

nonetheless directly compared the input DNA samples from our

ChIP-seq experiments to DNase I-seq genome accessibility data

for embryos at the same stage of development (Thomas et al,

unpublished data). In contrast to Auerbach et al [82], we found no

correlation between ChIP-seq input samples and the DNase I-seq

data (mean correlation coefficient of -0.0005).

Thus, while we do not believe ChIP-seq represents an absolutely

precise measure of binding to each region of the genome (discussed

further below), a wide range of evidence indicates that our ChIP-

seq data do not appear to suffer large systematic biases that could

interfere with our modeling effort and that these data provide a

sufficiently quantitative estimate of binding on which to base

attempts to predict it.

Comparing Model Predictions and In Vivo Binding Data
We developed a model-based algorithm to compare the binding

probabilities predicted by our gHMM model to high-resolution in

vivo binding measurements [83]. Using the length distribution of

the DNA fragments recovered by ChIP, we simulated the shape of

the peak corresponding to a single binding event, as measured by

ChIP-seq. We then used that shape to convert the single-

nucleotide resolution binding probabilities into an expected

ChIP-seq profile (Figure S3, Methods).

To analyze our predictions, we compiled a list of 21 known

target loci of the A-P patterning system, primarily known

maternal, gap, and pair rule genes [84], expressed during early

stage 5 [47]. Each gene was expanded by ,10 Kb upstream and

downstream of the transcription unit to capture its known

regulatory sequences. In each of the analyses presented below,

we trained the model parameters to optimize the fit between the

predicted and observed ChIP-seq landscapes at a set of six loci

spanning over 87 Kb (croc, cnc, slp, kni, hkb, D), and evaluated the

trained model on a set of 15 loci spanning over 280 Kb (prd, h, eve,

cad, oc, opa, ftz, gt, hb, Kr, odd, run, fkh, tll, os). To account for long

genomic regions where no binding is observed in vivo, we

enhanced the train and test sets by adding three and five control

loci, spanning 100 Kb and 221 Kb, respectively (see Table 1).

Quantitative Comparisons of Model Predictions to In Vivo
Binding Data

We began with the simplest model – a single transcription factor

binding to DNA. This required optimizing only a single

parameter, P(t), for each factor, corresponding to its effective

concentration in nuclei. After training, the correlation coefficients

between the model’s predicted binding and the training data range

from poor (CAD, 0.11) to reasonable (BCD, 0.58) with a total

correlation of 0.37. Correlations for the test set were similar

(suggesting that the training data were not over fit), and ranged

from 0.15 (GT) to 0.66 (BCD), with a total correlation of 0.36

(Table 2 and Table S1). Figure 1A shows the model’s predictions

and the in vivo data for several test loci.

Minimal Effect of Factor Competition in Predicting In
Vivo Binding

Encouraged by results with single factors, we examined the effect of

competition between the five factors on our ability to predict in vivo

binding. Overlapping binding sites are known to modulate direct

competition between factors for some individual cases [26,27].

Moreover, overlapping sites are often conserved at long evolutionary

distances [85,86], suggesting an important mechanistic role for inter-

factor competition. We expanded the gHMM in our model to consider

all five transcription factors simultaneously in a probabilistic framework,

where the different concentration of each factor t is modeled by an

additional probabilistic term P(t). In the single factor model binding of

one factor to a site did not affect the binding of a different factor to the

same site. In this new model, however, because the total occupancy at a

site cannot exceed 1, factors effectively compete for binding to

overlapping target sites. While other early regulators bind many of the

same regulatory regions as these five factors [16], we have not included

them in our model to allow for a focused examination of the factors that

are most closely implicated in functioning together and because of a lack

of complete DNA binding specificity data.

To our surprise, the five-factor competitive model gave slightly

less accurate predictions than its single factor counterpart. On the

test data, we observed decrease in the model predictions from a

total correlation of 0.36 to 0.33 (see Figure 2 and Table 2 for full

data).

Expanding the Model to Three Dimensions with Single
Nucleus Resolution

One potential explanation for the lack of improvement for the

above competition model could have been that, because we were

treating the embryo as a homogenous entity, it allowed competition

between factors that are expressed together at high levels in few nuclei

(e.g. Figure 3A: GT and KR, BCD and CAD, or KR and HB).

We therefore expanded our algorithm to model the binding of all

factors in each of the ,6000 nuclei separately. We used single

nucleus estimates of protein concentration, based on three

dimensional fluorescence microscopy of D. melanogaster embryos at

early stage 5 [47] to scale the optimized concentration parameters of

the five transcription factors. Specifically at each run, we multiplied

the concentrations P(t) of every regulator by its protein expression

level. We then averaged the predicted binding landscape of all

nuclei, to obtain whole-embryo genomic predictions, which were

compared to (whole-embryo) in vivo binding measurements

(Figure 3). The results were slightly improved relatively to the

whole-embryo predictions (3–4% improvement on the training

(0.34) and test (0.34) sets), presumably because some inappropriate

competition events had been eliminated from the model.

Further analysis suggests why including binding site competition

did not have a major affect on the predictive power of the model.

The stronger affinity recognition sites for proteins that are co-

expressed in the same cells, i.e. those having the potential to

significantly affect net occupancy of a protein in vivo, overlap in

only a minority of cases in the training or test genomic regions. Thus

while binding site competition between the five factors may well

play a key regulatory role at a subset of sites in a subset of cells as

previously proposed [26,27], it is unlikely to have a major effect on

net occupancy averaged across all cells and many genomic regions.

Predicting Transcription Factor Binding
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DNA Accessibility Data Greatly Improve Binding
Predictions

Even if direct competition between the five factors does not play

a major role in shaping their binding landscape, other mecha-

nisms, including interactions with nucleosomes and covalent

modifications to nearby histones [29,30,37,39,87,88], could allow

transcription factors to affect binding to neighboring sites.

When comparing our computational binding predictions (Figure 1)

to experimental maps of in vivo binding, we found that the majority of

highly bound regions in vivo were indeed correctly predicted (133 of

240 peaks were correctly predicted, for all factors, with specific

percentages varying from 30% (KR, 14/46 peaks) to 86% (BCD, 36/

42)). Nonetheless, our model suffered from many false positive

predictions (Figure 4), a common problem when attempting to predict

in vivo binding from DNA sequence [48,52]. It is widely accepted that

a major source of such over-prediction is that many potential high-

affinity binding sites are found in regions of the genome that are

densely packed into chromatin states that limit their accessibility to

regulatory proteins [28,31,33–35,39,87–90] and that information on

the state of the chromatin can be used to improve prediction of

transcription factor binding [32,33,41,57,63–65,68,70]. In some cases,

the weak sequence preferences of nucleosomes have been used to

predict nucleosomes positions and thereby improve binding site or

gene expression predictions [57,62,70]. Alternatively, histone modifi-

cation data has been used to identify genomic regions with putative

regulatory function [63,68]. These previous methods, however, did not

make use of direct experimental measurements of DNA accessibility.

To measure the influence of chromatin state on the accuracy of

our model’s binding predictions, we turned to two complementary

perspectives. First, we integrated the exact position of nucleosomes

into our model at single nucleotide resolution to enable the

Table 1. Genes and coordinates for train and test set loci.

Train

Symbol Gene name Locus coordinates Length

croc crocodile chr3L:21,461,001–21,477,000 16 Kb

cnc cap-n-collar chr3R:19,011,001–19,024,000 13 Kb

slp sloppy paired chr2L:3,820,001–3,840,000 20 Kb

kni knirps chr3L:20,683,260–20,695,259 12 Kb

hkb huckebein chr3R:169,001–181,000 12 Kb

D Dichaete chr3L:14,165,001–14,179,000 14 Kb

control2 - chr3L:21,764,501–21,792,500 28 Kb

control5 - chr3R:3,145,001–3,170,000 25 Kb

control9 - chr2L:10,060,001–10,107,000 47 Kb

Test

Symbol Gene name Locus coordinates Length

prd paired chr2L:120,77,501–12,095,500 18 Kb

H hairy chr3L:8,656,154–8,682,153 26 Kb

eve even skipped chr2R:5,860,693–5,876,692 16 Kb

cad caudal chr2L:20,767,501–20,786,500 19 Kb

oc ocelliless chrX:8,518,001–8,550,000 32 Kb

opa odd paired chr3R:670,001–696,000 26 Kb

ftz fushi tarazu chr3R:2,682,501–2,696,500 14 Kb

gt giant chrX:2,317,878–2,330,877 13 Kb

hb hunchback chr3R:4,513,501–4,531,500 18 Kb

Kr Kruppel chr2R:21,103,924–21,118,923 15 Kb

odd odd skipped chr2L:3,603,001–3,613,000 10 Kb

run runt chrX:20,548,001–20,570,000 22 Kb

fkh forkhead chr3R:24,396,001–24,420,000 24 Kb

tll tailless chr3R:26,672,001–26,684,000 12 Kb

os outstretched chrX:18,193,001–18,208,000 15 Kb

control3 - chr3L:22099,001–22125000 26 Kb

control7 - chr2L:4,231,001–4,277,000 46 Kb

control11 - chr2L:12,806,001–12,856,000 50 Kb

control13 - chrX:4,729,001–4,787,000 58 Kb

control14 - chrX:14,375,001–14,416,000 41 Kb

Genomic coordinates of the six training set loci, spanning a total of 87 Kb, and 15 test set loci, spanning 280 Kb. This list consists of known target genes of the A-P
patterning system, that are expressed during early stage 5. Each gene was expanded by ,10 Kb to include regulatory sequence. In addition, the list includes three
control loci that were added to the train set, and five added to the test set.
doi:10.1371/journal.pgen.1001290.t001

Predicting Transcription Factor Binding
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competition between transcription factors and nucleosomes in

binding DNA to be modeled [30,33,35,39,41,57,62,70,87,88]. As

there are no direct measurements of nucleosome positions from

early Drosophila embryos, we modeled these computationally (see

below). Secondly, because chromatin accessibility results from the

combined effect of nucleosomes, other chromatin binding proteins

and the higher-order 3D packaging of the DNA, we used direct

genome-wide measurements of DNA accessibility obtained from

DNase I digestion of chromatin in isolated blastoderm embryo

nuclei [91]. We then quantified the effect of these two ways of

assessing chromatin state on predicting the binding landscape in

turn.

Predicting Nucleosome Positions Does Not Improve
Model Predictions

In analyzing the role of nucleosome positioning, we were

particularly interested in the possibility that the binding of one

factor would reduce local nucleosome occupancy and therefore

increase the occupancy of other factors at adjacent sites, so called

indirect cooperative DNA binding [35,37,39,87]. To investigate

this, we extended the cellular resolution (3D) model by

incorporating an additional state to represent the 141 bp-long

sequence bound by a single nucleosome.

Due to uncertainty in the literature about the contribution of

sequence specificity to in vivo nucleosome positioning [92], we

decided to evaluate two different ways of incorporating positioned

nucleosomes into our models. First, we used a sequence-specific

model of nucleosome binding, that takes into account presumed

preferences for certain DNA sequence features [93] as an

additional state of our generalized hidden Markov models. This

addition did not improve the predictions of our model, when

comparing our predictions to in vivo measurements, obtaining

correlations of 0.35 and 0.33, on the training and test sets,

respectively (Table 2).

As an alternative, we used a sequence-independent model of

nucleosome binding, where nucleosome are viewed as long

Figure 1. High-resolution predictions of protein-DNA binding landscape. (A) The model’s binding predictions (red line) are compared to in
vivo binding landscape (solid blue). Shown are BCD binding at the 16 Kb eve locus (left), BCD binding at the 15 Kb os locus (middle), and CAD binding
at the 24 Kb fkh locus (right). Here, the binding landscape was predicted independently for each transcription factor. (B) Same as (A), except allowing
for direct binding competition between the five factors and with nucleosomes, and modeling binding independently in each of 6,078 nuclei of the fly
embryo. (C) Same as (B), while incorporating non-uniform DNase I hypersensitivity-based prior on transcription factor binding to account for
variations in DNA accessibility (shown in gray). (D) Same as (C), after adding cooperative interactions between adjacently bound factors in a
thermodynamic setting.
doi:10.1371/journal.pgen.1001290.g001

Table 2. Factor-specific accuracy at increasing degrees of
model complexity.

Train set Test set

BCD CAD GT HB KR Total BCD CAD GT HB KR Total

1 0.58 0.1 0.18 0.49 0.52 0.38 0.66 0.28 0.15 0.37 0.35 0.36

2 0.54 0.07 0.12 0.44 0.51 0.33 0.65 0.24 0.08 0.35 0.34 0.33

3 0.55 0.07 0.12 0.46 0.53 0.35 0.65 0.24 0.09 0.36 0.36 0.34

4 0.49 0.07 0.18 0.43 0.55 0.35 0.56 0.16 0.10 0.38 0.37 0.31

5 0.58 0.11 0.21 0.50 0.55 0.39 0.65 0.29 0.15 0.39 0.38 0.37

6 0.87 0.67 0.66 0.75 0.71 0.73 0.78 0.79 0.53 0.58 0.60 0.65

7 0.90 0.67 0.72 0.79 0.71 0.76 0.79 0.78 0.59 0.58 0.62 0.67

Accuracy of model’s predictions at increasing degrees of model complexity.
Shown are factor-specific correlations between the predicted binding
landscape and measured occupancies for train- (left) and test set loci (right).
Variations of the generalized hidden Markov model include (in increasing levels
of complexity): (1) independent predictions per factor; (2) joint predictions
(allowing for direct binding competition); (3) predictions at single-nucleus
resolution; (4) with sequence-specific model of nucleosome binding; (5) with
sequence-independent model of nucleosome binding; (6) with non-uniform
prior on protein binding, based on DNase I hypersensitivity assay; (7) with
cooperative binding interactions.
doi:10.1371/journal.pgen.1001290.t002

Predicting Transcription Factor Binding
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‘‘space-fillers’’ that, when present, prevent regulators from

binding. This model obtained correlations of 0.37 and 0.36 on

the training and test data, respectively, an improvement of 6-7%

over the non-nucleosomal 3D model (see Figure 2B and Table 2).

Yet, even this model fails to significantly outperform the naı̈ve

algorithm of modeling a single-regulator at a time (no competition

and no 3D resolution).

Direct Measurements of Chromatin Accessibility
To more directly quantify the effect of chromatin accessibility

on in vivo binding, we used genome-wide measurements of DNA

accessibility obtained from DNase I digestion of isolated

blastoderm embryo nuclei [91], followed by deep sequencing of

the short DNA fragments that were released. When comparing

these accessibility data to the predictions of our model, we found

that genomic loci for which our model correctly predicts DNA

binding based on sequence, namely true-positive loci, tend to have

higher DNA accessibility (mean DNA accessibility of 0.36, with

25th and 75th percentiles at 0.10 and 0.60, respectively. See

Methods), while false-positive loci (for which we predicted stronger

binding than actually measured) typically displayed much lower

DNA accessibility (mean DNA accessibility of 0.06, with 25th and

75th percentiles at 0.01 and 0.05, respectively).

Based on this observation, we next partitioned the genome

based on DNA accessibility (with a threshold of 0.5), and

compared the true positive rates (percent of predicted peaks that

Figure 2. Prediction accuracy at increasing degrees of model complexity. (A) Accuracy of binding predictions at train set, including six
known A-P targets and three control loci. Shown are the correlations between the model predictions and the in vivo binding landscape, at various
degrees of model complexity. These include, from left to right: (1) independent predictions per transcription factor; (2) allowing binding competition
between factors; (3) predictions at a single-nucleus resolution; (4) with sequence-specific model of nucleosome binding; (5) with sequence-
independent model of nucleosome binding; (6) adding non-uniform prior on transcription factor binding using DNA accessibility measurements; and
(7) adding cooperative binding interactions in a thermodynamic settings. (B) Same as (A), but for test set, including 15 known A-P targets and five
control loci.
doi:10.1371/journal.pgen.1001290.g002

Figure 3. Predicting binding in single-nucleus resolution. (A) Three-dimensional single-cell measurements of protein concentrations [47] were
used to estimate the concentration of the five transcription factors across the fly embryo. (B) To model binding competition while considering the
differential concentration of factors, we modeled binding in each of the ,6,000 nuclei of a fly embryo separately. Depicted are the probabilities of
binding at the 485 bp-long eve stripe 2 CRM (chr2R:5,865,266-5,865,750) for the five factors, at three example nuclei: one at an the anterior pole, one
towards the posterior end, and one at the center of the embryo. (C) Nucleus by nucleus predictions were averaged to predict the binding over the
entire embryo. Shown are the predicted occupancies of the five factors along the entire 16 Kb eve locus (below), and along the stripe 2 CRM (inset).
doi:10.1371/journal.pgen.1001290.g003
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match measured ones) at high- and low-accessibility regions. Our

model obtained high rates among the accessible regions (50–100%

true positive rates for the different factors, with a total average of

77%), compared to much lower accuracy (true positive rates of 15–

52%, with a total average of 43%) over the low accessibility

regions. This differential accessibility is presented in Figure 4B and

Figure S4B, where most of the false-positive predictions of the

model (top-left corner) indeed show low accessibility.

To better quantify the role of accessibility in factor targeting, we

leveraged the statistical framework of generalized hidden Markov

models to incorporate DNA accessibility into the model as a non-

uniform prior probability of regulatory binding along the genome

– with regions of low accessibility having a greatly reduced

probability of binding. The incorporation of differential DNA

accessibility dramatically boosted the model’s accuracy by a

twofold for both the training set correlations (from 0.37 using the

first, single-factor, model to 0.75) and the test set predictions (to a

correlation of 0.70), with factor-specific correlation varying from

0.57 (HB) to 0.81 (BCD) (see Table 2, and Figure 1C and

Figure 4C, 4D).

Figure 4. Predictions with and without DNA accessibility prior. (A) Measured (X-axis) vs. predicted (Y-axis) occupancy for all factors along all
test loci. Predicted binding is based on a 3D cellular resolution mode, which allows for binding competition between factors and sequence-
independent nucleosomes. (B) Same as (A), while coloring each genomic position based on to its DNA accessibility, ranging from pale cyan (lowly
accessible) to dark blue (highly accessible). Almost all false binding predictions (dots above the diagonal) are lowly accessible in vivo. (C,D) Same as
(A–B), but with DNase I hypersensitivity-based prior on transcription factor binding integrated into the model. This results with more accurate
predictions, as measured by the correlation between measured and predicted occupancy, improving from 0.37 to 0.655.
doi:10.1371/journal.pgen.1001290.g004
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To further control for any possible experimental biases that

might be present in the DNase I accessibility data, we also ran our

model with DNase I data from a much later developmental stage,

after cellular differentiation (embryonic stage 14). The highly

bound genomic regions in our training and test sets are mostly

comprised of loci that control early developmental patterning at

stage 5 and which have been shown to have dramatically lower

DNA accessibility at stage 14 (Thomas et al, unpublished data).

Consistent with this, when we used DNase I data from the wrong

developmental stage to estimate prior probabilities of transcription

factor binding, the model’s accuracy deteriorated (correlations of

0.36 and 0.28 on the train and test set, respectively), and was

similar to the initial runs, where no DNase I data was used at all.

Thus, the DNAse I data for stage 5 largely comprises a

measurement of developmentally regulated chromatin accessibil-

ity, free from any major constitutive experimental bias.

BAC Spike-Ins Results Set the Highest Obtainable
Correlation at 0.92

Our scoring system for the accuracy of our model uses the

correlation coefficient between predicted and measured binding.

We returned to the BAC spike-in data described earlier (Figure S2)

to assess the experimental noise introduced into the ChIP-seq

experiments by the amplification and sequencing of immunopre-

cipitated DNA as this would allow us to estimate the maximal

correlation possible. We compared the binding landscape

measured by the original ChIP data with versions of the same

data into which noise was artificially introduced in levels following

the BAC data (Methods). This resulted in an average correlation of

0.92 over 100 random perturbations, suggesting that even if our

computational model were to perfectly predict the occupancies of

proteins in vivo, the maximum obtainable correlation would be

,0.92. Because additional experimental variation is likely to be

introduced into the ChIP-seq data by differences in crosslinking

efficiency and immunoprecipitation and because the DNase-seq

data must also contain noise, we suspect that the true maximal

correlation achievable is probably somewhat lower than this.

Thermodynamic Modeling Via Boltzmann Ensembles
Captures Cooperative Binding

Although our predictions with DNA accessibility data were

good, especially in light of the above estimates of experimental

noise, we sought to further refine our model by considering more

complex types of factor-factor interactions than the simple direct

competition (via overlapping recognition sites) described above.

For example, direct physical interactions between transcription

factors bound at neighboring recognition sites has often been

found to increase the occupancy of one or both proteins on DNA,

both for homomeric and heteromeric interactions [36,38,42], and

to sharpen the regulatory response to changes in transcription

factor concentration [88,94–97].

Generalized hidden Markov models, however, have limited ability

to model the broader context of binding events, including interactions

between neighboring sites. Therefore we added a second, sampling-

based, phase to our computational model. In this phase, a large

ensemble of binding configurations is sampled, each with a different

set of protein-DNA interactions. The probability of each configura-

tion is then estimated based on all pairs of nearby occupied sites (up to

95 bp apart) and the parameterized energetic gain of each pair.

Finally, the overall binding probability at each position is quantified

as a weighted sum of all sampled configurations (Figure 5).

By adopting a statistical mechanics perspective, the exponential

space of protein-DNA binding configurations can be viewed as a

canonical ensemble in a thermodynamic equilibrium. Here, the

probability of each configuration is directly linked to its energetic

state, including direct protein-DNA interactions, steric hindrance

constraints and cooperative interactions with neighboring factors

[50,55,56,62,69,76–80].

We extended our model to capture cooperativity using a novel

set of 15 parameters (one for each non-redundant pair of the five

factors), modeling the energy gain for the nearby binding of every

possible pair of the five transcriptional regulators in our model.

To predict binding in this new thermodynamic setting, we first

used the generalized hidden Markov model in 3D to analyze the

sequence and binding competition, and calculate an approximate

map of binding. We then used the predicted binding probabilities

to sample likely protein-DNA binding configurations, and re-

weighted them to account for additional energetic gain, as

modeled via protein-protein cooperative binding interactions

[69,98]. Finally, we averaged over these weighted configurations

to predict a 3D map of binding. Using this combination of the

gHMM followed by importance-weighted sampling, we were able

to approximate the full thermodynamic landscape of binding,

using a fast framework with few parameters. These cooperativity

parameters, as well as their range of effect, were optimized based

on the training set of genomic loci, using multiple random runs of

a gradient-based trust-region optimization algorithm [99,100].

The optimized set of cooperative binding parameters includes

predictions of interactions between many homomeric and

heteromeric pairs. However, these cooperativity parameters only

improved the predictive power of the model by ,5%, giving a

correlation of 0.79 over the training set, with high accuracy

binding predictions for all factors, ranging from 0.70 (CAD) to 0.9

(BCD). The model’s accuracy over test set was 0.70, ranging from

,0.6 (HB) to 0.83 (BCD), a marginal improvement of ,1% over

the Markovian approach (see Table 2 for full details). To further

establish this result, we reran this procedure, this time allowing for

both stabilizing and destabilizing interactions. Although we now

identified additional interacting protein-protein pairs, the resulting

correlations remained similar. Thus, our model suggests that

cooperative interactions have a rather limited contribution in

shaping the genomic landscape of in vivo binding.

Quantitative Estimations of Various Determinants of
Transcriptional Regulation

We have presented here a series of increasingly complex

models. The simplest model, using only the DNA sequence and in

vitro binding data, obtained a correlation coefficient of 0.36 (on

test data). After adding single-nucleus 3D modeling, as well as

modeling binding competition with additional transcription factors

and nucleosomes, the model’s accuracy did not improve. We then

incorporated experimental data of the DNA accessibility into the

model, and boosted its accuracy to 0.70. Finally, we added

thermodynamic parameters to model cooperative binding of

neighboring factors, without a significant improvement in the

model’s accuracy (see Figure 2 and Table 2).

These estimators suggest that while sequence per se is

responsible for approximately half of our predictive power, and

DNA accessibility contributes the other half, the effect of modeling

both binding competition and cooperative interactions is rather

minor, and is estimated at the order of 1% of our predictive power.

To quantify the contribution of various transcriptional deter-

minants on the binding landscape, we ran our model in all 16

possible configurations, using or not using: (1) sequence, (2) 3D

competition, (3) DNA accessibility data, and (4) cooperativity (see

Table S1). We then averaged over particular combinations to

quantify the direct contribution of each of the four regulatory
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determinants. Once again, the relative contribution of each

determinant was similar. For example, to quantify the importance

of sequence per se, we compared the accuracy of the model in

eight combinations (spanning all binary combinations 3D

competition, accessibility and cooperativity) to the predictions

obtained at the same configuration, only with randomly shuffled

DNA sequences. The average difference in correlation over eight

configuration pairs was 0.33 (60.03), suggesting that DNA

sequence per se does contribute half of our total predictive power.

Similarly, the integration of DNA accessibility resulted in an

increase of 0.33 (60.03) in the model’s accuracy (or about a half of

its predictive power). The consistency of these estimates over

different configurations suggests that the different regulatory

determinants are largely independent of each other. Thus, the

Figure 5. Thermodynamic modeling of cooperative interactions. (A) Cooperative parameters were used to represent the energy gain (or loss)
for pairs of factors that bind in proximity (up to 95 bp apart). (B) Binding probabilities for the five factors at the eve stripe 1 locus (chr2R:5873439-
5874240), as inferred by the generalized hidden Markov model. (C) Ensemble of configurations sampled from the probabilities in (B). Each row (of the
100 shown) corresponds to one configuration, marking the positions of bound sites. (D) Cooperative parameters for nearby pairs of occupied binding
sites, as optimized over the training set.
doi:10.1371/journal.pgen.1001290.g005
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results suggest that binding within open chromatin is mostly

controlled by DNA sequence, with a minimal role for direct

cooperative or competitive interactions among factors.

Genome-Wide Prediction of Protein Binding
In the work presented so far, our analysis focused on regions of

strong, functional binding, in the proximity of 21 known targets of

the A-P patterning system and an additional eight control regions.

To quantify the accuracy of the model on a larger genomic scale,

we used the DNase I as a proxy, and identified the most accessible

2% of the genome (top 170 DNase I peaks, as called by an iterative

peak-fitting algorithm [83], and expanded each peak by ,10 Kb

to each side in a similar manner to the initial set of 21 A-P loci).

When applying the model to these open regions, it obtained an

accuracy of 0.44, with various factors ranging from 0.38 (CAD) to

0.57 (BCD). Finally, we applied the model to the entirety of

chromosome 2R (which was not included in our train set loci).

Here, the model’s accuracy was measured at 0.33 (or at 0.1 when

no DNase I-based prior was used).

While these genomic scale predictions are not as accurate as the

ones for the functional train and test set loci, they still offer a crude

estimate to the genomic locations where binding occurs. The

known target loci are inevitably biased towards genomic regions

that are more accessible and more highly bound than the genome

average (compare Figure 4 and Figure S4). In that sense, the

DNase I peaks offer an unbiased proxy to the regions of the

genome where chromatin accessibility plays a lesser role in shaping

transcription factor binding in vivo. Moreover, part of the reason

for the lower apparent performance of the model at the whole

chromosome level could, thus, be technical, due to lower signal-to-

noise ratios in the empirical data for the poorly bound, less

accessible portions of the genome.

To further understand the decrease in the model’s accuracy

when shifting from an annotated set of known target loci to

chromosome-wide applications, we compared the model’s accu-

racy to the expression level of the underlying gene. We applied the

model to predict the genome-wide binding across 4,251 genes for

which we had gene expression data from the same developmental

stage, taking 10 Kb regions around each gene [101]. We found a

strong relation between the model’s ability to accurately predict

the binding landscape of transcription factors along the gene, and

its expression level (Figure S5). These results suggest that while the

model is applicable for genome-wide applications, it is mostly

useful in predicting binding near actively transcribed genes and

highly accessible genomic regions.

Discussion

We have used a thermodynamic computational framework to

investigate the biochemical mechanisms that direct the wide-

spread, quantitative patterns of binding by five developmental

regulatory factors in the Drosophila blastoderm embryo. Our most

striking finding is that a very simple thermodynamic model does a

good job of quantitatively predicting the occupancy of transcrip-

tion factors based on DNA sequence, in vitro DNA binding

affinities and DNase I accessibility data.

We find no evidence that either competition between factors for

binding sites or direct cooperative interactions between proteins

show a significant effect on determining the overall pattern of

binding in vivo. In the case of competitive binding, we showed that

the reason why these do not dominantly affect net occupancy

patterns embryo wide, is because high affinity sites for pairs of

factors co-expressed in the same cells rarely overlap in the genome.

Because our modeling focused on five early A-P segmentation

regulators, it is possible that either competition or direct

cooperative interactions with other transcription factors could

play some role in shaping binding. The good predictive power of

our model, however, sets an upper limit on the degree of this role.

Also, it is striking that little evidence was found for positive

heteromeric interactions among a set of five proteins that are

known to cooperate on common sets of cis regulatory targets.

The relationship between chromatin accessibility and transcrip-

tion factor binding has been previously described. But there is little

agreement on the extent to which transcription factors bind

regions of accessible chromatin, or if chromatin becomes

accessible as a result of transcription factor binding. Our results

are more consistent with the former, and fit well with a long-

standing model for transcription factor targeting in which

sequence specific transcription factors are expressed in cells at

sufficient concentration to occupy their high and moderate affinity

sites along accessible parts of the genome, without the aid of

heteromeric cooperative interactions with other proteins [1,2,72].

Many other studies developed computational algorithms for

predicting in vivo binding. Crudely, these studies fall into two

categories. Qualitative models that aim at identifying statistically

significant appearances of binding sites [49,50,53,55–57,

59,61,63,65,67,68,78,79,102], and quantitative models that esti-

mate the occupancy (or binding probability) at various sites

[58,60,62,66]. While the former group is generally more useful to

identify putative cis regulatory modules and to unfold the

transcriptional regulatory map, the latter approach is more

suitable for modeling the continuous quantitative landscape of

binding. An additional advantage of the quantitative approach is

in its natural probabilistic settings, which allows for an easy

integration of external data. For example, we used high-resolution

measurements of DNA accessibility using DNase I hypersensitivity

assays as an a-priori estimation of protein binding. Alternatively,

previous work used various histone modification data as a proxy

for DNA accessibility and to highlight regulatory regions

[59,63,65,68]. Nonetheless, our goal was to understand the

biophysical forces that shape binding per se. For this, we turned

to direct in vivo measurements of DNA accessibility and based our

predictions on high-resolution quantitative measurements of in

vivo binding data. And, unlike these earlier studies, examined the

effects of different biophysical phenomena on our ability to predict

binding, thereby revealing aspects of transcription factor bio-

chemistry while providing a means to predict where, how, and to

what extent transcription factor bind.

Finally, we wish to refer to a growing body of parallel work that

models gene expression. Some of these studies use similar statistical

models to ours, yet their modeling of transcription factor binding is

intrinsic, limited to short regions of the genome with known

regulatory activity, and has not examined the role of chromatin

accessibility. Moreover, these models are optimized to recapitulate

the patterns of expression for various genes, and do not focus on

understanding the mechanisms of protein-DNA targeting [66,69–

71,103].

One could argue that our use of DNA accessibility to eliminate

regions where transcription factors are not bound is cheating. And,

indeed, to the extent that our ultimate goal is to predict

transcription factor binding from first principles it surely is. We

have not established what determines the genome-wide landscape

of DNA accessibility. But we have taken advantage of these direct

in vivo measurements of DNA accessibility, and, in doing so,

provide both a practical method for predicting binding, and a

platform on which to better understand the forces that shape

quantitative variation in the binding of individual factors to

regions of open chromatin.
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This success suggests a streamlined strategy for estimating of

transcription factor binding for large numbers of factors involving

in vivo measurement of DNA accessibility and in vitro

determination of factor affinities for DNA. While this approach

should not be viewed as a substitute for systematic experimental

measurement of transcription factor binding in vivo, we believe

our predictions are good enough to be useful when such

experimental data are unavailable or impractical to obtain.

Although our predictions are surprisingly good, they are by no

means perfect. We are obviously interested in improving these

predictions, primarily by incorporating better data on binding

specificities and more realistic models of protein-DNA and

protein-protein interactions.

Methods

Transcription Factor Chromatin Immunoprecipitation
We used ChIP-seq data for BCD, CAD, GT, HB and KR, from

early stage 5 D. melanogaster embryos [18]. Sequenced reads were

mapped to the genome (Apr. 2006 assembly, dm3, BDGP Release

5), extended according to their orientation to a length of 150 bp,

and binned (down-sampled) to a 25 bp resolution. Finally, the

genomic binding landscape of each factor was smoothed using a

running window of 10 bins (or 250 bp), to account for sampling

noise.

Generalized Hidden Markov Model
We implemented a generalized hidden Markov model to predict

transcription factor binding based on the factor concentration and

the underlying DNA sequence. Following a thermodynamic

rationale, this statistical framework considers the space of all valid

binding configurations as a Boltzmann distribution, where the

probability of each configuration Pi, depends on its energetic state

Ei

Pi!e{bEi

where b equals 1/kBT, with kB being the Boltzmann constant and

T is the temperature (25 C). This allows us convert binding

energies to probabilities and vice versa.

To model the energetic state of each configuration, we view

each unbound nucleotide as generated from a background

mononucleotide distribution PB, (0.32 for A/T, 0.18 for G/C).

Bound nucleotides are generated using any probabilistic model of

transcription factor binding sites [48,51]. Here we use position

weight matrices (PWMs), derived from in vitro SELEX data in

which hundreds of bound oligonucleotides are sequenced for 2–4

rounds of SELEX [104] (BDTNP, unpublished data). Using a

Maximum-Likelihood estimator with a pseudo-count of 0.01 to

prevent zero probabilities, the probability of a subsequence Si to be

bound by transcription factor t equals

Pt Sið Þ~P tð Þ P
lt{1

j~0
Pj Sizj jht

� �

where P(t) denotes the prior binding probability of transcription

factor t (see below), lt denotes the binding site length of factor t, and

Pj Sizj jht

� �
corresponds to the probability of observing the

nucleotide Si+j, at the j position of the PWM of factor t.

The probability of a full binding configuration at the DNA

sequence S, with multiple factors T1, …,Tk bound at positions

X1…Xk could be written as

P Sð Þ~PB Sð Þ P
k

i~1
P Tið Þ

PTi
SXi

� �

PB SXi

� �

with no overlapping binding sites. Moreover, to account for steric

hindrance, we artificially extended each binding site model,

adding flanking region of 3 bp, modeled by non-specific

background distribution PB (0.32 for A/T, 0.18 for G/C), so the

minimum distance between two non-overlapping binding sites is 7

(two flanks of 3 bp plus a 1 bp transition through the background

state).

In the 3D models, we further scale the prior probability P(t) of

each transcription factor t proportionally to its protein expression

level (as measured at a single-cell resolution [47]). The prior

probability P(t) of the nucleosomal binding state is assumed to be

fixed through the embryo.

To account for all possible configurations, and infer the

probability of each factor to bind each DNA position, given

protein concentrations and DNA sequence, we apply the forward-

backward dynamic programming inference algorithm [75].

Specifically, we calculate the probabilities that each factor t binds

the DNA starting at each position i, Ut,i = P(t) * Pt(Si). We then

calculate the forward potentials Ft,i, and the backward potentials

Bt,i, by summing the probabilities of all configurations (paths) that

end (or begin) at position i with a binding site of t. By multiplying

the forward and backward potentials, we can then directly

calculate the exact posterior probability of factor t bound at

position i in a linear time.

In Vitro Protein-DNA Affinities
PWMs for the five transcription factors modeled in this study

were obtained from the Berkeley Drosophila Transcription Network

Project site (http://bdtnp.lbl.gov). PWM counts were then added a

pseudo-count of 0.01 and normalized to probabilities. We have

also tested other possible sources of PWMs [69,105], with similar

overall results. For example, one-hybrid PWMs yielded correla-

tions of 0.72 for KR or 0.64 for CAD (compared to 0.71 and 0.68

using BDTNP’s SELEX PWMs).

Model-Based Simulation of Chromatin
Immunoprecipitation

The probabilities of transcription factor binding that were

calculated by the generalized hidden Markov model were

convolved to predicted ChIP landscape using a customized

model-based estimation of a peak shape [83]. Given a distribution

of DNA fragment lengths c(l), the estimated shape F of a peak is

described as:

F Dxð Þ!
X?

l~Dx

c lð Þ

where Dx denotes the relative distance from the binding locus

(peak center). In general, the probability of sequencing a read Dx

bp away from the binding location is proportional to the amount

of DNA fragment of length $Dx (fragments begin Dx bp away

from the binding location and overlap it). We approximate this

fraction using a Gamma distribution, with parameters corre-

sponding to mean and standard deviation of fragment length.

Finally, we quantify the similarity of the predicted binding

landscape for each factor to the in vivo binding measurements

using a Pearson correlation coefficient.
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Modeling Nucleosome Binding
We used two different probabilistic models to incorporate

nucleosome binding into the generalized hidden Markov model.

First, we used a 141 bp-long sequence-specific model, based on

positional dinucleotide distributions, as described in Segal et al. [93].

Alternatively, we used a 141 bp-long sequence-independent model

of nucleosome binding, based on a fixed distribution of nucleotides

as in the background state PB of the Markov model (0.32 for A/T,

0.18 for G/C). Similarly to the TF states, the two nucleosomal states

were assigned (in turn) a prior probability term P(t) to reflect

nucleosomal concentration. P(t) was optimized together with other

concentration-related parameters P(t) for all transcription factors.

Non-Uniform Binding Probabilities Using DNA
Accessibility

DNase I hypersensitivity data were used to directly compute the

in vivo prior probability of transcription factor binding along the

genome. We used a logistic sigmoid function to process the

genome-wide DNase I read densities DDx into prior probabilities

PDx

PDx~
1

1ze{b:DDxza

where a= 6.008 and b= 0.207. These parameters were optimized

over the training data, separately from the concentration param-

eters in an iterative manner (Piecewise Optimization). We then

computed these PDx values for every genomic position based on

DNase I read densities, and normalized the prior probability of

binding by each TF, P(t), by PDx, to calculate the transition

probabilities into the bound states of every transcription factor. The

transition probability into the nucleosomal state was not affected by

this prior. In addition to the sigmoidal prior described here, we also

tried a linear transformation from read densities DDx to PDx,

resulting with slightly reduced accuracy (0.64 vs. 0.67).

BAC Spike-Ins
Eight BAC were used as spike-ins, including chr2R:8044567-

8229187, chr2R:11688866-11882127, chr2R:19255181-19473745,

chr3L:5493623-5675833, chr3L:11822927-11997557, chr3L:14593-

950-14773107, chr3R:12491763-12640405, and chr3R:23311086-

23491584 (all given in release 5 coordinates). Three DNA samples

were prepared, including: (1) the starting genomic DNA sample; (2)

the genomic DNA with the addition of a set of BAC plasmid DNA

premixed at different concentrations, and (3) a sample that contains

the genomic DNA and the same set of BACs at 2x higher

concentrations. These samples were sonicated to an average size of

500 bp, and the concentration of each BAC in the samples was

quantified by Q-PCR using BAC specific primer-probe sets, and

normalized to the genomic DNA. These samples were then prepared

for sequencing following the same procedure we used for preparing

sequencing libraries using ChIP samples. DNA fragments in the

range from 200–500 bp, including the adapters, were selected for

sequencing, and sequenced (4 lanes for genomic DNA, 2 lanes for

each of 2 spike-in samples). Reads were mapped using bowtie [106],

and the read coverage was normalized to reflect an equal read density

on non-BAC background regions. The relative enrichment of each

BAC post amplification and sequencing was then calculated, and

compared to the Q-PCR enrichments.

Cooperative Binding Modeled Via Importance Sampling
We incorporated cooperative binding in a thermodynamic

setting using sampling [69,98]. This was done by first computing

the posterior binding probabilities for every factor/position/

nucleus using the generalized hidden Markov model, with

sequence-independent nucleosomal state, in 3D resolution. We

then sampled 10,000 binding configurations for every setting,

calculated the occurrences of neighboring binding events (up to

95 bp apart), and re-weighted each sampled configuration by

Wi~ exp ({
X

xj{xk

�� ��
v95

Cj,k)

where Wi corresponds to the weight of configuration i, xj and xk are

the binding positions of transcription factors j and k, and Cj,k

corresponds to their protein-protein cooperativity parameter,

which we optimized using the train set loci (see below). Finally,

the weighted samples were averaged, and the probability of every

binding position for every factor estimated.

Optimization of Model Parameters
All parameters were optimized by maximizing the correlation

between the model binding predictions over the train loci to their

in vivo binding occupancies. The protein concentration param-

eters were initially optimized using a genetic algorithm [107], with

25 generations across a population size of 15. The optimized

concentrations were then further improved using a gradient-based

trust-region algorithm [99,100]. Both phases were implemented in

MATLAB. Protein-protein cooperativity parameters were opti-

mized using a gradient-based trust-region algorithm starting from

.200 random starting points.

Data Availability
All data, including PWMs, 3D protein concentrations, DNase I

hypersensitivity prior, binding probabilities and predicted binding

landscapes for all factors (at whole-embryo and single-nucleus

resolution) and protein-protein cooperativity parameters are

available at http://bdtnp.lbl.gov/gHMM

Supporting Information

Figure S1 The generalized hidden Markov model. Diagram of

the model’s state machine, including the mononucleotide ‘‘no

binding’’ background state (red), five states corresponding to the

five transcription factors in the model (blue), and a 141 bp-long

nucleosomal binding state (green). The emission probabilities of

each TF state are visualized using sequence logos. Transition

probabilities depend on the concentrations of transcription factors,

and the estimated accessibility of DNA.

Found at: doi:10.1371/journal.pgen.1001290.s001 (0.65 MB TIF)

Figure S2 BAC spike-ins. Eight long BACs were added to

genomic DNA at 16 various concentrations (ranging from ,2 to

,40-fold, relative to genomic DNA), and measured before (using

Q-PCR, shown along X-axis) and after (using sequencing, shown

along Y-axis) amplification and processing for sequencing,

resulting with a correlation of 0.997 and a linear fit of y = 1.14x.

Vertical error-bars correspond to 1 standard deviation of the

enrichment, based on running windows of 250 bp over each BAC.

Found at: doi:10.1371/journal.pgen.1001290.s002 (0.27 MB TIF)

Figure S3 From binding probabilities to ChIP landscape. (A)

Each binding event (left) was transformed to a model-based

estimation of peak shape (right, customized from Capaldi et al.

[83]), depending on the average length of DNA fragments during

the ChIP stage. (B) This model was then used to convolve the

model’s binding predictions (blue) to the expected landscape of
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ChIP sequencing assay (green), which was eventually compared to

the measured in vivo binding landscape (red).

Found at: doi:10.1371/journal.pgen.1001290.s003 (0.08 MB TIF)

Figure S4 Chromosomal predictions with and without DNA

accessibility prior. Same as Figure 4, but for entire chromosome

2R. (A) Measured (X-axis) vs. predicted (Y-axis) occupancy for all

factors. (B) Same as (A), but colored based on DNA accessibility,

ranging from pale cyan (lowly accessible) to dark blue (highly

accessible). (C–D) Same as (A–C), but with DNase I hypersensi-

tivity-based prior on protein binding integrated into the model.

Found at: doi:10.1371/journal.pgen.1001290.s004 (2.37 MB TIF)

Figure S5 Higher prediction accuracy for highly expressed

genes. Comparison of the expression levels over 4,251 genes [101]

vs. the cumulative accuracy of the model’s predictions. Genes were

binned into 20 groups based on expression levels. Shown are the

average expression levels for each group (blue), and the cumulative

correlation of the model’s predictions vs. measured in vivo data

(measured over top K groups) and averaged over all five factors

(green).

Found at: doi:10.1371/journal.pgen.1001290.s005 (0.21 MB TIF)

Table S1 Model’s accuracy at 16 possible combinations of input

data. Accuracy of model’s predictions at 16 possible binary

configurations of input data. These include (1) Sequence, which

was either used (Sq = +) or randomly shuffled (Sq = –); (2) Three-

dimensional predictions at a single-nucleus resolution, with

binding competition among factors and nucleosomes (3D = +)

vs. whole embryo factor-independent predictions (3D = –); (3)

DNA accessibility prior on protein binding, based on DNase I

hypersensitivity (DN = 1) vs. uniform prior (DN = –); and (4)

Thermodynamic cooperativity parameters for adjacently bound

factors (Co = +) vs. pure Markovian model (Co = –).

Found at: doi:10.1371/journal.pgen.1001290.s006 (0.10 MB

DOC)
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