Self-Organization in Sensor and Actor Networks

Falko Dressler

University of Erlangen, Germany

John Wiley & Sons, Ltd

Contents

	Fore	eword	xiii			
	Pref	ace	xv			
	Abo	ut the Author	xix			
	List	of Abbreviations	xxi			
Į.	S	elf-Organization	1			
1	Intr	oduction to Self-Organization	3			
	1.1 1.2	Understanding self-organization	4 5			
2	Svst	em Management and Control – A Historical Overview	7			
-	2.1	System architecture	8			
	2.2	Management and control	10			
		2.2.1 Centralized control	10			
		2.2.2 Distributed systems	11			
		2.2.3 Self-organizing systems	14			
3	Self-Organization - Context and Capabilities					
	3.1	Complex systems	17			
	3.2	Self-organization and emergence	19			
	3.3	Systems lacking self-organization	22			
		3.3.1 External control	22			
		3.3.2 Blueprints and templates	22			
	3.4	Self-X capabilities	23			
	3.5	Consequences of emergent properties	24			
	3.6	Operating self-organizing systems	26			
		3.6.1 Asimov's Laws of Robotics	26			
		3.6.2 Attractors	28			
	3.7	Limitations of self-organization	30			

viii	CONTENT
V111	CONTEN

4 Natural Self-Organization				
	4.1	Development of understandings	33	
	4.2	Examples in natural sciences	34	
		4.2.1 Biology	35	
		4.2.2 Chemistry	36	
	4.3	Differentiation self-organization and bio-inspired	37	
		4.3.1 Exploring bio-inspired	37	
		4.3.2 Bio-inspired techniques	38	
		4.3.3 Self-organization vs bio-inspired	40	
5		-Organization in Technical Systems	41	
	5.1	General applicability	41	
		5.1.1 Autonomous systems	41	
		5.1.2 Multi-robot systems	42	
		5.1.3 Autonomic networking	43	
		5.1.4 Mobile Ad Hoc Networks	44	
		5.1.5 Sensor and Actor Networks	45	
	5.2	Operating Sensor and Actor Networks	46	
6	Met	hods and Techniques	49	
ĭ	6.1	Basic methods	49	
		6.1.1 Positive and negative feedback	50	
		6.1.2 Interactions among individuals and with the environment	52	
		6.1.3 Probabilistic techniques	53	
	6.2	Design paradigms for self-organization	54	
		6.2.1 Design process	54	
		6.2.2 Discussion of the design paradigms	55	
	6.3	Developing nature-inspired self-organizing systems	57	
	6.4	Modeling self-organizing systems	58	
		6.4.1 Overview of modeling techniques	58	
		6.4.2 Differential equation models	59	
		6.4.3 Monte Carlo simulations	60	
		6.4.4 Choosing the right modeling technique	60	
Aj	pend	lix I Self-Organization – Further Reading	61	
II	N	letworking Aspects: Ad Hoc and Sensor Networks	65	
11	17	networking Aspects. At 110c and Sensor Networks	03	
7		bile Ad Hoc and Sensor Networks	67	
	7.1	Ad hoc networks	67	
		7.1.1 Basic properties of ad hoc networks	68	
	. .	7.1.2 Mobile Ad Hoc Networks	70	
	7.2	Wireless Sensor Networks	73	
		7.2.1 Basic properties of sensor networks	73	
		7.2.2 Composition of single-sensor nodes	76 7 0	
		7.2.3 Communication in sensor networks	79	

CC	NTE	NTS		ix
		7.2.4	Energy aspects	83
		7.2.5	Coverage and deployment	83
		7.2.6	Comparison between MANETs and WSNs	85
		7.2.7	Application examples	86
	7.3	Challer	nges and research issues	90
		7.3.1	Required functionality and constraints	90
		7.3.2	Research objectives	92
8	Self-	Organi	zation in Sensor Networks	95
	8.1	_	ties and objectives	95
	8.2		rization in two dimensions	97
		8.2.1	Horizontal dimension	97
		8.2.2	Vertical dimension	99
	8.3	Method	ds and application examples	101
		8.3.1	Mapping with primary self-organization methods	101
		8.3.2	Global state	103
		8.3.3	Location information	104
		8.3.4	Neighborhood information	105
		8.3.5	Local state	106
		8.3.6	Probabilistic techniques	107
_				
9			cess Control	109
	9.1		tion-based protocols	110
	9.2	Sensor		113
		9.2.1	Synchronized listen/sleep cycles	114
		9.2.2	Performance aspects	116
		9.2.3	Performance evaluation	118
	9.3		Control MAC protocol	119
	9.4	Conclu	sion	122
10	Ad I	loc Ro	uting	123
	10.1	Overvi	ew and categorization	125
		10.1.1	Address-based routing vs data-centric forwarding	125
		10.1.2	Classification of ad hoc routing protocols	127
	10.2		oles of ad hoc routing protocols	131
			Destination Sequenced Distance Vector	131
			Dynamic Source Routing	132
			Ad Hoc on Demand Distance Vector	134
			Dynamic MANET on Demand	138
	10.3		ized route stability	141
			nic address assignment	143
		•	Overview and centralized assignment	144
			Passive Duplicate Address Detection	145
			Dynamic Address Allocation	146
	10.5	Conclu	· · · ·	149

11	Data	a-Centric Networking			1	53
	11.1	Overview and classification	٠.,		. 1	55
		11.1.1 Data dissemination			. 1	56
		11.1.2 Network-centric operation			. 1	58
		11.1.3 Related approaches				59
(%)	11.2	Flooding, gossiping and optimizations			. 1	59
		11.2.1 Flooding				60
		11.2.2 Pure gossiping				63
		11.2.3 Optimized gossiping				65
	11.3	Agent-based techniques				70
		Directed diffusion				173
		11.4.1 Basic algorithm				173
		11.4.2 Mobility support				176
		11.4.3 Energy efficiency				177
	11 5	Data aggregation				178
	11.5	11.5.1 Principles and objectives				179
		11.5.2 Aggregation topologies				181
	116	Conclusion				184
	11.0	Conclusion	•			.07
12	Clus	stering			1	185
		Principles of clustering				186
		12.1.1 Requirements and classification				187
		12.1.2 k-means				189
		12.1.3 Hierarchical clustering				190
	12 2	Clustering for efficient routing				191
	12.2	12.2.1 Low-Energy Adaptive Clustering Hierarchy				192
		12.2.2 Hybrid Energy-Efficient Distributed Clustering Approach .				195
	12.3	Conclusion				196
	12.5	Conclusion	•	• •	•	.,,
Ap	pend	lix II Networking Aspects – Further Reading			1	199
Ш	\mathbf{C}	Coordination and Control: Sensor and Actor Networks			2	03
						_
13		sor and Actor Networks				205
	13.1	Introduction				
		13.1.1 Composition of SANETs – an example				
		13.1.2 Properties and capabilities				207
		13.1.3 Components of SANET nodes				21(
		13.1.4 Application examples			. 2	212
	13.2	Challenges and research objectives			. 2	214
		13.2.1 Communication and coordination	•		. 2	215
		13.2.2 Collaboration and task allocation			. 2	216
	13.3	Limitations			. 2	217
14		nmunication and Coordination				219
	14.1	Synchronization vs coordination			. 2	220

xi

		14.1.1 Problem statement	220
		14.1.2 Logical time	222
		14.1.3 Coordination	
	14.2	Time synchronization in WSNs and SANETs	223
		14.2.1 Requirements and objectives	224
		14.2.2 Conventional approaches	
		14.2.3 Algorithms for WSNs	
	14.3	Distributed coordination	
		14.3.1 Scalable coordination	231
		14.3.2 Selected algorithms	
		14.3.3 Integrated sensor-actor and actor-actor coordination	235
		14.3.4 Problems with selfish nodes	
	14.4	In-network operation and control	
		Conclusion	
15	Colle	aboration and Task Allocation	247
10		Introduction to MRTA	
	13.1	15.1.1 Primary objectives	
		15.1.2 Classification and taxonomy	
	15.2	Intentional cooperation – auction-based task allocation	
	13.2	15.2.1 Open Agent Architecture	
		15.2.2 Murdoch	
		15.2.3 Dynamic negotiation algorithm	
	153	Emergent cooperation	
	13.3	15.3.1 Stimulation by work	
		15.3.2 Stimulation by state	
	15 4	Conclusion	
			207
Аp	pend	ix III Coordination and Control – Further Reading	269
IV	S	elf-Organization Methods in Sensor and Actor Networks	273
16	Self-	Organization Methods – Revisited	275
		Self-organization methods in SANETs	277
		Positive and negative feedback	
		Interactions among individuals and with the environment	
		Probabilistic techniques	
17	Eval	uation Criteria	291
		Scalability	292
		Energy considerations	
		17.2.1 Energy management	
		17.2.2 Transmission power management	
	17.3	Network lifetime	
		17.3.1 Definition of 'network lifetime'	
		17.3.2 Scenario-based comparisons of network lifetime	300

ii	CONTENTS

V	Bio	o-inspi	red Networking			303
18	Bio-i	inspired	Systems			305
	18.1	Introdu	ction and overview		 	306
		18.1.1	Ideas and concepts		 	306
		18.1.2	Bio-inspired research fields		 	308
	18.2		Intelligence			
			Principles of ant foraging			
			Ant-based routing			
			Ant-based task allocation			
	18.3		al Immune System			
			Principles of the immune system			
			Application examples			
	18.4		r signaling pathways			
		18.4.1	Introduction to signaling pathways	. .	 	323
			Applicability in SANETs			
	18.5		sion			
Ap	pend	ix IV B	io-inspired Networking – Further Read	ing		331
Bil	oliogr	aphy				335
Ind	low					255