A characterization of halved cubes

Wilfried Imrich
Department of Mathematics and Applied Geometry
Montanuniversität Leoben
A-8700 Leoben, Austria

Sandi Klavžar* and Aleksander Vesel
Department of Mathematics, PEF
University of Maribor
Koroška cesta 160
62000 Maribor, Slovenia

Abstract

The vertex set of a halved cube Q_d' consists of a bipartition vertex set of a cube Q_d and two vertices are adjacent if they have a common neighbour in the cube. Let $d \geq 5$. Then it is proved that Q_d' is the only connected, $\binom{d}{2}$-regular graph on $2^d - 1$ vertices in which every edge lies in two d-cliques and two d-cliques do not intersect in a vertex.

1 Introduction

Let G be a bipartite graph with bipartition $V(G) = X \cup Y$. A halved graph G' of G is defined as follows. $V(G') = X$ and $uv \in E(G')$ whenever u and v have a common neighbour in G. G has another halved graph with vertex set Y. When we consider the d-cube Q_d both halved graphs are isomorphic and we talk about the halved d-cube Q_d'.

Partial Hamming graphs are exactly those graphs which can be isometrically embedded into a Cartesian product of complete graphs, cf. [9]. We refer also to [2, 8] where these graphs are called Hamming graphs. In case every one of the factors is the complete graph K_2 on two vertices one obtains an isometric embedding into a hypercube and speaks of a partial

*This work was supported in part by the Ministry of Science and Technology of Slovenia under the grant J1-7036/94.
binary Hamming graph. By a scale embedding of a graph G into a graph H we mean a mapping

$$\psi : V(G) \to V(H)$$

for which there exists a positive integer λ such that

$$d_H(\psi(u), \psi(v)) = \lambda d_G(u, v)$$

for all $u, v \in V(G)$, where d_H and d_G denote the usual path distance in G and H, respectively. If one relaxes the condition of isometry and considers so-called scale embeddings into hypercubes a class larger than that of partial Hamming graphs arises. It has been characterized by Assouad and Deza [1] as the class of graphs isometrically embeddable into the metric space ℓ_1. These graphs have in turn been characterized by Deza and Grishukhin [3] and Shpectorov [14] as isometric subgraphs of Cartesian products of complete graphs, cocktail party graphs and halved cubes.

It was this recent study of ℓ_1-graphs that motivated us to consider halved cubes. As it is clear from the above, halved cubes play an important role in the characterization of ℓ_1-graphs. In fact, without going into details, by a result of Graham and Winkler [6] about so-called canonical isometric embeddings of graphs into Cartesian products together with an algorithm of Feder [5], a good algorithm for recognizing isometric subgraphs of halved cubes would suffice for a good algorithm for recognizing ℓ_1-graphs. An $O(mn)$ algorithm for recognizing isometric subgraphs of halved cubes and thus of ℓ_1-graphs was recently obtained by Deza and Shpectorov, [4]. Here n denotes the number of vertices and m the number of edges of a given graph.

We also wish to recall that Aurenhammer, Formann, Idury, Schäffer and Wagner [2] and Imrich and Klavžar [8] proved that it can be decided in $O(mn)$ time whether a given graph is a partial Hamming graph.

As usual, for a vertex $u \in V(G)$ let $N(u) = \{v ; uv \in E(G)\}$. A clique is a maximal complete subgraph. If Q is a clique we will also use Q to denote its vertex set. A clique on d vertices will be called a d-clique. The cocktail party graph on $2n$ vertices is the complete graph K_{2n} minus a complete matching.

In this note we first study the structure of halved cubes and then give a characterization of these graphs. A halved cube on 2^{d-1} vertices is the only connected, $\binom{d-1}{2}$-regular graph in which every edge lies in two d-cliques and two d-cliques do not intersect in a single vertex.

2 The characterization

We will first summarize several properties of halved cubes. Then we will prove that some of these properties already imply that a given graph is a halved cube thus obtaining the desired characterization.
The vertex set of the d-cube Q_d may be represented by all sequences of length d over $\{0, 1\}$ where two vertices are adjacent if they differ in exactly one position. We may henceforth consider vertices of the halved d-cube Q'_d as sequences of length d over $\{0, 1\}$. In the sequel we will, without loss of generality, assume that a vertex of Q'_d is such a sequence with an even number of 1’s. In particular, $(0, 0, \ldots, 0) \in Q'_d$. Then two vertices of Q'_d are adjacent if and only if they differ in two positions.

Clearly, Q'_d has 2^{d-1} vertices. In addition, from the coordinate representation of Q'_d it follows immediately that Q'_d is a $\binom{d}{2}$-regular graph. (We also recall that halved cubes are distance-regular graphs, cf. [7].)

Note that Q'_3 is isomorphic to the complete graph K_4 on four vertices and that Q'_4 is isomorphic to the cocktail party graph on 8 vertices. To simplify the presentation we may henceforth assume that $d \geq 5$.

Proposition 1

(i) There are only two types of cliques of Q'_d, namely 4-cliques and d-cliques.

(ii) Every vertex of Q'_d lies in d d-cliques.

(iii) Q'_d has 2^{d-1} d-cliques.

Proof. (i) We include the proof of (i) for the sake of completeness although it can be found in [7].

Let u, v and w be distinct vertices of a clique Q of Q'_d. We may, without loss of generality, assume that $u = (0, 0, 0, 0, \ldots)$, $v = (1, 1, 0, 0, \ldots)$, and $w = (1, 0, 1, 0, \ldots)$, where all three vertices agree in the remaining coordinates.

Let z be another vertex of Q. It must have exactly one 1 in its first two coordinates for otherwise it would not be adjacent to at least one of u and v.

If $z = (0, 1, \ldots)$, it must agree with w in coordinates 3, 4, \ldots, d and there is only one such vertex. Clearly the vertices u, v, w and z induce a clique.

If $z = (1, 0, \ldots)$ it must be of the form $(1, 0, 0, \ldots, 1, \ldots)$. Clearly these $d - 3$ vertices, together with u, v and w form a d-clique.

(ii) By the argument from (i), the d-cliques of Q'_d are induced by the neighborhoods of vertices of Q_d with an odd number of 1’s. Now, since every vertex of Q'_d is in d such neighborhoods, it is contained in precisely d such cliques.

(iii) This follows by the same argument as (ii).

We next give properties of halved cubes with respect to a given edge.

Proposition 2 Let uv be an edge of Q'_d. Then

(i) $|N(u) \cap N(v)| = 2(d - 2)$.

3
(ii) \(uv \) belongs to precisely two \(d \)-cliques of \(Q'_d \), say \(Q \) and \(Q' \).
(iii) \(Q \cap Q' = \{ u, v \} \).
(iv) \(Q - \{ u, v \} \) and \(Q' - \{ u, v \} \) are joined by a matching.

Proof. We may without loss of generality assume \(u = (0, 0, 0, \ldots, 0) \) and \(v = (1, 1, 0, 0, \ldots, 0) \). Let \(w \) be a vertex adjacent to both \(u \) and \(v \). Then \(w \) starts out \((1, 0, \ldots)\) or \((0, 1, \ldots)\) and it has exactly one 1 in the remaining \(d-2 \) coordinates. Thus there are \(2(d-2) \) vertices in \(N(u) \cap N(v) \).

Furthermore, the vertex sets
\[
\{u, v, (1, 0, 1, 0, \ldots, 0), (0, 1, 0, 1, 0, \ldots, 0), \ldots, (0, 1, 0, 0, 1, 0, \ldots, 0)\}
\]
and
\[
\{u, v, (0, 1, 1, 0, \ldots, 0), (0, 1, 0, 1, \ldots, 0), \ldots, (0, 1, 0, 0, 1, 0)\}
\]
induce the two cliques containing \(uv \). All the rest now easily follows. \(\Box \)

A connected graph \(G \) is a \((0,2)\)-graph if any two distinct vertices in \(G \) have exactly two common neighbors or none at all, cf. [12, 13]. Note that in bipartite graphs this condition applies only to pairs of vertices at distance two.

We will need the following result due to Mulder [13, page 55], cf. also [11].

Theorem 3 Let \(G \) be a \(d \)-regular \((0,2)\)-graph. Then \(|V(G)| = 2^d \) if and only if \(G \) is \(Q_d \).

We are ready now to characterize halved cubes.

Theorem 4 Let \(d \geq 5 \). Let \(G \) be a connected, \(\binom{d}{2} \)-regular graph on \(2^d - 1 \) vertices. Then \(G \) is the halved cube \(Q'_d \) if and only if

(i) every edge of \(G \) is contained in exactly two \(d \)-cliques,
(ii) for any \(d \)-cliques \(Q \) and \(Q' \), \(|Q \cap Q'| \neq 1 \).

Proof. If \(G \) is a halved cube then Proposition 2 yields (i) and (ii). Conversely, suppose that (i) and (ii) hold. Since \(G \) is a \(\binom{d}{2} \)-regular graph on \(2^d - 1 \) vertices, \(|E(G)| = d(d-1)2^{d-3} \). Thus, because of (i), there are \(2|E(G)| = 2^{d-1} \) \(d \)-cliques of \(G \). In addition, since \(G \) is \(\binom{d}{2} \)-regular and every edge is in two \(d \)-cliques, every vertex of \(G \) belongs to \(\frac{2\binom{d}{2}}{d-1} = d \) \(d \)-cliques.

Let \(Q \) and \(Q' \) be \(d \)-cliques of \(G \) with \(|Q \cap Q'| = s \) for \(s \geq 1 \). Then by (ii), \(s \geq 2 \). Let \(u \in Q \cap Q' \) and let \(Q, Q', Q_1, Q_2, \ldots, Q_{d-2} \) be the \(d \)-cliques
containing \(u \). Note first that for any \(i, Q_i \cap (Q \cap Q') = \{ u \} \), for otherwise an edge of this intersection would belong to at least three \(d \)-cliques. Thus by (ii), \(Q_i \) must intersect \(Q \setminus Q' \) for \(i = 1, 2, \ldots, d - 2 \). Furthermore, if for \(w \in Q \setminus Q' \) we have \(w \in Q_i \cap Q_j, i \neq j \), then the edge \(uw \) would not satisfy (i). If follows that \(d - s \geq d - 2 \), thus \(s = 2 \). Hence if \(Q \cap Q' \neq \emptyset \) then \(|Q \cap Q'| = 2 \).

Let \(n = 2^d - 1 \) and denote the vertices of \(G \) by \(V(G) = \{ u_1, u_2, \ldots, u_n \} \). Let \(H \) be a graph which we get from \(G \) in the following way. To every \(d \)-clique \(Q \) of \(G \) we add a new vertex and join it to every vertex of \(Q \). These are the newly defined edges of \(H \). The original edges of \(G \) are all removed. Note that \(H \) is bipartite. Since \(G \) contains \(n \) \(d \)-cliques we may write \(V(H) = \{ u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n \} \). By construction, \(d_H(u_i) = d \), for every \(i = 1, 2, \ldots, n \), and since every \(u_i \) is in \(d \)-\(d \)-cliques, we conclude that \(H \) is \(d \)-regular.

We claim that \(H \) is a \((0, 2)\)-graph. \(H \) is connected because \(G \) is connected and every edge of \(G \) lies in a \(d \)-clique. Let \(d_H(u_i, u_j) = 2 \) and let \(v_k \) be a common neighbor of \(u_i \) and \(u_j \). Then \(u_iu_j \) must be an edge of \(G \) and since it is contained in two \(d \)-cliques, there is another common neighbor of \(u_i \) and \(u_j \), say \(v_k \). Furthermore, \(v_k \) and \(u_k \) are their only common neighbors for otherwise \(u_iu_j \) would lie in more than two \(d \)-cliques of \(G \). Now, let \(u_k \) be a common neighbor of vertices \(v_i \) and \(v_j \) and let \(Q_i \) and \(Q_j \) be the cliques of \(G \) corresponding to \(v_i \) and \(v_j \). Since \(u_k \in Q_i \cap Q_j \) we have \(|Q_i \cap Q_j| = 2 \). But this means that \(v_i \) and \(v_j \) have precisely two common neighbors and the claim is proved.

We have seen that \(H \) is a \(d \)-regular \((0, 2)\)-graph on \(2^d \) vertices. Thus \(H \) is \(Q_d \) by Theorem 3. To complete the proof we are going to show that \(G \) is the halved graph of \(H \). More precisely, we need to show that \(u_iu_j \in E(G) \) if and only if \(d_H(u_i, u_j) = 2 \). Let \(u_iu_j \in E(G) \). Then \(u_iu_j \) belongs to a \(d \)-clique \(Q \) and by construction there is a vertex of \(H \) adjacent to every vertex of \(Q \). In particular, \(d_H(u_i, u_j) = 2 \). Conversely, let \(d_H(u_i, u_j) = 2 \). Because in \(H \) all the edges of \(G \) are removed there is a vertex \(v_k \) (not in \(G \)) such that \(u_iv_k \in E(H) \) and \(v_ku_j \in E(H) \). But this implies that \(u_i \) and \(u_j \) belong to a common clique of \(G \), hence \(u_iu_j \in E(G) \).

We note that condition (ii) of Theorem 4 can be replaced by the following equivalent condition:

(iii') for any \(d \)-cliques \(Q \) and \(Q' \), \(|Q \cap Q'| \leq 2 \).

In the proof of Theorem 4 we have shown that (ii) implies (iii'). Suppose now that (iii') holds and assume that \(|Q \cap Q'| = 1 \) for \(d \)-cliques \(Q \) and \(Q' \). Let \(u \in Q \cap Q' \). Let \(V(Q) = \{ u, w_1, w_2, \ldots, w_{d-1} \} \). Clearly, \(uw_i \in Q \) for \(i = 1, 2, \ldots, d - 1 \). Let \(Q_i \neq Q \) be the second \(d \)-clique containing \(uw_i \), \(i = 1, 2, \ldots, d - 1 \). Then \(Q_i \neq Q' \). Furthermore, if \(i \neq j \) then \(Q_i \neq Q_j \),
for otherwise $|Q_1 \cap Q| \geq 3$. It follows that u is contained in at least $d + 1$ d-cliques, a contradiction.

References

[12] H.M. Mulder, $(0, \lambda)$-graphs and n-cubes, Discrete Math. 28 (1979) 179–188.
