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Abstract: This paper investigates eye behaviour through blinks activity during stress conditions.
Although eye blinking is a semi-voluntary action, it is considered to be affected by one’s emotional
states such as arousal or stress. The blinking rate provides information towards this direction,
however, the analysis on the entire eye aperture timeseries and the corresponding blinking patterns
provide enhanced information on eye behaviour during stress conditions. Thus, two experimental
protocols were established to induce affective states (neutral, relaxed and stress) systematically
through a variety of external and internal stressors. The study populations included 24 and 58
participants respectively performing 12 experimental affective trials. After the preprocessing phase,
the eye aperture timeseries and the corresponding features were extracted. The behaviour of inter-
blink intervals (IBI) was investigated using the Markovian Analysis to quantify incidence dynamics
in sequences of blinks. Moreover, Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) network models were employed to discriminate stressed versus neutral tasks per
cognitive process using the sequence of IBI. The classification accuracy reached a percentage of 81.3%
which is very promising considering the unimodal analysis and the noninvasiveness modality used.

Keywords: stress; blinks; eye activity; convolutional neural networks; CNN; Markovian Analysis;
Inter Blink Interval; machine learning

1. Introduction

Eye blinking is a semi-voluntary action of fast closing and reopening of the eyelid. It
occurs as a result of the co-inhibition of eyelid’s protractors and retractors muscles. Blinking
serves the spreading of the corneal tear film across the frontal surface of the cornea [1]. The
average duration of a single eye blink is 0.1–0.4 s [2]. The blink rate (BR), measured in
blinks/min, is influenced by environmental factors (humidity, temperature, brightness),
and physical activity [3].
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Stress is considered to affect eye behaviour which is reflected in eye blinks patterns [4].
There is research evidence suggesting that eye-related features are associated with the
emotional state such as trait anxiety [5]. Eye blink rate may be related to emotional and
cognitive processing, especially with attentional engagement and mental workload [6].
The relevant literature has investigated the relationship between eye blinks and stress,
reporting that during stress conditions blink rate is significantly increased [7,8]. In addition,
there are blink parameters [4] such as blink duration, eye closing/reopening time, peak
amplitude, inter-blink interval (IBI) which have not been investigated considerably in the
literature, but they may provide useful information about eye functioning [9].

IBI was studied for spontaneous eye blink rate in healthy adults in order to formulate
the normal blink rate and IBI patterns [7]. It was reported that there were no gender
IBI differentiations, but there was great intra-subject variability either in blink rates or in
IBI. In our previous study [8], it was reported that there are 4 types of eye blink patterns
categorized according to the IBI behaviour they follow. Additionally, in [8], it was observed
that eye blinks appear to be significantly increased in specific stressful tasks. Thus, the
research question was placed whether the IBI time-series can enhance information instead
of just measuring blinks number and whether this information can reveal blinks patterns
associated with stress conditions.

The aim of this study was to investigate whether machine learning-based techniques
can predict the experimental task under which the eye blinks took place and, further, reveal
the dynamics of blinks generation in each task using Markov models. Accordingly, a
task-based Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)
are trained and tested on the IBI sequence, in an effort to investigate the mechanisms
related to each task, neutral and stressed, per cognitive process. The existence of memory
in the process of eye blinks generation is analyzed with Markov models, revealing that
strong “attractors” in eye blinks production differentiate under different cognitive tasks.

2. Experimental Protocol and Data Description
2.1. Experimental Procedure

Firstly, an experiment was designed and conducted to investigate the effects of stress
conditions on the human face. It included neutral tasks (used as reference) and stressors
that simulate a wide range of everyday life conditions that were induced to the partici-
pants. In an attempt to cover different underlying stress types, 4 different stressors types
(experimental phases) were performed, the social exposure, the emotional recall, the mental
tasks or cognitive load and the stressful videos presentation phase.

The social exposure phase included an interview asking from the participant to
describe himself/herself. It has its origin in the stress due to exposure faced by an actor
when he/she is at the stage. Only for the first dataset, a second condition in the exposure
phase entailed reading aloud an 85 word emotionally neutral literary passage. The reference
of this phase was neutral pose (1st and 2nd dataset) and description of words (3rd dataset).

The emotion recall phase included stress elicitation by asking participants to recall
and relive a stressful event from their past life as if it was currently happening.

The mental tasks phase included cognitive load assessment through tasks such as
the modified Stroop colour-word task (SCWT) [10], requiring participants to read colour
names (red, green, and blue) printed in incongruous ink (e.g., the word RED appearing
in blue ink). In the present task, difficulty was increased by asking participants to first
read each word and then name the colour of the word. A second mental task used was the
Paced Auditory Serial Addition Test (PASAT) [11], which is a neuropsychological test with
arithmetic operations for assessing attentional processing. Another task used in this phase
was the presentation of unpleasant images from the International Affective Picture System
(IAPS) [12], which were used as affect generating stimuli (1st and 2nd dataset). Stimuli
included images having stressful content such as human pain, drug abuse, violence against
women and men, armed children, etc. Each image was presented for 15 s.
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The stressful videos phase included the presentation of 2-min video segments in
attempting to induce low-intensity positive emotions (calming video), and stress (action
scene from an adventure film, scene involving heights to participants with moderate levels
of acrophobia, a burglary/home invasion while the inhabitant is inside, car accidents etc.).

Three experiments for the stress assessment through biosignals/facial cues were
conducted in total. The experimental procedure and tasks of the 1st experiment (SRD’14
dataset) was performed for the stress assessment. A 2nd experiment (SRD’15 dataset) was
performed 2 years later. The only difference with the 1st experiment was the removal of one
task 1.3 (text reading). Parameters of the experimental procedure (for more information
about the procedure please refer to [8,13]) along with the tasks description and their
corresponding affective state is presented in Table 1.

Table 1. Experimental phases, tasks, duration and induced affective state employed in the 1st
experiment and the 2nd experiment.

Experimental Phases and Tasks Duration (Min) State of Affect

Social Exposure
1.1. Neutral (reference) 1

2 N
1.2. Interview 1 S
1.3. Text reading 1

2 S

Emotional recall
2.1. Neutral (reference) 1

2 N
2.2. Recall anxious event 1

2 S
2.3. Recall stressful event 1

2 S

Stressful images/Stroop task
3.1 IAPS stressful images 2 S
3.2 Stroop Colour Word Task (mental task) 2 S

Stressful videos
4.1. Neutral (reference) 1

2 N
4.2. Calming video 2 R
4.3. Adventure video 2 S
4.4. Psychological pressure video 2 S

Note: Intended affective state (N: neutral, S: stressful, R: relaxed).

A 3rd experiment similar to the 1st and 2nd experiments was performed 2 years later,
retaining most of the previously used experimental tasks and changing slightly only 3
of them. Specifically, the IAPS images presentation task was replaced with the PASAT
mental task, one emotional recall task was used instead of two, adding also two neutral
tasks (reading letters/numbers and a baseline description) which were considered better
reference tasks in relation to the previous experiments. Moreover, the duration of most
tasks were set to 2 min in order to have greater available monitoring time. The phases
and tasks of the 3rd experiment, along with the tasks description and their corresponding
affective state are presented in Table 2.

2.2. Datasets Description

The population of the 1st dataset (SRD’14 dataset) were 23 adults (16 men, 7 women)
aged 45.1 ± 10.6 years. For each participant, 12 tasks (3 neutral, 8 stressed and 1 relaxed
states) were performed. Videos had a sampling frequency of 50 frames per second (fps)
with a resolution of 526 × 696 pixels. A neutral condition was presented at the beginning
of each phase of the experiment. This condition was used as a baseline for the subsequent
stressful tasks. The study was approved by the North-West Tuscany ESTAV (Regional
Health Service, Agency for the Technical-Administrative Services of Wide Area) Ethical
Committee. All participants provided informed consent.



Signals 2021, 2 58

Table 2. Experimental phases, tasks, duration and induced affective state employed in the 3rd
experiment.

Experimental Phases and Tasks Duration (Min) State of Affect

Social Exposure
1.1. Neutral (reference) 2 N
1.2. Baseline Description 2 N
1.3. Interview 2 S
Emotional recall
2.1. Neutral (reference) 2 N
2.2. Recall stressful event 2 S
Mental Tasks
3.1. Reading letters/numbers
(reference) 2 N

3.2. Stroop-color word test (SCWT) 2 S
3.3. PASAT Task 2 S
Stressful videos
4.1. Relaxing video 2 R
4.2. Adventure video 2 S
4.3. Psychological pressure video 2 S

Note: Intended affective state (N: neutral, S: stressful, R: relaxed).

The 2nd dataset (SRD’15 dataset) included 24 adults (17 men, 7 women) aged 47.3± 9.3
years. For each participant, 11 tasks (3 neutral, 7 stressed and 1 relaxed states) were
performed. Videos had a sampling frequency of 60 fps with a resolution of 1216 × 1600
pixels which subsampled to 30 fps and resolution of 608 × 800 pixels. A neutral condition
was presented at the beginning of each phase of the experiment. This condition was used
as a baseline for the subsequent stressful tasks. The study was approved by the North-West
Tuscany ESTAV Ethical Committee. All participants provided informed consent.

The 3rd experiment was performed at the premises of the FORTH Research Institute.
The population of the dataset were 58 adults (24 men, 34 women) aged 26.9 ± 4.8 years.
For each participant, 11 tasks (4 neutral, 6 stressed and 1 relaxed states) were performed.
Videos had a sampling frequency of 60 fps with a resolution of 1216 × 1600 pixels which
subsampled to 30 fps and resolution of 608× 800 pixels. A neutral condition was presented
at the beginning of each phase of the experiment. This condition was used as a baseline for
the subsequent stressful tasks. The study was approved by the FORTH Ethics Committee
(FEC). All participants provided informed consent.

3. Materials and Methods
3.1. Eye Aperture Timeseries Extraction

The eye aperture timeseries and the corresponding eye-related features (e.g., eye
blinks, IBI, eye blinks duration) were extracted from facial videos. The facial videos had a
sampling frequency of 30 fps. The pre-processing phase involved histogram equalization
for contrast enhancement and face detection. The face detection was performed based
on the Viola-Jones algorithm [14]. Active appearance models (AAM) [15] have been
employed to estimate the 68 2-dimensional facial landmarks. In each eye, 6 landmarks
were segmented tracking the perimeter of each eyeball. The 2D coordinates (xi, yi) were
used to compute the area enclosing these 6 landmarks according to Green’s theorem
representing the eye aperture

A =
1
2

N

∑
i=1
|xiyi+1 − yixi+1| (1)

where N = 6 and xN+1 = x1 , yn+1 = y1.
The eye aperture timeseries’ artefactual spikes (large narrow spikes mainly caused by

the instant loss of eye-tracking) were suppressed using wavelet Independent Component
Analysis (wICA) [16] and lowpass filtered with cutoff frequency fc1 = 10 Hz, in order to
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remove highly varying segments coming from AAM instability. The procedure of eye
aperture time series extraction is presented in Figure 1.

Figure 1. Schematic representation of the eye aperture timeseries extraction. The 68 2D facial
landmarks (blue dots) were extracted from facial videos using AAM (left image). Each eyeball
perimeter was segmented by 6 discrete landmarks. The eye aperture is provided by the shaded blue
area (right upper image) and a typical eye aperture timeseries is shown in the right lower graph.

3.2. Eye Blink Extraction

As stated above, the eye blinks are fast closing/reopening of the eyelid and can be
seen as a sharp decrease in the aperture timeseries, as shown in Figure 2.

Figure 2. Time series of eye aperture and the identified blink peaks (denoted with red points). The
IBI and the blink duration are also illustrated.

The timeseries trough detection was performed using a custom peak detection algo-
rithm, based on the signal’s derivative and peak parameters criteria such as Signal-to-Noise
Ratio (SNR), peak slope, peak distance, peak duration. These parameters were set in such
a way in order to filter-out small peaks and select only timeseries with sharp decreases, as
shown in Figure 1. Especially, the minimum peak duration parameter was set to 100 ms
(corresponding to 5 consecutive data points), given that an eye blink typically lasts between
100–400 ms [2].
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3.3. Eye Related Features Extraction

The eye blink rate per se is considered that it cannot capture enhanced information
about eye behaviour patterns and temporal dynamics, neither provide insight information
about the generation of eye blinks that would be valuable for the investigation of emotional
processes, such as stress. Thus, two more features derived from eye aperture time-series
were investigated: the inter-blink interval (IBI) and the blink duration.

The IBI is defined as the distance between two peaks of consecutive blinks, as shown
in Figure 2. The IBI was studied for spontaneous eye blink rate in healthy young adults in
order to determine normal eye blink rate range and IBI patterns [17]. It was reported that
there were no gender IBI differentiations, but there was great intra-subject variability either
in blink rates or in IBI. In [18], it is reported that there are 4 types of eye blink patterns
categorized according to the IBI behaviour they follow.

It is known that the left and right eye typically blink in a closely synchronized fash-
ion [19], which is checked and confirmed to both datasets. Thus, only the right eye was
used for the analysis of this study.

3.4. IBI Sequence Classification

The IBI behaviour prediction across stress phases was performed using a one- dimane-
sional (1D) CNN under a 10 × 10 nested cross-validation schemes with 10 repetitions. For
generalization, task-independent prediction was performed. The 1D CNN was selected
due to its effectiveness on the classification of timeseries with variable size. Different
network architectures were applied and the one that gives the highest accuracy but keeps
the computational complexity low is presented.

The network architecture consists of two convolutional layers followed by non-linear
activation function rectified linear units (ReLu), one max-pooling layer applied after the
first convolutional layer and the global max-pooling layer after the second convolutional
layer. This configuration enables the CNN to accept inputs of variable size. For the first
convolutional layer, 64 filters with a kernel size of 1 were trained, whereas 128 filters with
a kernel size of 1 were trained for the second convolutional layer. Finally, a linear layer
with an output shape of 2 and a softmax activation returns the classification score. The
convolutional and pooling layers are followed by a dense fully connected layer that inter-
prets the features extracted by the convolutional part of the model. A flatten layer is used
between the convolutional layers and the dense layer to reduce the feature maps to a single
1D vector. To improve generalization, the model has been regularized using a dropout
on the outputs of the max-pooling and global max-pooling layers (values between p =
[0.1–0.9] were checked and the value p = 0.1 was finally selected), L2-regularization (values
of λ > 10−4 were checked and λ = 0.01 was finally selected) using the weights of the second
convolutional layer, and finally early-stopping the training after the validation loss has not
improved for 5 out of 10 epochs during pre-training/fine-tuning. The learning rate range
was [0.01–0.00001], values between 0.0001 and 0.001 were finally selected for each experi-
mental phase. All models were trained using the Adam optimizer [20]. Hyperparameters
(including learning rate, L2 regularization and dropout probability) were optimized on
90% of the training data, leaving 10% for validation. After determining the appropriate
hyperparameters, the model performance was tested out-of-sample on the testing set pre-
pared under the 10 fold nested cross-validation scheme. To increase robustness, all CNN
experiments were repeated 10 times on the same data split, and thus training and testing
accuracy were the average over all 10 trials. The code was implemented using Keras [21]
with the TensorFlow [22] backend.

The best method to select the number of convolutional layers is to increment one at a
time until best accuracy is achieved. Two key hyperparameters that define the convolution
operation are size and number of kernels. The former is typically 1 for 1D signals. The
latter is arbitrary, and determines the depth of output feature maps. A convolutional layer
can be seen as applying and sliding a filter over the time series. Unlike images, the filters
exhibit only one dimension (time) instead of two dimensions (width and height). The filter
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can also be seen as a generic non-linear transformation of a time series. Here, two feature
maps were extracted from 1D signals with approximately 1200 time points, by upsampling
the in-plane dimension by a factor of 64 in the first convolutional layer and 128 in the
second. Adding more layers or increment the size of filters will produce more complex
features. Different combination of filter sizes were tested and the accuracies were much
lower. A motivation for applying several filters on an input time series would be to learn
multiple discriminative features useful for the classification task.

In addition, we developed a Long Short-Term Memory network model (LSTM) for
the IBI sequence and the blink sequence classification [23]. LSTM network models are a
type of recurrent neural network that are able to learn and remember over long sequences
of input data and make predictions based on the individual time steps of the sequence
data. Regarding the IBI sequences classification, the sequences were splitted into 200 to 400
mini-batches and were padded, so that they had the same lengths. The 1D data are fed into
the LSTM architecture including 100 hidden units and specify two classes by including a
fully connected layer of size 1, followed by a softmax layer and a classification layer. The
training loss has not improved for 100 out of 300 epochs during parameter-tuning. All
models were trained in a 10 × 10 cross-validation partition using the Adam optimizer with
learning rate range between [0.01–0.00001], values between 0.001 and 0.006 were finally
selected for each experimental phase and the gradient threshold to be 10 with various
values to be checked between 1 to 15. Then, the blinks sequences were tested, formulating
the sequence with 0 when there is no blink and 1 when a blink occurs, and padding in
order all the sequences to have the same length. LSTM were utilized with 5 to 100 hidden
units, for 400 training epochs, and L2 Weight Regularization value set at 0.004 and Sparsity
Regularization set at 4.0 after testing and tuning these model parameters.

3.5. Markov Models

The state transition matrices (STMs) S tabulate the cases of transitions that occurred
between states. Sij is calculated as

Sij = nij

where the number of transitions from the state i to state j is referred as nij.
The state transition probability matrices (STPMs) P are calculated to quantify incidence

dynamics in sequences of blinks. The probability of transition of state i to state j, Pij is
calculated as

Pij =
nij

ni
where the number of transitions from state i to state j is referred as ni.

These state transitions probabilities are compared with the probability of being at state
i, P(0)

ij , independently of the occurrence of the state j. P(0)
ij is calculated as

P(0)
ij =

ni
n

where n is the number of the transitions occurred, and the corresponding matrix is de-
noted p(0).

Comparison of the probability matrices was implemented via hypothesis tests, based
on X2 statistics, described in [24].

4. Results
4.1. IBI Distributions Estimation

The normalized IBI histograms providing the probability density function (pdf) were
extracted for each experimental task of the three datasets under investigation. The IBI
histograms were grouped according to their experimental phase and induced affective
state (neutral, stress). For each aggregated histogram, the best fitted distribution to the
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data was extracted among the candidate distributions (beta, exponential, gamma, logistic,
log-logistic, lognormal, normal, Rayleigh, Weibull distributions). The aggregated IBI
histograms for each experimental phase along with their best fitted distributions, are
shown in Figure 3.

Figure 3. Normalized histograms of IBI for each experimental phase (phase 1–4) and induced
affective state (neutral blue, stress red) and the corresponding best fitted distribution.

Inspecting the behaviour of the distribution for each task in Figure 3, it can be deduced
that the stressful states (e.g., interview, emotional recall) distributions have offset to the
right in relation to the stressful state for the first 2 phases. This can be partially attributed
to the fact that during stress conditions eye blink rate increases. The best fitted distribution
on each phase is lognormal in all cases except phase 3 neutral state which is log-logistic. All
best-fitted distributions are presented in Table 3. The differentiation of distribution of IBI
that each task follows for the dataset was checked using 2 samples Kolmogorov-Smirnov
test [25].

It can be observed that in most cases the best-fitted distribution among the distribu-
tions described is the lognormal distribution. During the 3 out of 4 experimental phases
(social exposure, emotional recall and mental tasks), the 2-sample Kolmogorov-Smirnov X2

test revealed that the data of neutral and stress states come from different distributions.
Then, it was investigated whether the IBI distributions present significant differences be-
tween the two emotional states (neutral, stress) for each experimental phase utilizing all the
3 available datasets. The IBI comparison was performed using the Z-test of two log-normal
samples [26] and the results are shown in Table 4.
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Table 3. Best Fitted distribution and corresponding parameters (µ, σ or λ).

Experimental Task Fitted Distribution Parameters Kolmogorov X2 Test
µ σ or λ

Social Exposure
Neutral (reference) lognormal 0.54 0.74 ↓Stress (Interview, text reading) lognormal 0.22 0.68

Emotional recall
Neutral (reference) lognormal 0.65 0.77 ↓Stress (recall anxious/stressful
event) lognormal 0.39 0.76

Mental tasks
Neutral (reference) loglogistic 0.59 0.80 ↓Stress (SCWT, images) lognormal 0.54 0.43

Stressful videos
Calming video (reference) lognormal 0.63 0.89 ns
Stress (stressful videos) lognormal 0.60 0.87
↓/ns are significantly decreased and no significant changes during 2-samples Kolmogorov Smirnov test.

Table 4. Two-sample log-normal Z-test for each experimental phase utilizing all the 3 available
datasets.

Experimental Phase Two-Sample Log-Normal Z-Score p-Value Z-Test

Social Exposure 21.84 <0.01 ↓
Emotional recall 9.49 <0.01 ↓

Mental tasks 2.33 <0.01 ↓
Stressful videos 1.48 >0.05 ns

↓/ns are significantly decreased and no significant changes during 2-sample Z-test.

It can be observed, that during the social exposure, emotional recall and mental
tasks a statistically significant difference between the neutral and stress state is present.
Especially, during 2 of these phases (social exposure, emotional recall) significantly reduced
IBI exists during stress compared to neutral states. These results indicate that during stress
conditions there are increased blinks, as supported also in relevant literature [7,8].

4.2. Threshold Determination

Then, the pattern of eye blinks activity was investigated by employing Markov
chains [27], described in Section 3.5. In Figure 4 the histogram of the calculated IBIs,
for each experiment from all tasks (neutral, stressed and relaxed) is shown. The identifi-
cation of the number of groups into which the IBIs can be differentiated is performed by
visual inspection, but also by using the kernel density function on the histogram of all IBIs,
as described in [28]. Two groups are finally selected for each of the three experiments. The
time-point threshold for the two groups for the 1st, 2nd and 3rd experiment was 1.975 s,
2.325 s and 1.975 s respectively. The highest value of these three thresholds was used,
namely 2.325 s. Accordingly, two states can be selected for the Markov Analysis, the “long”
IBI state and the “short” IBI state.

4.3. Classification Performance

In Table 5, we depict the prediction models performance in discriminating stressed
and neutral states, for each experimental phase using the sequence of IBIs or blinks se-
quences as input to the CNN and LSTM networks. 8 classifiers (4 CNN and 4 LSTM)
were implemented, one for each experimental phase, comparing stressed and neutral
tasks per cognitive process, the parameters of which are presented in Section 3.4. The IBI
sequence per subject is fed into the network architecture. For the CNN classifier, the true
positive rate (Recall) is greater than the positive predictive value (Precision). The opposite
is observed for the LSTM classifier. Comparing the range of values across phases for the
two classifiers, for the Precision and Recall metrics, the difference in performance for the
Precision is most notable, the range for the CNN classifier being [49.3–74.5], while for the
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LSTM classifier being [80.6–99.0]. Having in mind that a “positive” classification result
corresponds to classifiying a recording as belonging to a stressful task, while a “negative”
classification result corresponds to classifying a recording as belonging to a neutral task,
the results provide an indication that LSTM performs better than CNN when presented
with recordings belonging to neutral tasks.

Figure 4. The blue line represents the kernel density estimator of the distribution of IBIs. The red line
represents the second derivative of the kernel density estimator. The threshold for dividing the two
states (short and long IBIs) is taken to be the IBI value (indicated by the square) that corresponds
to the largest peak in the second derivative curve (indicated by square), which is to the right of
the maximum of the kernel density curve. (a–c) correspond to the 1st, 2nd and 3rd experiment,
respectively.
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Table 5. The average classification accuracy, precision and recall between cognitive processes on the
testing set after 10 runs. Values are averages over 10 trials.

Experimental Phase Accuracy% Precision% Recall%

CNN
Social exposure 50.4 49.3 74.0
Emotional recall 74.5 63.5 80.0

Mental tasks 76.4 74.5 80.0
Stressful videos 67.6 68.4 75.0

LSTM
Social exposure 74.1 80.6 72.2
Emotional recall 65.7 84.6 66.2

Mental tasks 79.5 99.0 76.7
Stressful videos 64.3 86.1 68.0

Furthermore, the best classification accuracy results are achieved for the mental tasks
phase for both the CNN and the LSTM classifier, closely followed by the emotional recall
phase for the CNN and the social exposure phase for the LSTM classifier. These findings
might provide in turn indications that the blink generation under these processes/phases
has different patterns. The patterns of blink generation were analyzed in this study using
Markovian Analysis and the results are presented hereafter.

4.4. Markovian Analysis

The main feature used in order to capture the task dynamics is the IBI. By separating
the IBIs distribution in two categories it is an open question whether the generation of
blinks is subject to two attractor states, one in which blinks occur in a short time, resulting
in short IBIs, and another in which blinks occur in a long time, resulting in long IBIs. These
different states of blink generation during watching neutral, relax and stressful video was
analyzed by applying first-order Markovian Analysis. The state transition probability
matrices (STPMs) P were calculated and compared with the P(0) matrices giving the
probability of being at state i, in order to test whether the generation of blinks during
relaxing/stress procedures is a stochastic process. The statistical significance between these
two matrices was calculated and the results are presented in Table 6.

In Table 6 the matrices S, P, P(0), X2 are presented for each experiment, phase and
task. Based on chi-square statistics with 2 degrees of freedom at a = 0.05 significance
level, P is significantly different from P(0) when the values of X2 is larger than the value
5.991, based on chi-square distribution tables. This was the case for all tasks. Thus the
null hypothesis that matrix P is equal to matrix P(0) was rejected and a first-order Markov
process was assumed for all tasks. Therefore, it was conjectured that the process generating
blinks possessed, at least, first-order “memory” in all tasks. For each original element value
of the matrix P, a distribution of 1000 Bootstrap values was derived, and the 2.5% and 97.5%
percentiles of this distribution were calculated and used as the 95% confidence interval for
the particular original element value of the P matrix.
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Table 6. First order Markovian Analysis. State #1 (#2) corresponds to short (long) IBIs.

1st Experiment Social Exposure Sij Pij(95% confidence interval) P(0)
ij X2

Neutral 8.16
1,1 S–S 150 0.81 [0.7754–0.8375] 0.78
1,2 S–L 36 0.19 [0.1625–0.2246] 0.22
2,1 L–S 32 0.60 [0.5488–0.6587] 0.77
2,2 L–L 21 0.40 [0.3413–0.4512] 0.22

Stressed 28.08
1,1 S–S 441 0.77 [0.7572–0.7929] 0.75
1,2 S–L 128 0.23 [0.2071–0.2428] 0.25
2,1 L–S 123 0.65 [0.6234–0.6851] 0.75
2,2 L–L 65 0.35 [0.3149–0.3766] 0.25

Emotional recall
Neutral 11.07
1,1 S–S 105 0.77 [0.7365–0.8190] 0.69
1,2 S–L 30 0.22 [0.1810–0.2635] 0.31
2,1 L–S 26 0.43 [0.3707–0.4817] 0.69
2,2 L–L 35 0.57 [0.5183–0.6293] 0.31

Stressed 36.73
1,1 S–S 288 0.79 [ 0.7727–0.8184] 0.76
1,2 S–L 74 0.20 [0.1816–0.2273] 0.23
2,1 L–S 65 0.61 [0.5788–0.6593] 0.76
2,2 L–L 40 0.39 [0.3407–0.4212] 0.23

Stressful images/Stroop task
Stressed 24.57
1,1 S–S 794 0.76 [0.7503–0.7781] 0.70
1,2 S–L 245 0.24 [0.2219-0.2497] 0.30
2,1 L–S 254 0.57 [0.5500–0.5915] 0.70
2,2 L–L 191 0.43 [0.4085–0.4500] 0.30

Stressful videos 120.54
Neutral
1,1 S–S 481 0.78 [0.7629–0.8014] 0.67
1,2 S–L 134 0.22 [0.1986–0.2371] 0.33
2,1 L–S 136 0.45 [0.4218–0.4759] 0.67
2,2 L–L 167 0.55 [0.5241–0.5782] 0.33

Stressed 35.29
1,1 S–S 641 0.71 [0.6933–0.7265] 0.63
1,2 S–L 262 0.29 [0.2735–0.3067] 0.37
2,1 L–S 261 0.49 [0.4691–0.5103] 0.63
2,2 L–L 272 0.51 [0.4897–0.5309] 0.37

2nd Experiment Social Exposure

Neutral 20.67
1,1 S–S 256 0.74 [0.7134–0.7663] 0.66
1,2 S–L 90 0.26 [0.2337–0.2866] 0.34
2,1 L–S 86 0.48 [ 0.4397–0.5106] 0.66
2,2 L–L 95 0.53 [ 0.4894–0.5603] 0.34

Stressed 33.28
1,1 S–S 642 0.86 [0.8484–0.8751] 0.84
1,2 S–L 103 0.14 [0.1249–0.1516] 0.16
2,1 L–S 97 0.70 [0.6712–0.7346] 0.84
2,2 L–L 41 0.30 [0.2654–0.3288] 0.16

Emotional recall
Neutral 37.07
1,1 S–S 311 0.78 [0.7564–0.8025] 0.69
1,2 S–L 88 0.22 [0.1975–0.2436] 0.31
2,1 L–S 87 0.49 [0.4600–0.5286] 0.69
2,2 L–L 89 0.51 [0.4714–0.5400] 0.31

Stressed 61.40
1,1 S–S 583 0.76 [0.7419–0.7763] 0.72
1,2 S–L 185 0.24 [0.2237–0.2581] 0.28
2,1 L–S 186 0.51 [0.4845–0.5319] 0.72
2,2 L–L 180 0.49 [0.4681–0.5155] 0.28

Stressful images
Stressed 187.99
1,1 S–S 1163 0.78 [0.7648–0.7890] 0.69
1,2 S–L 334 0.22 [0.2110–0.2352] 0.31
2,1 L–S 343 0.52 [0.5002–0.5345] 0.69
2,2 L–L 320 0.48 [0.4655–0.4998] 0.31

Stressful videos
148.92Neutral

1,1 S–S 772 0.76 [0.7471–0.7771] 0.65
1,2 S–L 241 0.24 [0.2229–0.2529] 0.35
2,1 L–S 240 0.44 [0.4191–0.4600] 0.65
2,2 L–L 306 0.56 [0.5400–0.5809] 0.35

Stressed 319.10
1,1 S–S 1308 0.81 [0.8024–0.8255] 0.72
1,2 S–L 299 0.19 [0.1745–0.1976] 0.28
2,1 L–S 299 0.47 [0.4512–0.4876] 0.72
2,2 L–L 338 0.53 [ 0.5124–0.5488] 0.28
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Table 6. Cont.

3rd Experiment Social Exposure

Neutral 433.35
1,1 S–S 2982 0.76 [0.7487–0.7635] 0.67
1,2 S–L 962 0.24 [0.2365–0.2513] 0.33
2,1 L–S 940 0.49 [0.4783–0.4993] 0.67
2,2 L–L 983 0.51 [0.5007–0.5217] 0.33

Stressed 63.22
1,1 S–S 3129 0.86 [0.8488–0.8610] 0.83
1,2 S–L 531 0.15 [0.1390–0.1512] 0.17
2,1 L–S 538 0.73 [0.7113–0.7388] 0.83
2,2 L–L 204 0.28 [0.2612–0.2887] 0.17

Emotional recall
Neutral 237.38
1,1 S–S 1111 0.72 [0.7074–0.7388] 0.59
1,2 S–L 392 0.28 [0.2662–0.2926] 0.41
2,1 L–S 375 0.39 [0.3750–0.4079] 0.59
2,2 L–L 583 0.61 [0.5921–0.6250] 0.41

Stressed 238.21
1,1 S–S 2129 0.82 [0.8158–0.8326] 0.76
1,2 S–L 454 0.18 [0.1674–0.1842] 0.24
2,1 L–S 447 0.56 [0.5451–0.5752] 0.76
2,2 L–L 351 0.44 [0.4248–0.4549] 0.24

Mental tasks
Neutral 282.55
1,1 S–S 1252 0.76 [0.7520–0.7757] 0.64
1,2 S–L 387 0.24 [0.2243–0.2480] 0.36
2,1 L–S 389 0.42 [0.4035–0.4358] 0.64
2,2 L–L 538 0.58 [0.5642–0.5965] 0.36

Stressed 441.19
1,1 S–S 2823 0.77 [0.7576–0.7733] 0.67
1,2 S–L 865 0.23 [0.2267–0.2424] 0.33
2,1 L–S 870 0.48 [0.4651–0.4868] 0.67
2,2 L–L 958 0.52 [0.5132–0.5349] 0.33

Stressful videos
Neutral 320.20
1,1 S–S 1094 0.76 [0.7505–0.7764] 0.62
1,2 S–L 339 0.24 [0.2236–0.2495] 0.38
2,1 L–S 343 0.40 [0.3816–0.4142] 0.62
2,2 L–L 519 0.60 [0.5858–0.6184] 0.38

Stressed 384.25
1,1 S–S 1979 0.72 [0.7134–0.7322] 0.61
1,2 S–L 759 0.28 [0.2678–0.2866] 0.39
2,1 L–S 762 0.43 [0.4185–0.4442] 0.61
2,2 L–L 1009 0.57 [0.5580–0.5815] 0.39

Furthermore, Table 6 shows that P11 and P22 are significantly higher than the corre-
sponding P(0)

11 and P(0)
22 , for all experiments, phases and tasks—except, marginally, for P11

for experiment 1, social exposure phase, neutral task—while P12 and P21 are significantly
lower than the corresponding P(0)

12 and P(0)
21 , based on their 95% confidence intervals as

presented in Table 6. These results provide an indication that state 1 and state 2 can be
characterized as “auto-attractors”, meaning that the blink generation system has a tendency
to either maintain short IBIs (state 1) or long IBIs (state 2), while avoiding transitions from
one state to the other. In order to investigate furthermore the indications about the existence
of auto-attractor states, looking at differences within matrix P, it was observed that P11 was
significantly higher than P12 for all experiments, phases and tasks. On the other hand, P22
was significantly higher than P21 for both tasks of the stressful video phase of experiments
2 and 3, for both tasks of the mental tasks phase of experiment 3, while for experiment
1 P22 was significantly higher than P21 for the neutral tasks of the emotional recall and
stresfull video phases. Thus, the evidence that state 1 is an auto-attractor in all experiments,
phases and tasks (keeping in mind the exception for one task, stated above) is strengthened.
On the other hand, the nature of state 2 as an auto-attractor seems to hold mainly for the
stressful video phase (for both tasks) for experiments 2 and 3.

In conclusion, the generation of blinks seems not to be a purely random process.
Instead, it appears to possess “memory”, in the sense that the previous state of the system
(i.e., whether a short or long IBI preceded the current IBI) influences which will be the
current state. Furthermore, there are strong indications that the short IBI state (state 1) can
be characterized as an auto-attractor, across experiments, phases and tasks. Indications
on whether the long IBI state (state 2) can be characterized as an auto-attractor across
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experiments and tasks seem to hold strongly for only the stressful videos phase. The
preponderance of the short IBIs states over the long IBIs states, possibly in line with the
indications that state 1 is an auto-attractor, is ascertained by the fact that P11 is greater
than P22 for every task. Taking into account the finding that the auto-attractor nature of the
short IBIs state exists for both the relaxation and the stress-inducing tasks and since stress
has been shown to induce higher BR (therefore shorter IBIs), it would be interesting to
further investigate whether the short IBI state, during which a subject produces relatively
many blinks in sequence during the task, corresponds to an intra-task differentiation of
stress levels, even for relaxation-inducing tasks.

As a further step of investigating the Markov dynamics of states 1 and 2, we compared
the percentages of difference between Pii and P(0)

ii , i = 1,2 between neutral and stressful
tasks in the various phases. A higher percentage of difference for one task compared to the
other, for a given state, might provide an indication that the attractor nature of that state
is stronger for the task where the percentage is greater. The aim of the investigation was
whether there existed a trend across experiments and phases, “linking” attractor states to
neutral or stressful tasks. According to the above rationale, in the social exposure phase and
emotional recall phase (except from experiment 2), the percentage of difference between
P11 and P(0)

11 is greater in neutral than in stressed tasks, while, conversely, in the stressful

videos phase the percentage of the difference between P22 and P(0)
22 is greater in stressed

than in neutral tasks. In the emotional recall phase the same occurs in the 1st and 2nd
experiment. For the mental task phase and the stressful videos phase, in the 3rd experiment,
the percentage of difference between P11 and P(0)

11 and P22 and P(0)
22 is greater in neutral

than in stressed tasks. Additionally, for the stressful videos phase, in experiment 2, the
percentage of the difference between P11 and P(0)

11 is greater in neutral than in stressed tasks,

while the percentage of the difference between P22 and P(0)
22 is greater in stressed than in

neutral tasks.
It was mentioned above that the rate of blink generation is increasing under stressed

tasks, so the “short” attractor (#1) could be expected to be strongest in stressed tasks, while,
in contradistinction, the “long” attractor (#2) is expected to be strongest in the neutral
tasks. This expectation was not verified across all the experiments based on the Markovian
Analysis presented above. In order to investigate the impact of the attractor’s existence on
the classification accuracy, further analyses were implemented. Specifically, for each phase,
we selected the experiment that presented concurrently the strongest attractor values, as
indicated by the percentage difference between values P11 and P(0)

11 (denoted dP11(%)s

in the following), as well as between P22 and P(0)
22 (denoted dP22(%)n in the following),

under stressed and neutral tasks, respectively, and then trained, per phase, the classifiers
using only the subjects from the selected experiment. As far as the classifier structure and
classification testing are concerned, the hyperparameters of the 1D CNN architecture and
LSTM classifier remained the same. The nested cross-validation scheme was selected to
3 × 5 after trial-error investigation. The classification results are presented in Table 7.

Table 7. The average classification accuracy between cognitive processes on the testing set after 10
runs. Values are averages over 10 trials.

Experimental
Phase/Experiment Accuracy CNN (3 × 5 CV) Accuracy LSTM (3 × 5 CV)

Social Exposure/Experiment 1 72.7% 81.3%

Specifically, in the social exposure phase under stressed tasks dP11(%)s is strongest
in experiments 1 and 3 (3%), while dP22(%)n in the social exposure phase under neutral
tasks is strongest in experiment 1 (79%). So the experiment for which both dP11(%)s
and dP22(%)n reached their peaks was experiment 1. Therefore, the IBI sequences of
experiment 1 were fed into the classifiers (CNN and LSTM). For the other phases, the
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application of the above methodology did not lead to a selection of one specific experiment,
since, as exposed hereafter, dP11(%)s and dP22(%)n had peaks at different experiments.
For the emotional recall phase, experiment 1 presents the strongest dP22(%)n (84%), while
dP11(%)s is strongest in experiment 2 (12%). For the stressful images phase, which has
only a stress producing task and the neutral task used for comparison is the neutral task of
the emotional recall phase, dP11(%)s is strongest in experiment 2 (12%), while dP22(%)n is
strongest for experiments 1 (84%). Additionally, since the mental task phase was present
only in experiment 3 the proposed methodology was not applied for this phase. Finally, for
the stressful videos phase dP11(%)s is strongest n experiment 1 (19%), while dP22(%)n is
strongest in experiment 1 (67%).

As can be seen from Table 7 there is a notable improvement for the classification
accuracy for the social exposure phase, for both the CNN and the LSTM classifier, when
data were used only from experiment 1, according to the methodological criteria stated
above. Of note is also the fact that the classification accuracy reached for the LSTM classifier
is highest than any accuracy value reached when data from all experiments were used
concurrently, as presented in Table 5.

5. Discussion

The aim of this study is the investigation of blinks patterns as manifested in the IBI
sequences produced during neutral and stress conditions, provided by experimental tasks
related to social exposure, emotional recall and cognitive processes.

The IBIs appear to follow log-normal distribution in the vast majority of experimental
tasks for the three available datasets. The distributions corresponding to neutral and
stress conditions appear to be different in 3 out of 4 experimental phases (social exposure,
emotional recall and mental tasks). Especially, during the social exposure and emotional
recall phases, the stress has an effect the concentration of significantly more short IBIs. This
pattern seems to be consistent along the three different datasets, representing an interesting
finding, indicating that during stress conditions there are increased blinks.

Then, we explored classification of stressed and neutral tasks on different cognitive
tasks using deep CNN architectures and Markov Chain. Although CNN has been applied
widely on blink detection [29,30], to our knowledge, it is the first time that inter-blink inter-
val is analyzed with both CNN and Markov Chain models, with the aim of investigating
both the existence of differentiation between the two stress-related categories of tasks and
more in-depth state relationships as can be revealed by Markov Analysis. By combining
data from all the experiments, the best CNN model in the present study achieved 76.4%
testing accuracy for the mental tasks phase, while the LSTM network 79.5% for the same
experimental phase. The use of Markovian Analysis, for selecting data from experiments
where the “attractor” states were stronger improved notably the classification accuracy
(81%). Future work would be the detection of the stress level using the IBI sequence, as
many studies have been shown high accuracies on recognizing levels of psychological
stress, e.g., stress level can be automatically recognized by analyzing ECG signals in a
multi-modal fusion and respiratory signals [31–33] with high accuracy.

Markov Analysis provided statistically significant indications that the blink generation
is not purely random but depends on the history of previous blinks occurrences, implying
the presence of memory in the system generating the blinks. We showed that, if the
IBI sequence is modeled as a first-order Markov Chain, the generation of blinks during
stressful and neutral cognitive possesses characteristics according to which the duration of
a particular IBI depends significantly on the duration of the immediately previous IBI. If
the occurrence of blinks were purely random, then one would expect that the occurrence of
a given IBI would follow a renewal process, meaning that the IBI would be independent
of previous IBIs. That was shown not to be the case, implying that the blink generation
was not purely random. Moreover, the above findings were observed for the generation
of blinks in all three experiments and four cognitive process for both tasks, neutral and
stressed.
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Our detailed analysis of matrices P and P(0), given the assumption of a first-order
Markov process, provided further insight into the possible mechanism of blink generation.
Given a short IBI, a tendency to repeat a short IBI was shown. Moreover, given a long IBI,
a tendency to repeat a long IBI was shown well, albeit in a more nuanced way than the
trend concerning short IBIs. Therefore, our analysis provided evidence that the system
of blink generation may operate in two “attractor” states, one in which blinks occur at
short consecutive IBIs and one in which blinks occur at long consecutive IBIs. Furthermore,
we found that the short IBI attractor state characteristic existed in all cognitive tasks,
suggesting that this mechanism does not depend on the particular task demands. Similar
attractor behavior has been shown in a previous study [28], investigating the inter-saccadic
intervals under fixation tasks. In addition, the evidence that the generation of blinks during
different procedures is not a random process may induce the research community on a
better understanding of the brain functioning.
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