Applied Univariate, Bivariate, and Multivariate Statistics

Description: A clear and efficient balance between theory and applications of statistical modeling techniques in the social and behavioral sciences

Written as a general and accessible introduction, Applied Univariate, Bivariate, and Multivariate Statistics provides an overview of statistical modeling techniques used in fields in the social and behavioral sciences. Providing a unique balance of statistical theory and methodology, the book surveys both the technical and theoretical aspects of good data analysis.

Featuring applied resources at various levels, the book includes statistical techniques such as t-tests and correlation as well as more advanced procedures such as MANOVA, factor analysis, and structural equation modeling. To promote a more in–depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. Applied Univariate, Bivariate, and Multivariate Statistics also features:

- Demonstrations of statistical techniques using software packages such as R and SPSS®
- Examples of hypothetical and real data with subsequent statistical analysis
- Historical and philosophical insights into many of the techniques used in modern social science
- A companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options

An ideal textbook for courses in statistics and methodology at the upper–undergraduate and graduate–level in psychology, political science, biology, sociology, education, economics, communications, law, and survey research, Applied Univariate, Bivariate, and Multivariate Statistics is also a useful reference for practitioners and researchers in their field of application.

Daniel J. Denis, PhD, is Associate Professor of Quantitative Psychology in the Department of Psychology at the University of Montana where he teaches courses in univariate and multivariate statistics. He has published a number of articles in peer–reviewed journals and has served as consultant to researchers and practitioners in a variety of fields. He is also founder of The Mathematical Psychology Lab, which is a think tank with the mission of advancing the teaching, learning, and application of mathematical and statistical tools.

Contents: Preface xix
About the Companion Website xxxiii
1 Preliminary Considerations 1
1.1 The Philosophical Bases of Knowledge: Rationalistic versus Empiricist Pursuits 1
1.2 What is a Model 4
1.3 Social Sciences versus Hard Sciences 6
1.4 Is Complexity a Good Depiction of Reality? Are Multivariate Methods Useful? 8
1.5 Causality 9
1.6 The Nature of Mathematics: Mathematics as a Representation of Concepts 10
1.7 As a Social Scientist How Much Mathematics Do You Need to Know? 11
1.8 Statistics and Relativity 12
4.17 Analysis of Variance Via R’s lm 226
4.18 Kruskal–Wallis Test in R 227
4.19 ANOVA in SPSS: Achievement as a Function of Teacher 228
4.20 Chapter Summary and Highlights 230
Review Exercises 232

5 Factorial Analysis of Variance: Modeling Interactions 237
5.1 What is Factorial Analysis of Variance? 238
5.2 Theory of Factorial ANOVA: A Deeper Look 239
5.3 Comparing One–Way ANOVA to Two–Way ANOVA: Cell Effects in Factorial ANOVA versus Sample Effects in One–Way ANOVA 245
5.4 Partitioning the Sums of Squares for Factorial ANOVA: The Case of Two Factors 246
5.5 Interpreting Main Effects in the Presence of Interactions 253
5.6 Effect Size Measures 253
5.7 Three–Way Four–Way and Higher–Order Models 254
5.8 Simple Main Effects 254
5.9 Nested Designs 256
5.9.1 Varieties of Nesting: Nesting of Levels versus Subjects 257
5.10 Achievement as a Function of Teacher and Textbook: Example of Factorial ANOVA in R 258
5.11 Interaction Contrasts 266
5.12 Chapter Summary and Highlights 267
Review Exercises 268

6 Introduction to Random Effects and Mixed Models 270
6.1 What is Random Effects Analysis of Variance? 271
6.2 Theory of Random Effects Models 272
6.3 Estimation in Random Effects Models 273
6.4 Defining Null Hypotheses in Random Effects Models 276
6.5 Comparing Null Hypotheses in Fixed versus Random Effects Models: The Importance of Assumptions 278
6.6 Estimating Variance Components in Random Effects Models: ANOVA ML REML Estimators 279
6.7 Is Achievement a Function of Teacher? One–Way Random Effects Model in R 282
6.8 R Analysis Using REML 285
6.9 Analysis in SPSS: Obtaining Variance Components 286
6.10 Factorial Random Effects: A Two–Way Model 287
11.4 Distributions and Generalized Linear Models 451
11.5 Dispersion Parameters and Deviance 453
11.6 Logistic Regression: A Generalized Linear Model for Binary Responses 454
11.7 Exponential and Logarithmic Functions 456
11.8 Odds Odds Ratio and the Logit 461
11.9 Putting It All Together: The Logistic Regression Model 462
11.10 Logistic Regression in R: Challenger O–Ring Data 466
11.11 Challenger Analysis in SPSS 469
11.12 Sample Size Effect Size and Power 473
11.13 Further Directions 474
11.14 Chapter Summary and Highlights 475

Review Exercises 476

12 Multivariate Analysis of Variance 479
12.1 A Motivating Example: Quantitative and Verbal Ability as a Variate 480
12.2 Constructing the Composite 482
12.3 Theory of MANOVA 482
12.4 Is the Linear Combination Meaningful? 483
12.5 Multivariate Hypotheses 487
12.6 Assumptions of MANOVA 488
12.7 Hotelling’s T2: The Case of Generalizing from Univariate to Multivariate 489
12.8 The Variance Covariance Matrix S 492
12.9 From Sums of Squares and Cross–Products to Variances and Covariances 494
12.10 Hypothesis and Error Matrices of MANOVA 495
12.11 Multivariate Test Statistics 495
12.12 Equality of Variance Covariance Matrices 500
12.13 Multivariate Contrasts 501
12.14 MANOVA in R and SPSS 502
12.15 MANOVA of Fisher’s Iris Data 508
12.16 Power Analysis and Sample Size for MANOVA 509
12.17 Multivariate Analysis of Covariance and Multivariate Models: A Bird’s Eye View of Linear Models 511
12.18 Chapter Summary and Highlights 512
Review Exercises 513

13 Discriminant Analysis 517

13.1 What is Discriminant Analysis? The Big Picture on the Iris Data 518

13.2 Theory of Discriminant Analysis 520

13.3 LDA in R and SPSS 523

13.4 Discriminant Analysis for Several Populations 529

13.5 Discriminating Species of Iris: Discriminant Analyses for Three Populations 532

13.6 A Note on Classification and Error Rates 535

13.7 Discriminant Analysis and Beyond 537

13.8 Canonical Correlation 538

13.9 Motivating Example for Canonical Correlation: Hotelling’s 1936 Data 539

13.10 Canonical Correlation as a General Linear Model 540

13.11 Theory of Canonical Correlation 541

13.12 Canonical Correlation of Hotelling’s Data 544

13.13 Canonical Correlation on the Iris Data: Extracting Canonical Correlation from Regression MANOVA LDA 546

13.14 Chapter Summary and Highlights 547

Review Exercises 548

14 Principal Components Analysis 551

14.1 History of Principal Components Analysis 552

14.2 Hotelling 1933 555

14.3 Theory of Principal Components Analysis 556

14.4 Eigenvalues as Variance 557

14.5 Principal Components as Linear Combinations 558

14.6 Extracting the First Component 558

14.7 Extracting the Second Component 560

14.8 Extracting Third and Remaining Components 561

14.9 The Eigenvalue as the Variance of a Linear Combination Relative to Its Length 561

14.10 Demonstrating Principal Components Analysis: Pearson’s 1901 Illustration 562

14.11 Scree Plots 566

14.12 Principal Components versus Least-Squares Regression Lines 569

14.13 Covariance versus Correlation Matrices: Principal Components and Scaling 570
Ordering:

Order Online - http://www.researchandmarkets.com/reports/3327598/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Applied Univariate, Bivariate, and Multivariate Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3327598/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKI4S6</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

Quantity

- Hard Copy (Hard Back): USD 128 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World