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Abstract: We propose a new method of adding two parameters to a contin-
uous distribution that extends the idea first introduced by Lehmann (1953)
and studied by Nadarajah and Kotz (2006). This method leads to a new
class of exponentiated generalized distributions that can be interpreted as a
double construction of Lehmann alternatives. Some special models are dis-
cussed. We derive some mathematical properties of this class including the
ordinary moments, generating function, mean deviations and order statis-
tics. Maximum likelihood estimation is investigated and four applications
to real data are presented.
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1. Introduction

Gupta et al. (1998) first proposed a generalization of the standard exponen-
tial distribution, called the exponentiated exponential (EE) distribution, defined
by the cumulative distribution function (cdf) F (x) = (1−e−λx)α for x > 0, λ > 0
and α > 0. This equation is simply the αth power of the standard exponential
cumulative distribution. For a full discussion and some of its mathematical prop-
erties, see Gupta and Kundu (2001). In a similar manner, Nadarajah and Kotz
(2006) proposed the exponentiated gamma (EΓ), exponentiated Fréchet (EF)
and exponentiated Gumbel (EGu) distributions, although the way they defined
the cdf of the last two distributions is slightly different. For instance, the EGu
cumulative distribution (for −∞ < x <∞) is defined by

F (x) = 1− [1− exp{− exp(−x− µ
σ

)}]α,

where µ ∈ R and σ > 0.

∗Corresponding author.
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In this article, we propose a new class of distributions that extend the expo-
nentiated type distributions and obtain some of its structural properties. Given
a continuous cdf G(x), we define the exponentiated generalized (EG) class of
distributions by

F (x) = [1− {1−G(x)}α]β, (1)

where α > 0 and β > 0 are two additional shape parameters. We note that there
is no complicated function in (1) in contrast with the beta generalized family
(Eugene et al., 2002), which also includes two extra parameters but involves the
beta incomplete function. (1) has tractable properties especially for simulations,
since its quantile function takes a simple form, namely x = QG([1−(1−u1/β)1/α]),
where QG(u) is the baseline quantile function.

The baseline distribution G(x) is clearly a special case of (1) when α = β = 1.
Setting α = 1 gives the exponentiated type distributions defined by Gupta et al.
(1998). Further, the EE and EΓ distributions are obtained by taking G(x) to
be the exponential and gamma cumulative distributions, respectively. For β = 1
and if G(x) is the Gumbel and Fréchet cumulative distributions, we obtain the
EGu and EF distributions, respectively, as defined by Nadarajah and Kotz (2006).
Thus, the class of distributions (1) extends both exponentiated type distributions.
The probability density function (pdf) of the new class has the form

f(x) = αβ {1−G(x)}α−1 [1− {1−G(x)}α]β−1 g(x). (2)

The EG family of densities (2) allows for greater flexibility of its tails and can
be widely applied in many areas of engineering and biology. We study some
mathematical properties of the class (2) because it extends several well-known
distributions in the literature. Note that even if g(x) is a symmetric distribu-
tion, the distribution f(x) will not be a symmetric distribution. The two extra
parameters in (2) can control both tail weights and possibly adding entropy to
the center of the EG density function.

Hereafter, we define the exponentiated-G (“Exp-G” for short) distribution for
an arbitrary parent distribution G(x), say X ∼ ExpcG, if X has cumulative and
density functions given by Hc(x) = G(x)c and hc(x) = c g(x)G(x)c−1, respec-
tively. This is also called the Lehmann type I distribution, say Expc(G). For
c > 1 and c < 1 and for larger values of x, the multiplicative factor cG(x)c−1 is
greater and smaller than one, respectively. The reverse assertion is also true for
smaller values of x. The latter immediately implies that the ordinary moments
associated with the density function hc(x) are strictly larger (smaller) than those
associated with the density g(x) when c > 1 (c < 1).

Note that there is a dual transformation Expc(1 − G), referred to as the
Lehmann type II distribution corresponding to the cdf F (x) = 1− {1−G(x)}c.
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Thus, (1) encompasses both Lehmann type I (ExpβG for α = 1) and Lehmann
type II (Expα(1 − G) for β = 1) distributions (Lehmann, 1953). Clearly, the
double construction Expβ[Expα(1 −G)] generates the EG class of distributions.
The derivations of several properties of the EG class can be facilitated by this
double transformation.

The class of EG distributions shares an attractive physical interpretation
whenever α and β are positive integers. Consider a device made of β independent
components in a parallel system. Furthermore, each component is made of α
independent subcomponents identically distributed according to G(x) in a series
system. The device fails if all β components fail and each component fails if any
subcomponent fails. Let Xj1, · · · , Xjα denote the lifetimes of the subcomponents
within the jth component, j = 1, · · · , β, with common cdf G(x). Let Xj denote
the lifetime of the jth component and let X denote the lifetime of the device.
Thus, the cdf of X is

P (X ≤ x) = P (X1 ≤ x, · · · , Xβ ≤ x) = P (X1 ≤ x)β = [1− P (X1 > x)]β

= [1− P (X11 > x, · · · , X1α > x)]β = [1− P (X11 > x)α]β

= [1− {1− P (X11 ≤ x)}α]β.

So, the lifetime of the device obeys the EG family of distributions.

The rest of the article is organized as follows. In Section 2, we present four
special models of the EG class corresponding to the Fréchet, normal, gamma
and Gumbel distributions. Section 3 provides some general useful expansions for
the EG density function. Moments of the EG class are derived in Section 4 with
applications to eight special models. Generating function and mean deviations are
derived in Sections 5 and 6, respectively. Order statistics are studied in Section 7.
Maximum likelihood estimation is investigated in Section 8. Applications to four
real data sets are performed in Section 9. Some concluding remarks are given in
Section 10.

2. Special Models

Here, we discuss some special EG distributions. The density function (2)
will be most tractable when the cdf G(x) and the pdf g(x) have simple analytic
expressions.

2.1 Exponentiated Generalized Fréchet

The cdf of the Fréchet distribution (for x > 0) is Gσ,λ(x) = exp{−(σ/x)λ},
where λ > 0 and σ > 0. Then, we define the exponentiated generalized Fréchet
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(EGF) cumulative distribution (for x > 0) from (1) by

F (x) = [1− (1− exp{−(
σ

x
)λ})α]β, (3)

where λ > 0, σ > 0, α > 0 and β > 0. The EGF density function can be obtained
from (2) as

f(x) = αβ λσλ x−(λ+1) exp[−(
σ

x
)λ] {1− exp[−(

σ

x
)λ]}α−1

×[1− {1− exp[−(
σ

x
)λ]}α]β−1.

Plots of the EGF density function for selected parameter values are given in
Figure 1.
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Figure 1: Plots of the EGF density function for some parameter values. (a)
For σ = 1.5 and λ = 2.0. (b) For β = 1.5 and σ = 1.5. (c) For α = 1.5 and
σ = 1.5

2.2 Exponentiated Generalized Normal

Let Φ(·) and φ(·) denote the standard normal cumulative and density func-
tions, respectively. The exponentiated generalized normal (EGN) cumulative
distribution is

F (x) = [1− {1− Φ(
x− µ
σ

)}α]β, (4)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, α > 0
and β > 0. The EGN density function becomes

f(x) = αβσ−1 {1− Φ(
x− µ
σ

)}α−1 [1− {1− Φ(
x− µ
σ

)}α]β−1 φ(
x− µ
σ

). (5)

Plots of the EGN density function for some parameter values are given in
Figure 2.
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Figure 2: Plots of the EGN density function for some parameter values. (a)
For µ = 0 and σ = 1.0. (b) For β = 2.0 and σ = 1.0. (c) For α = 1.5 and µ = 0

2.3 Exponentiated Generalized Gamma

The gamma cumulative distribution (for x > 0) with shape parameter a > 0
and scale parameter b > 0 is Ga,b(x) = γ(a, bx)/Γ(a), where Γ(a) =

∫∞
0 wa−1

e−wdw is the gamma function and γ(a, x) =
∫ x
0 w

a−1 e−wdw is the incomplete
gamma function. The exponentiated generalized gamma (EGGa) cumulative
distribution becomes

F (x) = {1− (1− γ(a, bx)

Γ(a)
)α}β, (6)

and the associated density function reduces to

f(x) =
αβ ba xa−1 e−bx

Γ(a)
{1− γ(a, bx)

Γ(a)
}α−1 {1− (1− γ(a, bx)

Γ(a)
)α}β−1. (7)

Plots of the density function (7) for selected parameter values are given in Figure
3.

2.4 Exponentiated Generalized Gumbel

The Gumbel cumulative distribution with parameters µ ∈ R and σ > 0
is Gµ,σ(x) = exp{− exp(−(x − µ)/σ)}. The exponentiated generalized Gumbel
(EGGu) cumulative distribution becomes

F (x) = {1− [1− exp{− exp(−x− µ
σ

)}]α}β, (8)
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Figure 3: Plots of the EGGa density function for some parameter values. (a)
For a = 1.5 and b = 2.0. (b) For β = 1.5 and b = 2.0. (c) For α = 1.5 and
a = 1.5

and the corresponding pdf reduces to

f(x) = αβσ−1{1− [1− exp{− exp(−x− µ
σ

)}]α}β−1[1− exp{− exp(−x− µ
σ

)}]α−1

× exp{− exp(−x− µ
σ

)} exp{−(
x− µ
σ

)}. (9)

Plots of this density function for selected parameter values are given in Figure 4.
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Figure 4: Plots of the EGGu density function for some parameter values. (a)
For µ = 0 and σ = 1.0. (b) For β = 1.5 and µ = 0. (c) For α = 1.5 and σ = 1.0
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3. Expansions for the Density Function

For any real non-integer β, we consider the power series expansion

(1− z)β−1 =

∞∑
k=0

(−1)k Γ(β)

Γ(β − k) k!
zk, (10)

which is valid for |z| < 1. Applying (10) in (1) and using the binomial expansion
for a positive real power yields

F (x) =
∞∑
j=0

wj G(x)j , (11)

where the coefficients wj = wj(α, β) are

wj =

∞∑
k=0

(−1)k+j Γ(β + 1) Γ(kα+ 1)

Γ(β − k) k! j!
.

(11) gives the generated cdf F (x) distribution as an infinite power series of the
parent G(x). Using again the series expansion (10), we can express (2) (for α
real non-integer) as

f(x) = αβ g(x)

∞∑
j=0

tj G(x)j , (12)

where the coefficients tj = tj(α, β) are

tj =
(−1)j Γ(β)

j!

∞∑
k=0

(−1)k Γ((k + 1)α)

Γ(β − k) Γ((k + 1)α− j) k!
.

Further, (12) can be rewritten as

f(x) =
∞∑
j=0

t?j hj+1(x), (13)

where t?j = αβ tj/(k + 1) and hj+1(x) = (j + 1) g(x)G(x)j is the Expj+1(G)
distribution.

(13) reveals that the EG density function is a linear combination of Exp-G
density functions. Thus, some structural properties of the EG class of distribu-
tions, such as ordinary and incomplete moments and generating function, can be
obtained from well-established properties of the Exp-G distributions.

The properties of Exp-G distributions have been studied by many authors in
recent years, see Mudholkar and Srivastava (1993) and Mudholkar et al. (1996) for
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exponentiated Weibull, Gupta et al. (1998) for exponentiated Pareto, Gupta and
Kundu (1999) for exponentiated exponential, Nadarajah (2005) for exponentiated
Gumbel, Shirke and Kakade (2006) for exponentiated log-normal and Nadarajah
and Gupta (2007) for exponentiated gamma distributions. See, also, Nadarajah
and Kotz (2006), among others. (11), (12) and (13) are the main results of this
section.

4. Moments

Hereafter, we shall assume that G is the cdf of a random variable X and that
F is the cdf of a random variable Y having density function (2). The moments
of the EG distribution can be obtained from the (r, j)th probability weighted
moment (PWM) of X defined by

τr,j = E[XrG(X)j ] =

∫ ∞
−∞

xrG(x)j g(x)dx. (14)

In fact, we have

E(Y r) = αβ
∞∑
j=0

tj τr,j . (15)

Thus, the moments of any EG distribution can be expressed as an infinite weighted
sum of PWMs of the parent distribution. A second formula for τr,j can be based
on the parent quantile function QG(x) = G−1(x). Setting G(x) = u, we obtain

τr,j =

∫ 1

0
QG(u)r ujdu, (16)

where the integral is now calculated over (0, 1).
The PWMs for various distributions will be determined in the following sec-

tions using alternatively (14) and (16).

4.1 EGF

The expansion for (3) reduces to F (x) =
∑∞

j=0wj Gσ∗,λ(x), where σ∗ = σj
1
λ

and Gσ∗,λ(x) is the Fréchet cumulative function with parameters σ∗ and λ. This
equation reveals that the EGF cumulative function can be expressed as an infinite
mixture of Fréchet cdf’s. Correspondingly, the EGF density function follows a
similar mixture

f(x) =

∞∑
j=0

wj gσ∗,λ(x) = αβλσλ x−(λ+1)
∞∑
j=0

tj exp{−(j + 1)(
σ

x
)λ},
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where gσ∗,λ(x) = dGσ∗,λ(x)/dx.
The (r, j)th PWM of the Fréchet distribution is

τr,j = λσλ
∫ ∞
0

xr−(λ+1) exp{−(j + 1)
(σ
x

)λ
}dx.

Setting u = (j + 1) (σ/x)λ, τr,j reduces to

τr,j =
σr

(j + 1)1−r/λ

∫ ∞
0

u−r/λ exp(−u)du.

The integral converges absolutely for r < λ. Finally, for r < λ,

E(Y r) = αβ σr Γ
(

1− r

λ

) ∞∑
j=0

tj

(j + 1)1−r/λ
.

4.2 EGN

The moments of X ∼ N (µ, σ) can be obtained from the moments of Z ∼
N (0, 1) using E(Xr) =

∑r
k=0 µ

r−t σr E(Zr), and then we can work with the
standard normal distribution. Consider the error function erf(·) defined by

erf(x) =
2√
π

∫ x

0
exp(−t2)dt.

From equation

Φ(x) =
1

2
{1 + erf(

x√
2

)}, (17)

we can expand the EGN cumulative function (4) (with µ = 0 and σ = 1) as

F (x) =
∞∑
j=0

2−j wj

j∑
l=0

(
j

l

)
erf(

x√
2

)l.

From the series expansion for the error function erf(·)

erf(x) =
2√
π

∞∑
m=0

(−1)m x2m+1

(2m+ 1)m!
,

we obtain a series expansion for (5) (with µ = 0 and σ = 1) given by

f(x) = αβ exp(−x
2

2
)21/2 π1/2

∞∑
j=0

2−j tj

j∑
l=0

(
j

l

)
2l/2 π−l/2

×
∞∑

m1=0

· · ·
∞∑

ml=0

(−1)m1+···+ml x2(m1+···ml)+l

2m1+···+ml (2m1 + 1) · · · (2ml + 1)m1! · · ·ml!
.
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From Cordeiro and Nadarajah (2011, (11)), the normal PWMs can be expressed
in terms of the Lauricella functions of type A (Exton, 1978; Aarts, 2000) defined
by

F
(n)
A (a; b1, · · · , bn; c1, · · · , cn;x1, · · · , xn)

=

∞∑
m1=0

· · ·
∞∑

mn=0

(a)m1+···+mn(b1)m1 · · · (bn)mn
(c1)m1 · · · (cn)mn

xm1
1 · · ·xmnn
m1! · · ·mn!

,

where (a)i = a(a+ 1) · · · (a+ i− 1) is the ascending factorial given by (with the
convention that (a)0 = 1). The (r, j)th PWM of the normal distribution is

τr,j = 2r/2 π−(j+1/2)
j∑
l=0

(r+j−l) even

(
j

l

)
2−l πl Γ(

r + j − l + 1

2
)

× F (j−l)
A (

r + j − l + 1

2
;
1

2
, · · · , 1

2
;
3

2
, · · · , 3

2
;−1, · · · ,−1).

This equation holds when r+j−l is even and it vanishes when r+j−l is odd. So,
any EGN moment can be expressed as an infinite weighted linear combination of
Lauricella functions of type A.

4.3 EGG

Using the power series expansion for the incomplete gamma function

Ga,b(x) =
(bx)a

Γ(a)

∞∑
m=0

(−b x)m

(a+m)m!
,

we obtain the following series expansion for (7)

f(x) =
αβ ba xa−1 e−bx

Γ(a)

∞∑
j=0

tj
(bx)aj

Γ(a)j

∞∑
m1=0

· · ·
∞∑

mj=0

(−bx)m1+···+mj

(a+m1) · · · (a+mj)m1! · · ·mj !
,

respectively. From (9) of Cordeiro and Nadarajah (2011), the quantities τr,j can
be determined as

τr,j =
Γ(r + a(j + 1))

ajbrΓ(a)j+1
F

(j)
A (r + a(j + 1); a, · · · , a; a+ 1, · · · , a+ 1,−1, · · · ,−1).
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4.4 EGGu

The expansion for the density function (9) becomes

f(x) =
∞∑
j=0

wj gµ∗,σ(x),

where gµ∗,σ(x) is the Gumbel density function with parameters µ∗ = µ−σ log(j)
and σ. So, the EGGu density function can be expressed as an infinite mixture of
Gumbel densities. The PWMs of the Gumbel distribution are

τr,j = σ−1
∫ ∞
−∞

xr exp{−(
x− µ
σ

)} exp{−(j + 1) exp(−x− µ
σ

)}dx.

Setting u = exp{−(x− µ)/σ)}, they reduce to

τr,j =

∫ ∞
0

[µ− σ log(u)]r exp[−(j + 1)u]du.

Using the binomial expansion, we have

τr,j =

r∑
l=0

(
r

l

)
(−σ)l µr−l

∫ ∞
0

log(u)l exp[−(j + 1)u]du.

By (2.6.21.1) in Prudnikov et al. (1986), the integral becomes∫ ∞
0

log(u)l exp[−(j + 1)u]du = (
∂

∂a
)l[(j + 1)−aΓ(a)]

∣∣∣∣
a=1

.

Finally,

E(Y r) = αβ
∞∑
j=0

tj

r∑
l=0

(
r

l

)
µr−l (−σ)l (

∂

∂a
)l[(j + 1)−a Γ(a)]

∣∣∣∣
a=1

.

4.5 Exponentiated generalized exponential

For the exponential cumulative function F (x) = 1 − exp(−λx), λ > 0, the
quantile function is QG(u) = −λ−1 log(1− u). From (16), τr,j becomes

τr,j = (−1)r λ−r
∫ 1

0
uj [log(1− u)]rdu = r!λr

∞∑
m=0

(−1)m+r
(
j
m

)
(m+ 1)r+1

,

and then the moments of the exponential generalized exponential (EGE) distri-
bution can be readily determined from (15).
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4.6 Exponentiated generalized logistic

For the exponentiated generalized logistic (EGL) distribution, the parent cu-
mulative function is G(x) = {1 + exp(−x)}−1. Using a result from Prudnikov et
al. (1986, Section 2.6.13, (4)), we can write from (16)

τr,j = (
∂

∂t
)r B(t+ j + 1, 1− t)

∣∣∣∣
t=0

,

where B(a, b) =
∫ 1
0 t

a−1 (1 − t)b−1dt = Γ(a) Γ(b)/Γ(a + b) is the beta function.
The rth moment of the EGL distribution comes from (15) as

E(Y r) = αβ
∞∑
j=0

tj (
∂

∂t
)r B(t+ j + 1, 1− t)

∣∣∣∣
t=0

.

4.7 Exponentiated Generalized Pareto

For the exponentiated generalized Pareto (EGPa) distribution, where the
baseline cumulative function is G(x) = 1 − (1 + x)−ν (for ν > 0), we imme-
diately obtain from (15) and (16)

E(Y r) = αβ
∞∑

j,m=0

(−1)r+m
(
r

m

)
tj B(j, 1− m

ν
).

4.8 Exponentiated Generalized Beta

The cdf of the beta distribution (for 0 < x < 1) is

Ga,b(x) = Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1 (1− t)b−1dt,

where a > 0 and b > 0. The exponentiated generalized beta (EGB) cumulative
distribution is F (x) = [1−{1−Ix(a, b)}α]β and the corresponding density function
becomes

f(x) =
αβ xa−1 (1− x)b−1

B(a, b)
{1− Ix(a, b)}α−1 [1− {1− Ix(a, b)}α]β−1.

Using the incomplete beta power series for real non-integer b > 0

Ix(a, b) =
xa

B(a, b)

∞∑
m=0

(1− b)m xm

(a+m)m!
,
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we can obtain an expansion for f(x) as follows

f(x) =
αβ xa−1 (1− x)b−1

B(a, b)

∞∑
j=0

tj x
ja

B(a, b)j

∞∑
m1=0

· · ·

∞∑
mj=0

(1− b)m1 · · · (1− b)mj xm1+···+mj

(a+m1) · · · (a+mj)m1! · · ·mj !
.

The PWMs of the beta distribution can be expressed in terms of the generalized
Kampé de Fériet function (Exton, 1978; Mathai, 1993; Aarts, 2000; Chaudhry
and Zubair, 2002). They are given by (Cordeiro and Nadarajah, 2011)

τr,j = a−jB(a, b)−(j+1)B(b, r + a(j + 1))F 1:2
1:1 ((r + a(j + 1)) : (1− b, a); · · · ;

(1− b, a) : (b+ r + a(j + 1)) : (a+ 1); · · · ; (a+ 1); 1, · · · , 1),

where the generalized Kampé de Fériet function is defined by

FA:BC:D ((a) : (b1); · · · ; (bn); (c) : (d1); · · · ; (dn);x1, · · · , xn)

=

∞∑
m=1=0

· · ·
∞∑

mn=0

((a))m1+···mn((b1))m1 · · · ((bn))mn
((c))m1+···+mn((d1))m1 · · · ((dn))mn

xm1
1 · · ·xmnn
m1! · · ·mn!

,

where a = (a1, · · · , aA), bi = (bi,1, · · · , bi,B), c = (c1, · · · , cC), di = (di,1, · · · , di,D)
for i = 1, · · · , n and

((f))k = ((f1, · · · , fp))k = (f1)k · · · (fp)k.

Hence, the EGB moments can be expressed as an infinite weighted linear combi-
nation of generalized Kampé de Fériet functions.

5. Generating Function

Here, we provide three formulae for the moment generating function (mgf)
M(s) = E[exp(s Y )] of Y . Clearly, the first one is simply

M(s) =
∞∑
r=0

µ′r
r!
sr, (18)

where µ′r = E(Y r) is obtained from (15).
A second formula for M(s) comes from (13) as

M(s) =
∞∑
j=0

t?jMj+1(s), (19)
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where Mj+1(s) is the generating function of the Expj+1(G) distribution. Hence,
M(s) can be determined from the Exp-G generating function.

A third formula for M(s) can be derived from (12) as

M(s) = αβ

∞∑
j=0

tj ρj(s), (20)

where the quantity ρj(s) =
∫∞
−∞ exp(sx)G(x)j g(x)dx follows from the baseline

quantile function QG(u) = G−1(u) as

ρj(s) =

∫ 1

0
exp [sQG(u)]ujdu. (21)

We can derive the mgf of several EG distributions directly from (20) and (21).
For example, the mgf’s of the EGE (with parameter λ), EGL and EGPa (with
parameter ν > 0) distributions are given by

M(s) = αβ

∞∑
j=0

tj B(j + 1, 1− λs), M(s) = αβ

∞∑
j=0

tj B(s+ j + 1, 1− s),

and

M(s) = αβ e−s
∞∑

j,r=0

tj B(j + 1, 1− rν−1)
r!

sr,

respectively.
Clearly, three representations for the characteristic function (chf) φ(s) =

E[exp(i sX)] of the EG distributions are derived from (18)-(20) by φ(s) = M(i s),
where i =

√
−1.

6. Mean Deviations

The mean deviations about the mean (δ1(Y ) = E(|Y − µ′1|)) and about the
median (δ2(Y ) = E(|Y −M |)) of Y can be expressed as

δ1(Y ) = 2µ′1 F (µ′1)− 2m1(µ
′
1) and δ2(Y ) = µ′1 − 2m1(M), (22)

respectively, where M = QG([1 − (1 − 2−β)1/α]) is the median of Y , µ′1 = E(Y )
comes from (15), F (µ′1) is easily calculated from (1) and m1(z) =

∫ z
−∞ x f(x)dx

is the first incomplete moment.
Now, we provide two alternative ways to compute δ1(Y ) and δ2(Y ). A general

equation for m1(z) can be derived from (13) as

m1(z) =
∞∑
j=0

t?j Jj+1(z), (23)
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where

Jj+1(z) =

∫ z

−∞
xhj+1(x)dx. (24)

(24) is the basic quantity to compute the mean deviations for the GE distribu-
tions. The mean deviations (22) depend only on the first incomplete moment of
the Exp-G distributions. So, alternative representations for δ1(Y ) and δ2(Y ) are

δ1(Y ) = 2µ′1 F (µ′1)− 2
∞∑
j=0

t?j Jj+1(µ
′
1) and δ2(Y ) = µ′1 − 2

∞∑
j=0

t?j Jj+1(M).

A simple application of (23) and (24) refers to the exponentiated generalized
Weibull (EGW) distribution. The exponentiated Weibull density function (for
x > 0) with power parameter j + 1, shape parameter c and scale parameter β is

hj+1(x) = c (j + 1)βc xc−1 exp{−(βx)c} t[1− exp {−(βx)c}]j ,

and then

Jj+1(z) = c (j + 1)βc
∞∑
r=0

(−1)r
(
j

r

) ∫ z

0
xc exp{−(r + 1)(βx)c}dx.

The last integral reduces to the incomplete gamma function and then

Jj+1(z) = β−1
∞∑
r=0

(−1)r (j + 1)
(
j
r

)
(r + 1)1+1/c

γ(1 + c−1, (r + 1)(βz)c).

A second general formula for m1(z) can be derived by setting u = G(x) in
(13)

m1(z) =
∞∑
j=0

(j + 1) t?j Tj(z), (25)

where Tj(z) is given by

Tj(z) =

∫ G(z)

0
QG(u)ujdu. (26)

For example, we can obtain the mean deviations of the EGE (with parameter
λ), EGL and EGPa (with parameter ν > 0) distributions from (25)-(26). The
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quantities Tj(z) can be derived from the following integrals (for a > 0) using
Maple and Mathematica∫ a

1
xj log(x)dx =

1− aj+1

(j + 1)2
+
aj+1 log(a)

(j + 1)
,∫ a

0
xj log(x)dx =

aj+1

(j + 1)2
[(j + 1) log(a)− 1].

By changing variables and using the binomial expansion and these integrals,
we obtain

Tj(z) = λ−1
j∑

k=0

(−1)k
(
j

k

)
[
1− {1−G(z)}k+1

(k + 1)2
+
{1−G(z)}k+1 log{1−G(z)}

(k + 1)
],

Tj(z) =
G(z)j+1

(j + 1)2
[(j + 1) log{G(z)} − 1]

−
j∑

k=0

(−1)k
(
j

k

)
[
1− {1−G(z)}k+1

(k + 1)2
+
{1−G(z)}k+1 log{1−G(z)}

(k + 1)
],

and

Tj(z) =
∞∑
k=0

(−1)k
(−ν−1

k

)
G(z)k+j+1

(k + j + 1)
− G(z)j+1

(j + 1)
,

for the EGE, EGL and EGPa distributions, respectively.
Applications of these equations can be conducted to obtain Bonferroni and

Lorenz curves defined for a given probability π by B(π) = m1(q)/π µ
′
1 and

L(π) = m1(q)/µ
′
1, respectively, where q = QG([1 − (1 − π1/β)1/α]) is immedi-

ately calculated from the parent quantile function.

7. Order Statistics

The density fi:n(x) of the ith order statistic, for i = 1, · · · , n, from indepen-
dent identically distributed random variables Y1, · · · , Yn is given by

fi:n(x) =
f(x)

B(i, n− i+ 1)
F (x)i−1 {1− F (x)}n−i.

Substituting (1) and (2) in this equation, we can write

fi:n(x) =
αβ

B(i, n− i)
g(x) {1−G(x)}α−1 [1− {1−G(x)}α]βi−1

× {1− [1− {1−G(x)}α]β}n−i.
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Using the binomial expansion, fi:n(x) can be expressed as

fi:n(x) =
αβ

B(i, n− i)
g(x) {1−G(x)}α−1

n−i∑
k=0

(−1)k
(
n− i
k

)
× [1− {1−G(x)}α]β(i+k)−1.

For β real non-integer, by applying (10) to the last term, we obtain

fi:n(x) =
αβ

B(i, n− i)
g(x)

n−i∑
k=0

(−1)k
(
n− i
k

) ∞∑
r=0

(−1)r Γ(β(i+ k))

Γ(β(i+ k)− r) r!

× {1−G(x)}α(r+1)−1,

which can be rewritten as

fi:n(x) =
αβ

B(i, n− i)
g(x)

∞∑
l=0

slG(x)l, (27)

where the coefficients sl can be calculated as

sl = sl(α, β, i, n)

=
n−i∑
k=0

∞∑
r=0

(−1)k+r+l Γ(β(i+ k)) Γ(α(r + 1)) Γ(n− i+ 1)

Γ(α(r + 1)− l) Γ(β(i+ k)− r) Γ(n− i− k + 1) k! r! l!
.

(27) can be rewritten in terms of the Exp-G density functions as

fi:n(x) =
αβ

B(i, n− i)

∞∑
l=0

sl hl+1(x). (28)

(28) is the main result of this section. So, several mathematical properties of the
EG order statistics (like ordinary and incomplete moments, generating function,
mean deviations) can be obtained from those properties of the Exp-G distribution
as shown previously for the EG distribution.

8. Maximum Likelihood Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters
of the EG distribution from complete samples only. Let x1, · · · , xn be a random
sample of size n from the EG(α, β, γ) distribution, where γ is a p1 vector of un-
known parameters in the parent distribution G(x; γ). The log-likelihood function
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for the vector of parameters θ = (α, β, γT )T can be expressed as

l(θ) = n log(α) + n log(β) +
n∑
i=1

log
[
g(xi; γ)

]
+ (α− 1)

n∑
i=1

log
[
1−G(xi; γ)

]
+(β − 1)

n∑
i=1

log{1− [1−G(xi; γ)]α}, (29)

The log-likelihood can be maximized either directly by using the SAS (Proc
NLMixed) or the MaxBFGS routine in the matrix programming language Ox
(see, Doornik, 2007) or by solving the nonlinear likelihood equations obtained by
differentiating (29). The components of the score vector U(θ) are

Uα(θ) =
n

α
+

n∑
i=1

log[1−G(xi; γ)]{1− (β − 1)[1−G(xi; γ)]α

1− [1−G(xi; γ)]α
},

Uβ(θ) =
n

β
+

n∑
i=1

log{1− [1−G(xi; γ)]α},

Uγj (θ) =
n∑
i=1

{
[ġ(xi; γ)]γj
g(xi; γ)

−
(α− 1)[Ġ(xi; γ)]γj

1−G(xi; γ)

+
α(β − 1)[1−G(xi; γ)]α−1[Ġ(xi; γ)]γj

1− [1−G(xi; γ)]α
},

where [ġ(xi; γ)]γj = ∂g(xi; γ)/∂γj , [Ġ(xi; γ)]γj = ∂G(xi; γ)/∂γj for j = 1, · · · , p.
For interval estimation and hypothesis tests on the model parameters, we re-

quire the (p + 2) × (p + 2) observed information matrix J = J(θ) given in the
Appendix. Under conditions that are fulfilled for parameters in the interior of
the parameter space but not on the boundary, the asymptotic distribution of√
n(θ̂ − θ) is N(p+2)(0, I(θ)−1), where I(θ) is the expected information matrix.

In practice, we can replace I(θ) by the observed information matrix evaluated at
θ̂ (say J(θ̂)). We can construct approximate confidence intervals and confidence
regions for the parameters based on the multivariate normal N(p+2)(0, J(θ̂)−1)
distribution. The elements of the observed information matrix are in the Ap-
pendix.

Further, the likelihood ratio (LR) statistic can be used for comparing the
EG distribution with some of its special models. We can compute the maximum
values of the unrestricted and restricted log-likelihoods to construct LR statistics
for testing some sub-models of the EG distribution. For example, the test of
H0 : α = 1 versus H : H0 is not true is equivalent to compare the EG and
exponentiated type distributions and the LR statistic reduces to

w = 2{`(α̂, β̂, γ̂)− `(1, β̃, γ̃)},
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where α̂, β̂ and γ̂ are the MLEs under H and β̃ and γ̃ are the estimates under
H0.

9. Applications

In this section, we use four real data sets to compare the fits of the EG
distribution with those of three sub-models, i.e., the two exponentiated type
distributions and the parent distribution itself. In each case, the parameters are
estimated by maximum likelihood (Section 8) using the subroutine NLMixed in
SAS. First, we describe the data sets and give the MLEs (and the corresponding
standard errors in parentheses) of the parameters and the values of the Akaike
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC)
and Bayesian Information Criterion (BIC) statistics. The lower the values of
these criteria, the better the fit. Note that over-parameterization is penalized
in these criteria, so that the two additional parameters in the EG model do not
necessarily lead to smaller values of the AIC, BIC or CAIC statistics. Next, we
perform LR tests (Section 8) for formal tests of the additional shape parameters.
Finally, we provide histograms of the data sets to show a visual comparison of
the fitted density functions.

(i) Ethylene data
These data were taken from a study by the University of São Paulo, ESALQ
(Laboratory of Physiology and Post-colheita Biochemistry), which evaluated the
effects of mechanical damage on banana fruits (genus Musa spp.); see Saavedra
del Aguila et al. (2010) for more details. The major problem affecting bananas
during and after harvest is the susceptibility of the mature fruit to physical dam-
age caused during transport and marketing. Ethylene is a plant hormone im-
portant in post-harvest fruit. A high ethylene production can generate a fast
senescence of fruit. We use 630 data points on ethylene and assume a normal
parent distribution.

(ii) Wheaton River data
The data are the exceedances of flood peaks (in m3/s) of the Wheaton River
near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances
for the years 1958-1984 rounded to one decimal place. These data were analyzed
by Akinsete et al. (2008).

(iii) Stress level data
The following 101 data points represent the stress-rupture life of 49 kevlar epoxy
strands, which were subjected to constant sustained pressure at the 90% stress
level until all had failed, so that we have complete data with exact times of failure.
The failure times in hours are given by Cooray and Ananda (2008).

(iv) Carbon data
These uncensored data on the breaking stress of carbon fibres (in Gba) are ob-
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tained from Nichols and Padgett (2006).
Table 1 gives a descriptive summary of each sample. The carbon data has

negative skewness. The ethylene, Wheaton River and stress level data have posi-
tive skewness and kurtosis, larger values of these sample moments being apparent
in the ethylene data.

Table 1: Descriptive statistics

Data Mean Median Mode SD Variance Skewness Kurtosis Min. Max.

Ethylene 8.29 1.17 0 16.18 261.66 3.85 20.03 0.0 141.05

Wheaton 12.20 9.5 1.7 12.3 151.22 1.5 3.19 0.1 64

Stress level 1.03 0.8 0.02 1.12 1.25 3.05 14.51 0.01 7.89

Carbon 2.76 2.84 1.61 0.89 0.80 -0.14 0.34 0.39 4.90

We compute the MLEs and the AIC, BIC and CAIC information criteria for
each data set. For the ethylene data, we compare the fitted EGN model (with
parameters α, β and γ = (µ, σ)T ) with the fitted exponentiated normal (EN),
Lehmann II normal (LIIN) and normal distributions. The MLEs of µ and σ for
the normal distribution are taking as starting values for the numerical iterative
procedure. For the wheaton River data, we compare the fitted EGGu model
(with parameters α, β and γ = (µ, σ)T ) with the fitted EGu (exponentiated
Gumbel), Lehmann II Gumbel (LIIGu) and Gumbel distributions. The MLEs
of µ and σ for the Gumbel distribution are taking as starting values for the
iterative procedure. For the stress level data, we compare the EGF model (with
parameters α, β and γ = (λ, σ)T ) with the fitted exponentiated Fréchet (EF),
Lehmann II Fréchet (LIIF) and Fréchet distributions. The MLEs of λ and σ for
the Fréchet distribution are taking as starting values for the iterative procedure.
Further, for the carbon data, the fitted EGGa distribution (with parameters α,
β and γ = (a, b)T ) is compared with the fitted EGa, Lehmann II gamma (LIIGa)
and gamma models. Here, the MLEs of a and b for the gamma distribution are
taking as starting values.

The results are reported in Table 2. Note that the three information criteria
agree on the model’s ranking in every case. For the ethylene, Wheaton River and
stress level data, the lowest values of the information criteria correspond to the
fitted EG distribution. Clearly, for the carbon data, based on the values of these
statistics, we can conclude that the top two models are the EGGa and LIIGa
distributions and the other distributions are far worse.

A formal test for the need of the extra parameters in the EG models can
be performed using LR statistics (Section 8). Applying these LR tests to our
four data sets yield the results in Table 3. For the carbon data, the additional
parameters of the EGGa distribution are not, in fact, necessary because the LR
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Table 2: MLEs and information criteria

Ethylene α β µ σ AIC CAIC BIC

EGN 0.8780 455.79 -79.8710 26.7977 4846.2 4846.3 4864.0
(0.0472) (115.59) (4.7022) (0.8233)

EN 1 1.6688 2.0018 16.8665 5230.1 5230.2 5243.5
- (0.2667) (2.3450) (0.5433)

LIIN 0.9367 1 8.2365 16.1102 5296.0 5296.1 5309.3
(0.0844) - (1.3425) (0.5336)

Normal 1 1 8.2923 16.1631 5298.2 5298.3 5307.1
- - (0.6440) (0.4553)

Wheaton River α β µ σ AIC CAIC BIC

EGGu 0.0988 0.4769 2.6317 1.6639 521.8 522.4 530.9
(0.0243) (0.1439) (0.7863) (0.0529)

EGu 1 1.0312 6.7165 8.1893 544.9 545.2 551.7
- (14.99) (15.43) (0.8185)

LIIGu 0.1474 1 0.5571 1.7214 524.5 524.8 531.3
(0.0186) - (0.5291) (0.0544)

Gumbel 1 1 6.9684 8.1893 542.9 543.0 547.4
- - (1.0093) (0.8185)

Stress level α β σ λ AIC CAIC BIC

EGF 606.36 0.1761 1095.66 0.3104 217.4 217.8 227.9
(184.53) (0.0186) (375.16) (0.0105)

EF 1 0.3383 1.4333 0.6136 271.9 272.2 279.8
- (0.2146) (1.4935) (0.0427)

LIIF 29.4149 1 177.49 0.2289 227.8 228.0 235.6
(12.0856) - (16.90) (0.0209)

Fréchet 1 1 0.2451 0.6136 269.9 270.1 275.2
- - (0.0423) (0.0422)

Carbon α β a b AIC CAIC BIC

EGGa 181.07 0.6260 5.4917 0.3924 180.1 180.7 188.8
(42.65) (0.2477) (1.5906) (0.3039)

EGa 1 0.2490 24.5269 6.5514 183.7 184.0 190.2
- (0.0481) (1.7579) (1.0355)

LIIGa 44.7751 1 4.2064 0.3796 179.5 179.9 186.0
(9.5720) - (1.1340) (0.4020)

Gamma 1 1 7.4880 2.7135 186.3 186.5 190.7
- - (1.2755) (0.4781)
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Table 3: LR tests

Ethylene Hypotheses LR Statistic w p-value

EGN vs EN H0 : α = 1 vs H1 : H0 is false 385.9 < 0.00001
EGN vs LIIN H0 : β = 1 vs H1 : H0 is false 451.8 < 0.00001

EGN vs Normal H0 : α = β = 1 vs H1 : H0 is false 456 < 0.00001

Wheaton River Hypotheses Statistic w p-value

EGGu vs EGu H0 : α = 1 vs H1 : H0 is false 25.1 < 0.00001
EGGu vs LIIGu H0 : β = 1 vs H1 : H0 is false 4.7 0.0302

EGGu vs Gumbel H0 : α = β = 1 vs H1 : H0 is false 26.1 < 0.00001

Stress level Hypotheses Statistic w p-value

EGF vs EF H0 : α = 1 vs H1 : H0 is false 56.5 < 0.00001
EGF vs LIIF H0 : β = 1 vs H1 : H0 is false 12.4 0.0004

EGF vs Fréchet H0 : α = β = 1 vs H1 : H0 is false 57.5 < 0.00001

Carbon Hypotheses Statistic w p-value

EGGa vs EGa H0 : α = 1 vs H1 : H0 is false 5.6 0.0179
EGGa vs LIIGa H0 : β = 1 vs H1 : H0 is false 1.4 0.2367

EGGa vs Gamma H0 : α = β = 1 vs H1 : H0 is false 10.2 0.0061

tests provide no indications against the LIIGa distribution. However, for the
ethylene, Wheaton River and stress level data sets, we reject the null hypotheses
in all three LR tests in favor of the new distributions. The rejection is extremely
highly significant for the ethylene and stress level data, and highly or very highly
significant for the Wheaton River data. This gives clear evidence of the potential
need for the extra parameters in the proposed model when modelling real data.

In order to assess if the model is appropriate, the histograms of the data, the
plots of the fitted EGN, EN, LIIN, EGGu, EGu, LIIGu, EGF, EF, LIIF, EGGa,
EGa, LIIGa, normal, Gumbel, Fréchet and gamma density functions are displayed
in Figure 5. We can conclude that the EG distributions are very suitable to these
data.

10. Concluding Remarks

We propose a new class of exponentiated generalized (EG) distributions which
includes as special cases the two classes of Lehmann’s (1953) alternatives. The EG
class extends several common distributions studied recently such as the exponen-
tiated exponential, exponentiated Weibull, exponentiated gamma, exponentiated
Fréchet and exponentiated Gumbel distributions (see, for example, Mudholkar
and Srivastava, 1993; Gupta et al., 1998; Gupta and Kundu, 2001; Nadarajah
and Kotz, 2006), among several others. Indeed, for any baseline distribution, we
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Figure 5: Estimated densities of the EG models for the analysed data sets

can easily define the corresponding EG distribution. The quantile, moments,
generating function and mean deviations of some generated distributions have
tractable mathematical properties. Some of these properties are readily obtained
from those of the exponentiated and baseline distributions. For example, the
moments of the EG distribution can be expressed explicitly in terms of an infinite
sum of probability weighted moments of the baseline G distribution. The same
happens for the moments of their order statistics.

We discuss maximum likelihood estimation and inference on the parameters
based on likelihood ratio statistics for testing nested models. Four applications
of the new class of distributions to real data are given to show the feasibility
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of our proposal. We hope this generalization may attract wider applications
in statistics. Some suggestions and directions for future research on the new
class of models include simulation studies, asymptotic properties of the maximum
likelihood estimates and performance and comparison of the Bayesian, bootstrap
and Jackknife methods for estimation of the model parameters. Finally, we can
also define regression models for the logarithmic of the random variable of the
EG class of distributions.

Appendix

The elements of the observed information matrix J(θ) for the parameters
(α, β, γ) are:

Jα,α = − n

α2
+ (β − 1)

n∑
i=1

[1−G(xi; γ)]α{log[1−G(xi; γ)]}2

{1− [1−G(xi; γ)]α}2
,

Jα,β = −
n∑
i=1

[1−G(xi; γ)]α log[1−G(xi; γ)]

1− [1−G(xi; γ)]
,

Jα,γj = −
n∑
i=1

[Ġ(xi; γ)]γj
1−G(xi; γ)

+ (β − 1)
n∑
i=1

[Ġ(xi; γ)]γj [1−G(xi; γ)]α−1

{1− [1−G(xi; γ)]}2

×{{1 + α log[1−G(xi; γ)]}{1− [1−G(xi; γ)]}+ α[1−G(xi; γ)]α},

Jβ,β = − n

β2
,

Jβ,γj = α
n∑
i=1

[Ġ(xi; γ)]γj [1−G(xi; γ)]α−1

{1− [1−G(xi; γ)]}2
,

Jγj ,γs =
n∑
i=1

[g̈(xi; γ)]γjγsg(xi; γ)− [ġ(xi; γ)]γj [ġ(xi; γ)]γs
[g(xi; γ)]2

+
n∑
i=1

[G̈(xi; γ)]γjγs [1−G(xi; γ)] + [Ġ(xi; γ)]γj [Ġ(xi; γ)]γs
[1−G(xi; γ)]2

−
n∑
i=1

[1−G(xi; γ)]α−2

1− [1−G(xi; γ)]
{(α− 1)[Ġ(xi; γ)]γj [Ġ(xi; γ)]γs

−[1−G(xi; γ)][G̈(xi; γ)]γjγs}

+α
n∑
i=1

[Ġ(xi; γ)]γj [Ġ(xi; γ)]γs [1−G(xi; γ)]2(α−1)

{1− [1−G(xi; γ)]α}2
,

where [g̈(xi; γ)]γjγs = ∂2g(xi; γ)/∂γj∂γs, [G̈(xi; γ)]γjγs = ∂2G(xi; γ)/∂γj∂γs, and
j, s = 1, · · · , p.
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