Projectivity and unification in the varieties of locally finite monadic MV-algebras

Antonio Di Nola¹, Revaz Grigolia²∗ and Giacomo Lenzi³

¹ University of Salerno, Salerno, Italy
adinola@unisa.it

² Tbilisi State University, Tbilisi, Georgia
revaz.grigolia359@gmail.com

³ University of Salerno, Salerno, Italy
gilenzi@unisa.it

Abstract

A description of finitely generated free monadic MV-algebras and a characterization of projective monadic MV-algebras in locally finite varieties is given. It is shown that unification type of locally finite varieties is unitary.

1 Introduction

Monadic MV-algebras (monadic Chang algebras by Rutledge’s terminology) were introduced and studied by Rutledge in [5] as an algebraic model for the predicate calculus qL of Lukasiewicz infinite-valued logic, in which only a single individual variable occurs. Rutledge followed P.R. Halmos’ study of monadic Boolean algebras. In view of the incompleteness of the predicate calculus the result of Rutledge in [5], showing the completeness of the monadic predicate calculus, has been a great interest. Adapting for the propositional case the axiomatization of monadic MV-algebras given by Rutledge in [5], we can define modal Lukasiewicz propositional calculus $MLPC$ as a logic which contains Lukasiewicz propositional calculus Luk, the formulas as the axioms schemes:

\[
\begin{align*}
\alpha \rightarrow \exists \alpha, & \exists (\alpha \lor \beta) \equiv \exists \alpha \lor \exists \beta, \exists (\neg \exists \alpha) \equiv \neg \exists \alpha, \exists (\exists \alpha + \exists \beta) \equiv \exists \alpha + \exists \beta, \\
\end{align*}
\]

and closed under modus ponens and necessitation (if α, then $\forall \alpha$, where $\forall \alpha = \neg \exists \neg \alpha$).

Let L denote a first-order language based on $\cdot, +, \rightarrow, \neg, \exists$ and L_m denotes monadic propositional language based on $\cdot, +, \rightarrow, \neg, \exists$ and $Form(L)$ and $Form(L_m)$ - the set of all formulas of L and L_m, respectively. We fix a variable x in L, associate with each propositional letter p in L_m a unique monadic predicate $p^*(x)$ in L and define by induction a translation $\Psi : Form(L_m) \rightarrow Form(L)$ by putting: $\Psi(p) = p^*(x)$ if p is propositional variable, $\Psi(\alpha \circ \beta) = \Psi(\alpha) \circ \Psi(\beta)$, where $\circ = \cdot, +, \rightarrow$, $\Psi(\exists \alpha) = \exists \Psi(\alpha)$.

Through this translation Ψ, we can identify the formulas of L_m with monadic formulas of L containing the variable x. Moreover, it is routine to check that $\Psi(MLPC) \subseteq QL$.

2 Monadic MV-algebras

The characterization of monadic MV-algebras as pair of MV-algebras, where one of them is a special kind of subalgebra, are given in [3, 2]. MV-algebras were introduced by Chang in [1] as an algebraic model for infinitely valued Lukasiewicz logic.

*The author is supported by the grant CNRS-SNRF N 09/09 and the grant SNRF N 31/08.
An MV-algebra is an algebra $A = (A, \oplus, \circ, ^*, 0, 1)$ where $(A, \oplus, 0)$ is an abelian monoid, and the following identities hold for all $x, y \in A$: $x \oplus 1 = 1, x^{**} = x, 0^* = 1, x \oplus x^* = 1, (x^* \oplus y)^* \oplus y = (x^* \oplus y^*) \oplus x, x \circ y = (x^* \oplus y^*)^*$.

An algebra $A = (A, \oplus, \circ, ^*, \exists, 0, 1)$ is said to be monadic MV-algebra (for short MMV-algebra) if $A = (A, \oplus, \circ, ^*, 0, 1)$ is an MV-algebra and in addition \exists satisfies the following identities: $x \leq 3x, 3(x \vee y) = 3x \vee 3y, 3(3x)^* = (3x)^*, 3(3x \vee 3y) = 3x \vee 3y, 3(x \circ y) = 3x \circ 3y, 3(x \circ y) = 3 \circ 3y, \exists(x \circ y) = 3 \circ 3y$.

We shall denote a monadic MV-algebra $A = (A, \oplus, \circ, ^*, \exists, 0, 1)$ by (A, \exists), for brevity. Let $\exists A = \{x \in A : x = 3x\}$.

A subalgebra A_0 of an MV-algebra A is said to be relatively complete if for every $a \in A$ the set $\{b \in A_0 : a \leq b\}$ has the least element.

A subalgebra A_0 of an MV-algebra A is said to be m-relatively complete, if A_0 is relatively complete and two additional conditions hold:

$$(\#) (\forall a \in A)(\forall x \in A_0)(\exists v \in A_0)(x \geq a \oplus a \Rightarrow v \geq a \circ v \leq x),$$

$$(\#\#)(\forall a \in A)(\forall x \in A)(\exists v \in A_0)(x \geq a \oplus a \Rightarrow v \geq a \circ v \leq x).$$

Proposition 1. [3] Let $(A, \oplus, \circ, ^*, \exists, 0, 1)$ be a monadic MV-algebra. Then the MV-subalgebra $\exists A$ of A of monadic MV-algebra $(A, \oplus, \circ, ^*, \exists, 0, 1)$ is m-relatively complete.

Proposition 2. [4] There exists a one-to-one correspondence between:

1. monadic MV-algebras (A, \exists);
2. the pairs (A, A_0), where A_0 is m-relatively complete subalgebra of A.

3 Projective monadic MV-algebras

From the variety of monadic MV-algebras MMV select the subvariety K_n for $1 \leq n \neq \omega$, which is defined by the following equation [3]: $(K_n) x^n = x^{n+1}$, that is $K_n = MMV + (K_n)$.

Proposition 3. [3] If (A, \exists) is a totally ordered monadic MV-algebra, then $A = \exists A$.

Proposition 4. [3] If (A, \exists) is a finite monadic MV-algebra with totally ordered A, then MV-algebra A is isomorphic to a product of totally ordered MV-algebras A_i, $i \in I$, $A_i \cong \exists A$ and $\exists A$ is isomorphic to the diagonal subalgebra of the product.

It is defined a unique monadic operator \exists on S^k_n, where $S_n = (S_n; \oplus, \circ, ^*, 0, 1)$ and $S_n = \{0, 1, n, \ldots, n^{-1}, 1\}$, which corresponds to m-relatively complete linearly ordered MV-algebra S^k_n. This subalgebra coincides with the greatest diagonal subalgebra, i.e. $d(S^k_n) = \{(x, \ldots, x) \in S^k_n : x \in S_n\}$. Denote this monadic MV-algebra by (S^k_n, \exists_d). In this case the monadic operator \exists_d is defined as follows: $\exists_d(x_1, \ldots, x_k) = (x_j, \ldots, x_j)$, where $x_j = \max(x_1, \ldots, x_k)$. The operator \forall_d is defined dually: $\forall_d(x_1, \ldots, x_k) = (x_i, \ldots, x_i)$, where $x_i = \min(x_1, \ldots, x_k)$.

Notice that K_n is generated by (S^k_p, \exists_d), $p = 1, \ldots, n$ and $k \in \omega$. Moreover, K_n is locally finite and there exists maximal $k \in \omega$, depending on n, such that (S^k_n, \exists_d) is m-generated. The maximal k we denote by $t(n)$. There exists also a positive number $r(k, n)$ depending on k and n such that $(S^k_n, \exists_d)^{r(k,n)}$ is m-generated. So,

Theorem 5.

$$\prod_{p=1}^{n} \prod_{k=1}^{t(p)} (S^k_p, \exists_d)^{r(k,p)}$$

89
Projectivity and unification in the varieties of locally finite monadic MV-algebras

is a free m-generated algebra $F_{K_n}(m)$ in the variety K_n.

Let us notice, that exact description of one-generated free MMV-algebra in the variety K_n is given in [3].

Theorem 6. The m-generated MMV-algebra A from K_n is projective iff A is isomorphic to $(S^1_1, \exists_d) \times A'$.

Theorem 7. Any subalgebra of the free m-generated algebra $F_{K_n}(m)$ is projective.

Let V_n be the variety generated by $\{S_1, \ldots, S_n\}$. Let us observe that

$$
\prod_{p=1}^n (S^1_{p}, \exists)^{(1,p)}
$$

is an algebra with trivial monadic operator \exists (i.e. $\exists x = x$) which is isomorphic as an MV-algebra to the m-generated free MMV-algebra $F_{V_n}(m)$. Denote this algebra as $(F_{V_n}(m), \exists)$. It holds

Theorem 8. The MMV-algebra $(F_{V_n}(m), \exists)$ is a retract of the algebra of the free m-generated algebra $F_{K_n}(m)$. So, $(F_{V_n}(m), \exists)$ is projective.

4 Monadic operators on finite MV-algebras

Suppose that A is a finite MV-algebra. Then $A \cong S_{n_1} \times S_{n_2} \times \ldots S_{n_k}$ where the $n_i \geq 1$. Let $\Pi = \{K_1, K_2, \ldots, K_m\}$ be a partition of $\{1, 2, \ldots, k\}$. We shall say that Π is homogeneous if $i, j \in K_l$ implies $S_{n_i} = S_{n_j}$. Given such a Π, each K_i has associated a unique S_{n_i} which we shall denote by A_i. We clearly have $A \cong A_1^{K_1} \times \ldots \times A_m^{K_m}$. Since each K_i is finite, there is a monadic operator \exists_i defined on $A_i^{K_i}$ such that $(A_i^{K_i}, \exists_i)$ is an MMV-algebra with $\exists_i(A_i^{K_i}) = A_i$. Setting $\exists = \exists_1 \times \ldots \times \exists_m$ and acting pointwise, we obtain a monadic operator \exists on A, that is, (A, \exists) is an MMV-algebra. If a $K_i \in \Pi$ has at least two members, then determined the monadic operator will not be trivial, that is will not be the identity operator.

Proposition 9. Suppose that A is a finite MV-algebra, say $A = S_{n_1} \times S_{n_2} \times \ldots S_{n_k}$.

(i) For each homogeneous partition $\{K_1, K_2, \ldots, K_m\}$ of $\{1, 2, \ldots, k\}$, there is a monadic operator defined on A. Conversely, each monadic operator defined on A is determined by some homogeneous partition of $\{K_1, K_2, \ldots, K_m\}$.

(ii) If $A = S_n^k$, then any partition on $\{1, 2, \ldots, k\}$ determines a monadic operator on A and conversely, each monadic operator on A comes from some partition of $\{1, 2, \ldots, k\}$.

5 Unification problem

Let V be a variety of algebras and $F_V(m)$ m-generated free algebra over the variety V. Recall that an algebra A of V is finitely presented if it is a quotient of the form $A = F_V(m)/\theta$, with θ a finitely generated congruence. Following [1], by an algebraic unification problem we mean a finitely presented algebra A of V. An algebraic unifier for A is a homomorphism $u : A \rightarrow P$ with P a m-generated projective algebra in V and A is algebraically unifiable if such an algebraic unifier exists. Given another algebraic unifier $u : A \rightarrow Q$, we say that u is more general than w, written $w \preceq u$, if there is a homomorphism $g : P \rightarrow Q$ such that $w = gu$. The algebraic unification type of an algebraically unifiable finitely presented algebra A in the variety V is
Projectivity and unification in the varieties of locally finite monadic MV-algebras

Di Nola, Grigolia, Lenzi

now defined exactly as in the symbolic case, using the partially order \leq induced by the quasi-order \preceq. Let $U_V(P)$ be the set of unifiers $\sigma : F_V(m) \rightarrow F_V(m)$ for the unification problem $P(x_1, \ldots, x_m)$; it is a quasi-ordered set. The problem $P(x_1, \ldots, x_m)$ is solvable iff $U_V(P) \neq \emptyset$. Let (Σ, \leq) be a poset, where \leq is the ordering induced by the quasi-ordering identifying the equivalence classes with its elements. $\text{Max} \Sigma$ is said to be basis of unifiers for P.

We say that an equational theory E has:

1. Unification type 1 iff for every solvable unification problem P, $\text{Card}(\text{Max} \Sigma) = 1$.
2. Unification type ω iff for every solvable unification problem P, $\text{Card}(\text{Max} \Sigma) = n \neq 1$, $n \in \omega$.
3. Unification type ∞ iff for every solvable unification problem P, $\text{Card}(\text{Max} \Sigma)$ is infinite.
4. Unification type nullary, if none of the preceding cases applies.

We say that V has finitary unification type iff it has type 1 or ω.

Theorem 10. The unification type of the equational class K_n is 1, i.e. unitary.

References