On Clustering Induced Voronoi Diagrams

Danny Z. Chen1 Ziyun Huang2 Yangwei Liu2 Jinhui Xu2

1 Department of Computer Science and Engineering
University of Notre Dame
dchen@cse.nd.edu
2 Department of Computer Science and Engineering
State University of New York at Buffalo
{ziyunhua, yangweil, jinhui}@buffalo.edu

1 Overview

Voronoi diagram is a fundamental geometric structure with numerous applications in many different areas [1–3]. Ordinary Voronoi diagram is a partition of the space \(\mathbb{R}^d \) into a set of cells induced by a set \(P \) of points (or other types of objects) called sites, where each cell \(c_i \) of the diagram is the union of all points in \(\mathbb{R}^d \) which have a closer (or farther) distance to a site \(p_i \in P \) than to any other sites. In some sense, cells in a Voronoi diagram can be viewed as formed by competitions among all sites in \(\mathbb{R}^d \) such that the winner site for any point \(q \in \mathbb{R}^d \) is the one having a larger “influence” on \(q \) defined by its distance to \(q \).

In this paper, we generalize the concept of Voronoi diagram to Clustering Induced Voronoi Diagram (CIVD). In CIVD, we consider a set \(P \) of \(n \) points (or other types of objects) and a non-negative influence function \(F \) which measures the joint influence \(F(C, q) \) from each subset \(C \) of \(P \) to any point \(q \) in \(\mathbb{R}^d \). The Voronoi cell of \(C \) is the union of all points in \(\mathbb{R}^d \) which receive a larger influence from \(C \) than from any other subset \(C' \subseteq P \). This means that CIVD considers all subsets in the power set \(U = 2^P \) of \(P \) as its sites (called cluster sites), and partitions \(\mathbb{R}^d \) according to their influences. While CIVD in general can have exponentially many cells, it is possible that for some interesting influence functions only a small number of subsets in \(U \) have non-empty Voronoi cells, making the problem solvable.

Relation to Previous Works: To our best knowledge, there is no previous work on the general CIVD problem. Our CIVD model obviously extends the ordinary Voronoi diagrams [2], where each site is a one-point cluster. (Note that the ordinary Voronoi diagrams can be viewed as special CIVDs equipped with proper influence functions.) Some Voronoi diagrams [3, 12] allow a site to contain multiple points, such as the \(k \)-th order Voronoi diagram [3]. Some two-point site Voronoi diagrams were also studied [4, 5, 7, 8, 10, 11, 13], in which each site has exactly two points. Obviously, such Voronoi diagrams are different from CIVD.

For Vector CIVD, influence between any two points \(p \) and \(q \) is defined by a force-like vector. The problem is related to the N-body problem [9], which shares with the Vector CIVD problem a similar idea of modeling joint force by influence functions. Density-based CIVD enables us to generate all density-based clusters as well as their approximate Voronoi cells. The problem is related to density-based clustering which is widely used in many applications.

1.1 Results and Techniques

The main result of the paper is a general technique called Approximate Influence(AI) Decomposition, which can be used to generate \((1 - \epsilon)\)-approximate CIVD. We also apply AI decomposition to develop assignment algorithms for vector CIVD and density base CIVD. Below is a list of our main results.

* A preliminary version of this work has appeared in the Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013)
Properties of Influence Function: We investigate the general and sufficient conditions which allow the influence function to yield only a small number of non-empty approximate Voronoi cells. We show that the following three properties are sufficient: Similarity Invariant property, Locality property, Local Domination property. The first property means that for any point \(q \in \mathbb{R}^d \), its maximum influence cluster site remains the same after a similarity transformation about it. The second property indicates that a small perturbation on a cluster site \(C \) or \(q \) only changes slightly their influence. The third property implies that each cluster site may have dominating influence in its neighborhood.

Approximate Influence(AI) Decomposition: We present a standalone technique called approximate influence decomposition (or AI decomposition) for general CIVD problems. In \(O(n \log n) \) time, this technique partitions the space \(\mathbb{R}^d \) into a nearly linear number (i.e., \(O(n \log n) \)) of cells so that for each such cell \(c \), there exists a (possibly unknown) subset \(C \subseteq P \) whose influence to any point \(q \in c \) is within a \((1 - \epsilon)\)-approximation of the maximum influence that \(q \) can receive from any subset of \(P \), where \(\epsilon > 0 \) is a fixed small constant. In this technique, we also develop a new data structure called box-clustering tree, based on an extended quad-tree decomposition and guided by a distance-tree built from the well-separated pair decomposition [6]. In some sense, our AI decomposition may be viewed as a generalization of the well-separated pair decomposition.

Assignment Algorithms for Vector CIVD and Density-base CIVD: Based on the AI Decomposition, we develop assignment algorithms for the Vector CIVD and the Density-based CIVD problems. Particularly, we show that it is possible to determine a proper cluster site for each cell in the decomposition and form a \((1 - \epsilon)\)-approximate CIVD for each problem for any given small constant \(\epsilon > 0 \). For Vector CIVD, the assignment algorithm is based on several new techniques such as aggregation-tree and majority path decomposition, and runs in \(O(n \log^d n) \) time. For Density-based CIVD, the assignment algorithm takes \(O(n \log^2 n) \) time and can be obtained from a modification of the AI decomposition.

References