CONTENTS VOLUME 1

A **TOPOSES AS CATEGORIES.**

A1 **Regular and cartesian closed categories**
- A1.1 Preliminary assumptions
- A1.2 Cartesian categories
- A1.3 Regular categories
- A1.4 Coherent categories
- A1.5 Cartesian closed categories
- A1.6 Subobject classifiers

A2 **Toposes – basic theory**
- A2.1 Definition and examples
- A2.2 The Monadicity Theorem
- A2.3 The Fundamental Theorem
- A2.4 Effectiveness, positivity and partial maps
- A2.5 Natural number objects
- A2.6 Quasitoposes

A3 **Allegories**
- A3.1 Relations in regular categories
- A3.2 Allegories and tabulations
- A3.3 Splitting symmetric idempotents
- A3.4 Division allegories and power allegories

A4 **Geometric morphisms – basic theory**
- A4.1 Definition and examples
- A4.2 Surjections and inclusions
- A4.3 Cartesian reflectors and sheaves
- A4.4 Local operators
- A4.5 Examples of local operators
- A4.6 The hyperconnected–localic factorization
B 2-CATEGORICAL ASPECTS OF TOPOS THEORY

B1 Indexed categories and fibrations
 B1.1 Review of 2-categories
 B1.2 Indexed categories
 B1.3 Fibred categories
 B1.4 Limits and colimits
 B1.5 Descent conditions and stacks

B2 Internal and locally internal categories
 B2.1 Review of enriched categories
 B2.2 Locally internal categories
 B2.3 Internal categories and diagram categories
 B2.4 The Indexed Adjoint Functor Theorem
 B2.5 Discrete opfibrations
 B2.6 Filtered colimits
 B2.7 Internal profunctors

B3 Toposes over a base
 B3.1 S-toposes as S-indexed categories
 B3.2 Diaconescu's Theorem
 B3.3 Giraud's Theorem
 B3.4 Colimits in Top

B4 \mathcal{B}Top/S as a 2-Category
 B4.1 Finite weighted limits
 B4.2 Classifying toposes via weighted limits
 B4.3 Some exponentiable toposes
 B4.4 Fibrations and partial products
 B4.5 The symmetric monad

Bibliography follows p. 467

Index of notation [55]

General Index [61]