

PI3K/AKT/mTOR Inhibitors in Breast Cancer

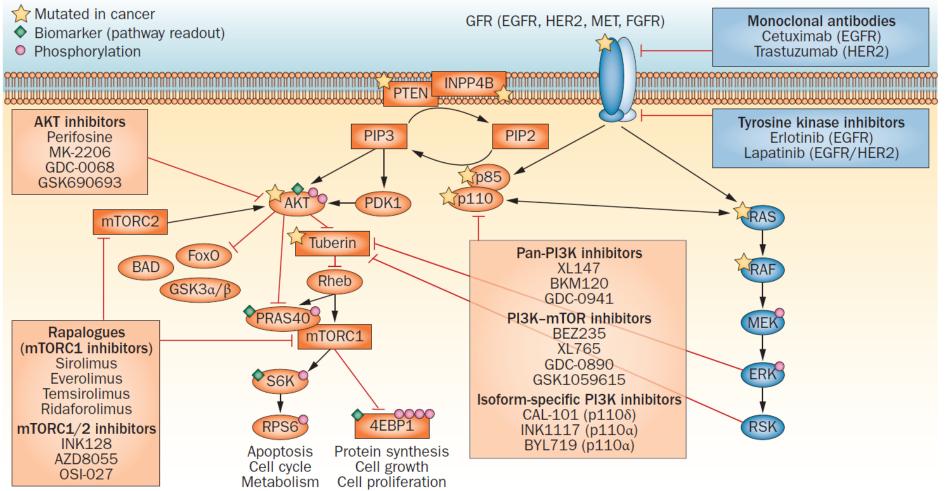
Dr Yoon-Sim YAP Division of Medical Oncology, National Cancer Centre Singapore Global Breast Cancer Conference 2015

Children's Hospital

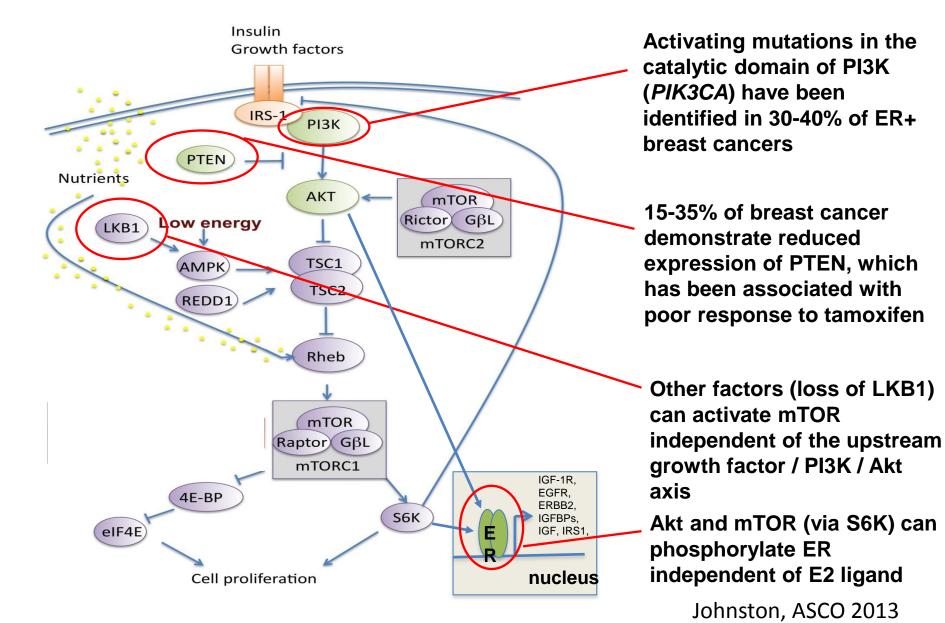
General Hospital

PATIENTS. AT THE HE RT OF ALL WE I

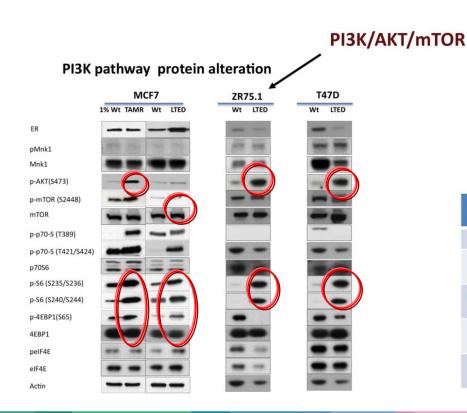
Sengkang Health


Outline

- Overview of PI3K/Akt/mTOR Pathway
- Rationale and Preclinical Data
- Clinical Trials and Predictive Biomarkers
 - Hormone receptor +, HER2 –
 - HER2 +
 - Triple Negative
- Toxicities
- Overcoming Resistance; Novel Combinations


PI3K/AKT/mTOR Pathway

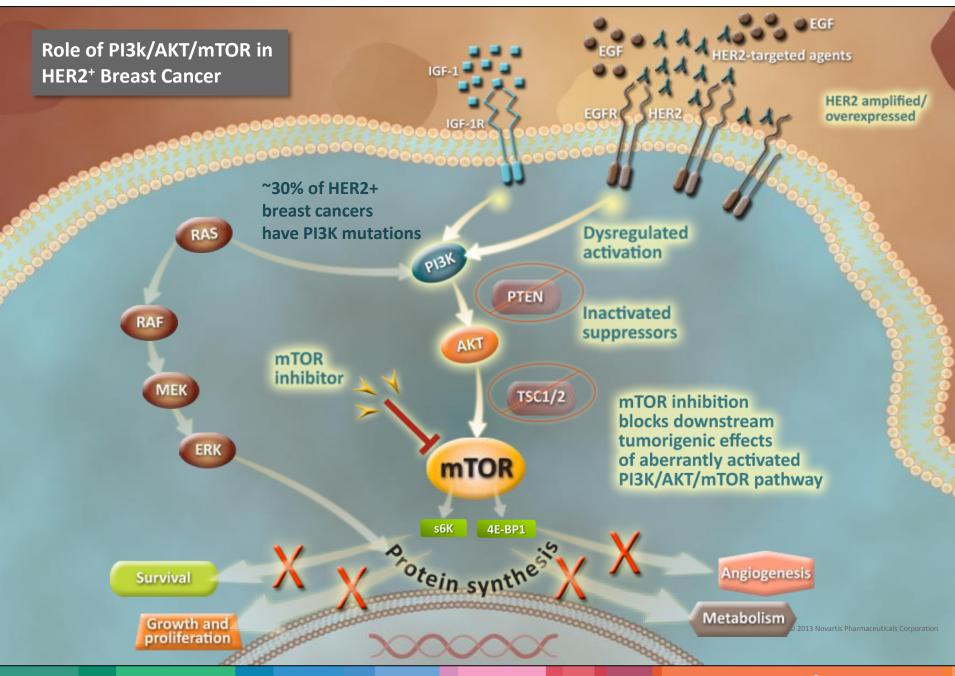
Rodon et al, Nature Reviews Clin Onc 2013


In ER+ breast cancer

PATIENTS. AT THE HE RT OF ALL WE DO.

Role of PI3K/AKT/mTOR pathway in Endocrine Resistance

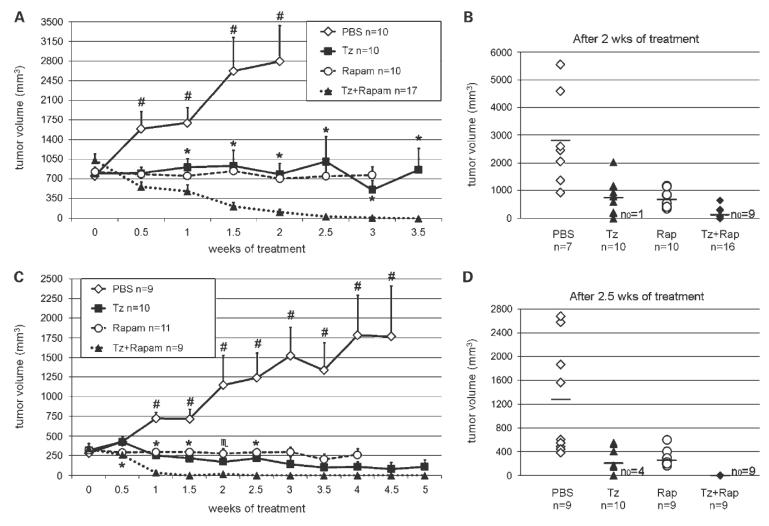
- Long term estrogen deprivation (LTED) & acquired endocrine resistance:
 - Studies have demonstrated persistence of an active ER pathway¹
 - LTED can \clubsuit ER α levels & \clubsuit activation of the PI3K/mTOR pathway²
 - Hyper-activation of the PI3K/mTOR pathway is a key mediatior ³



1. Martin LA, et al. J Biol Chem. 2003;278:30458-68; 2. Santen RJ, et al. Endo-Rel Cancer. 2005;12:S61-S73; 3. Miller TW, et al. J Clin Invest. 2010;120(7):2406-413

PI3K canonical pathway gene expression

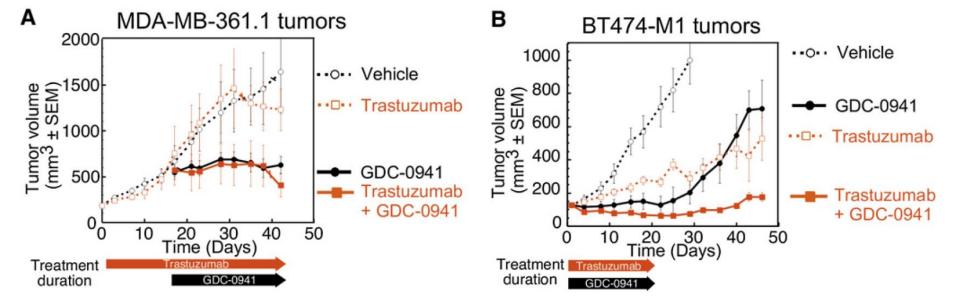
4. Weigel et al Breast Cancer Res. 2012 14(3):R78.


Pathway description		p.Value	
	MCF7	T47D	ZR75.1
PI3K/AKT signalling	0.045	0.027	5 x 10 ⁻³
PTEN signalling	0.032	0.035	0.03
IGF1 signalling	3.19 x 10 ⁻²	3.5 x 10 ⁻⁴	4.69 x 10 ⁻²
ERK5 signalling	6 x 10 ⁻²	0.0125	0.0129

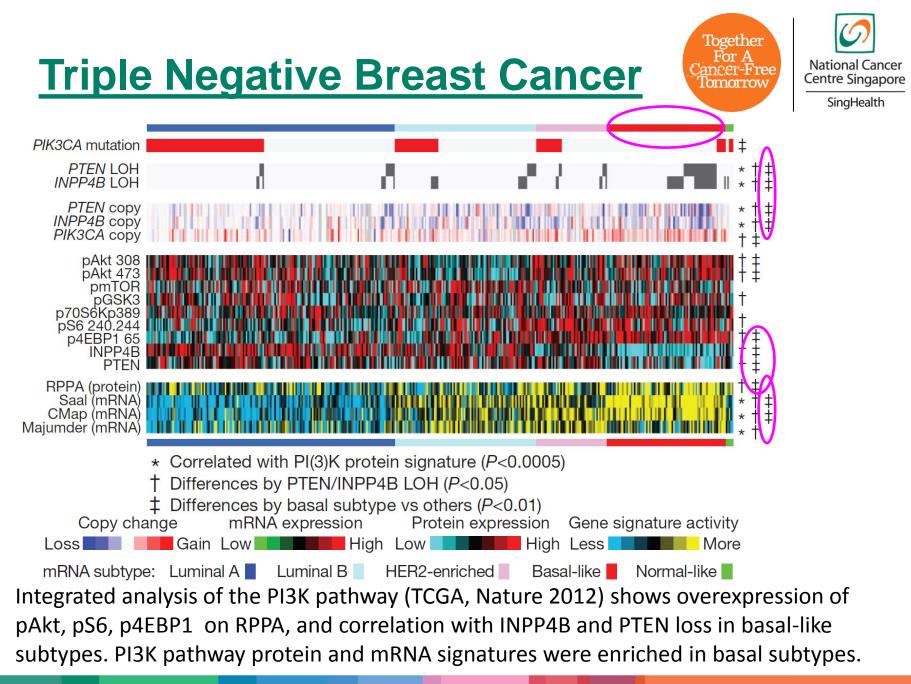
PATIENTS. AT THE HE RT OF ALL WE DO.

Synergy of Rapamycin with Trastuzumab to induce complete tumour regression

Miller et al, CCR 2009

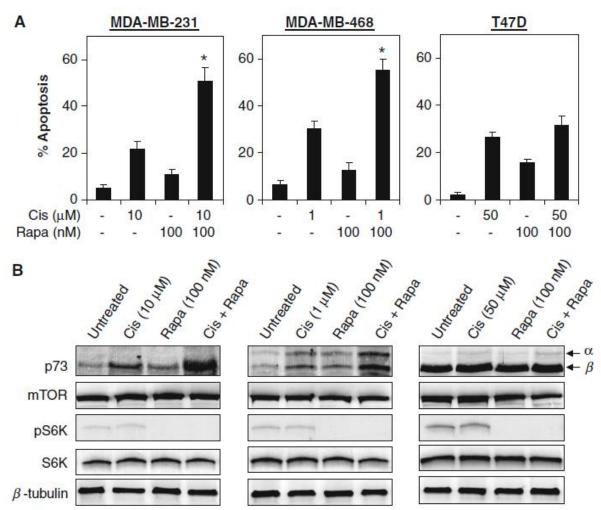

PATIENTS. AT THE HE RT OF ALL WE DO.

PI3K Inhibitor GDC-0941 : Efficacy in Cancer-Free **Treating Trastuzumab-Resistant and Trastuzumab-Sensitive Tumors In Vivo**



Together For A

Iomorrow



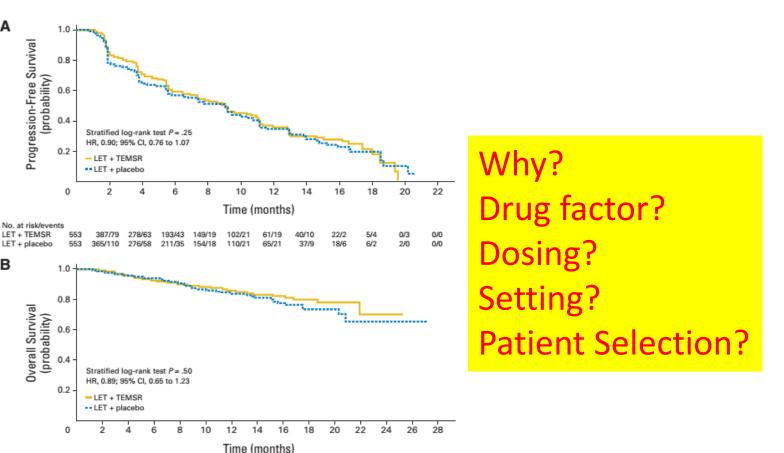
Junttila et al, Cancer 2009

Rapamycin synergizes cisplatin sensitivity in triple negative breast cancer cells

Wong, BCRT 2011

<u>Clinical Trials</u>

Clinical Trials


- Focus on Randomised Studies
- mTOR Inhibitors
 - Hormone receptor + (HORIZON, BOLERO-2, TAMRAD)
 - HER2 + (BOLERO-3, BOLERO-1)
 - Triple Negative
- PI3K Inhibitors
- AKT Inhibitors

Randomized Phase III Placebo-Controlled Together For A Cancer-Free Tomorrow Trial of Letrozole Plus Oral Temsirolimus As **First-Line Endocrine Therapy (HORIZON)**

Α

в

No. at risk/events LET + TEMSR 556 527/7 472/17 417/15 341/10 265/7 194/7 132/5 88/1 46/2 24/1 9/1 1/0 0/0 0/0 LET + placebo 556 524/10 463/15 410/7 335/12 271/15 202/5 137/7 91/5 48/3 23/0 9/2 1/0 0/0 3/0

Wolff et al, JCO 2012

PATIENTS, AT THE HE RT OF ALL WE DO.

BOLERO-2 (Ph III): Everolimus

R

2:1

in advanced BC

N = 724

•Postmenopausal HR+ HER2-

•Unresectable locally advanced or metastatic BC

•Recurrence or progression after letrozole or anastrozole

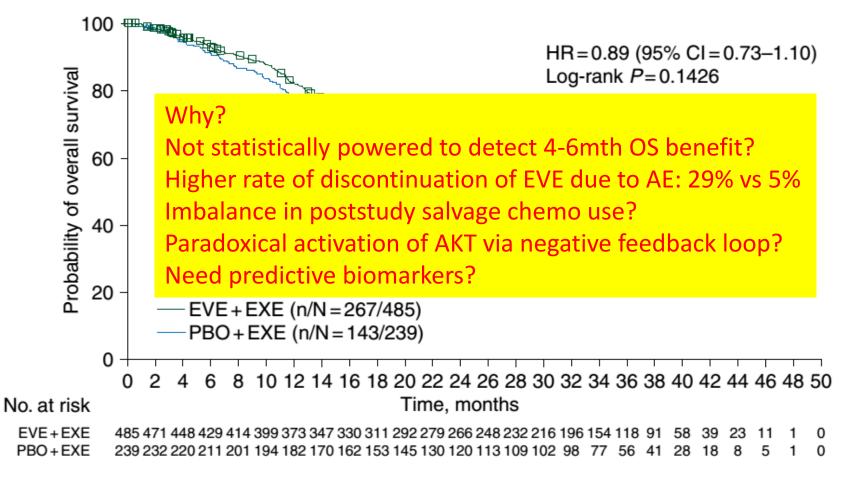
EVE 10 mg daily + EXE 25 mg daily (n = 485)

PBO + EXE 25 mg daily (n = 239)

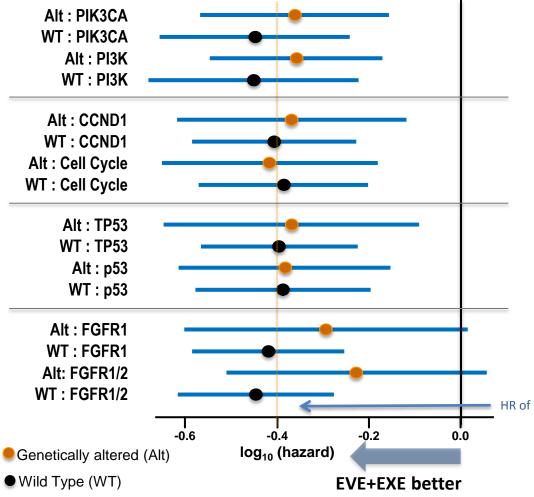
<u>Stratification</u>: Sensitivity to prior hormone therapy and presence of visceral metastases

Endpoints

- Primary: PFS (local and central assessment)
- Secondary: OS, ORR, QOL, safety, bone markers, PK


BOLERO-2: PFS Results

Baselga et al, NEJM 2011



Piccart et al, Ann Onc 2014

Impact on Treatment by Genetic Status

The Most Frequently Altered Single Genes and Pathways

Positive treatment effect in favor of everolimus across the various genetic marker subgroups

Pathway composition

•**PI3K:** PIK3CA, PTEN, AKT (**PIK3CA** Alt: 47.6%, total alteration: 55.5%)

•Cell Cycle: CCND1, CDK4, CDK6, CDKN2A, CDKN2B, (CCND1 Alt: 31.3%, total alteration: 35.7%)

•**p53:** TP53, MDM2, MDM4 (**TP53** Alt: 23.3%, total alteration: 36.1%)

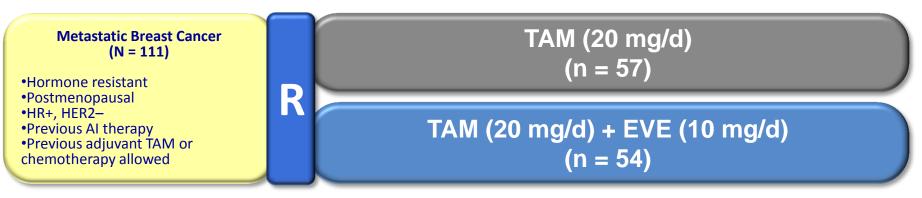
•FGFR1/2: FGFR1, FGFR2 (FGFR1 Alt: 18.1%, total alteration: 21.1%)

HR of NGS population

Hortobagyi et al, ASCO 2013

Patients With No or Single Genetic Alteration in PIK3CA/PTEN/CCND1 or FGFR1/2 Derive Greater PFS Benefit With EVE (BOLERO-2)

Subgroup	N	Events (%)	Median PFS (d)	HR* (95%CI)
EVE: WT	43	19 (44%)	356	0.24
PBO: WT	18	14 (78%)	203	(0.11 - 0.54)
EVE: Single	76	48 (63%)	214	0.26
PBO: Single	35	31 (89%)	77	(0.16 - 0.43)
EVE: multiple	38	27 (71%)	138	0.78
PBO: multiple	17	14 (82%)	128	(0.39 - 1.54)


*HR adjusted with imbalanced covariates

Subgroup	Definition		Size, %	0
WT	No alteration in PIK3CA AND PTEN AND FGFR1/2 AND CCND1	Minimal	27%	76%
Single	Single alteration only in PIK3CA OR PTEN OR FGFR1/2 OR CCND1	da	49%	
Multiple	Two or more alterations in PIK3CA <u>OR</u> PTEN <u>OR</u> FGFR1/2 <u>OR</u> CCND1 genes	Multiple	24%	24%

Abbreviations: CI, confidence interval; EVE, everolimus; HR, hazard ratio; PBO, placebo; PFS, progression-free survival; WT, wild type.

Hortobagyi et al, ASCO 2013

TAMRAD: Phase II in patients with metastatic breast cancer and prior exposure to AI

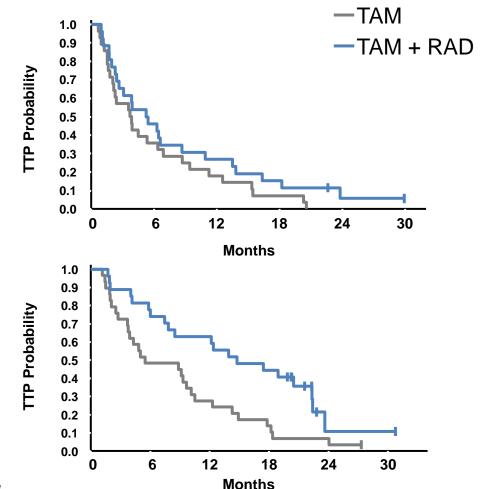
Stratification: Primary or secondary hormone resistance:

– Primary:

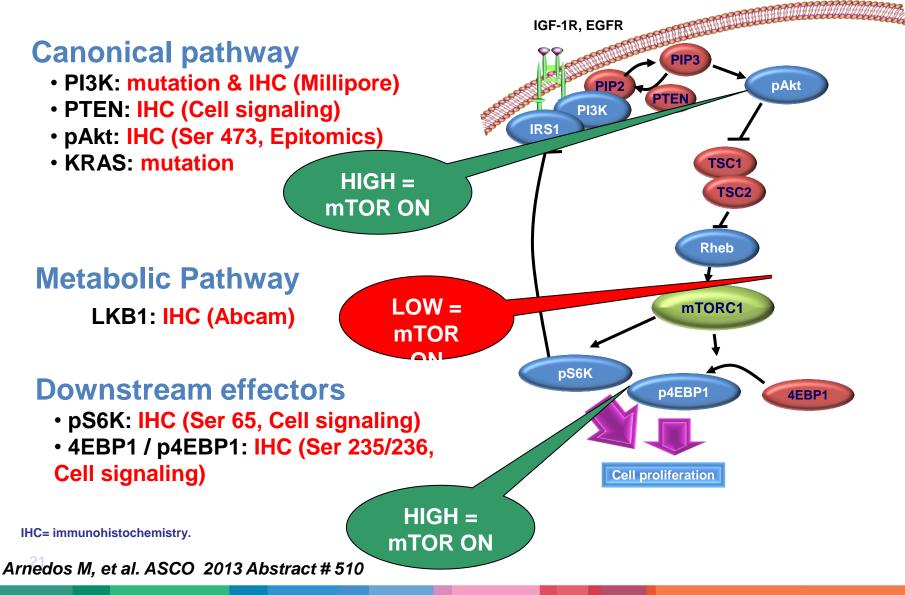
Relapsing during or within 6 months of stopping adjuvant AI treatment or progressing within 6 months of starting AI treatment in the metastatic setting

- Secondary:

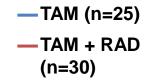
Relapsing 6 months after stopping adjuvant AIs or responding for 6 months to AIs in the metastatic setting

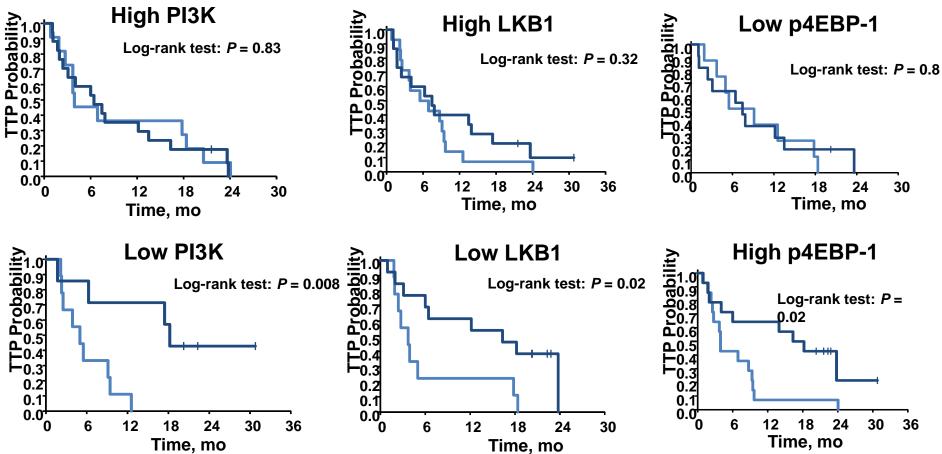

Bachelot et al, JCO 2012

TAMRAD: Time to Progression as a function of Intrinsic Hormone Resistance


- Primary resistance
 - TAM: 3.8 months
 - TAM + RAD: 5.4 months
 - HR = 0.70 (0.40-1.21)
 - p = NS (exploratory analysis)

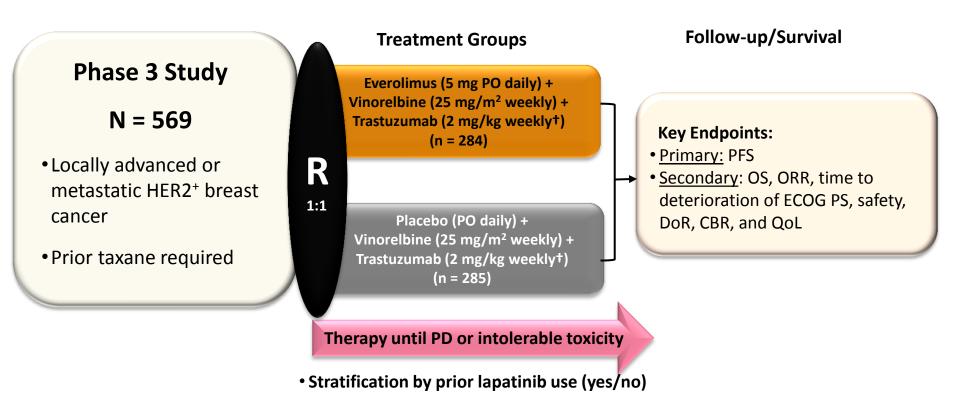
- Secondary resistance
 - TAM: 5.5 months
 - TAM + RAD: 14.8 months
 - HR = 0.46 (0.26-0.83)
 - p = 0.0087 (exploratory analysis)


Bachelot T, et al. J Clin Oncol. 2012;22(30):2718-2724



Candidate Markers for Everolimus Efficacy

Treatment Effect (TTP) as a Function of PI3K, LKB1 & p4EBP-1 Expression



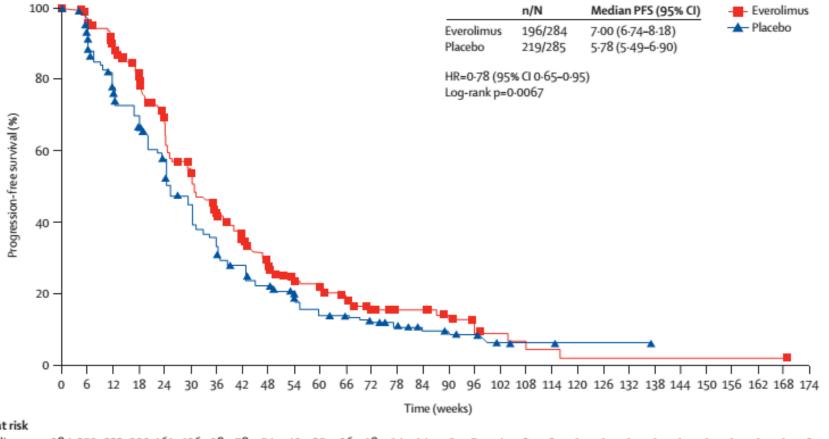
Arnedos M, et al. ASCO 2013 Abstract # 510; Treilleuz et al, Ann Onc 2015

HER2+ Breast Cancer BOLERO-3: Study Design

*Resistance to prior trastuzumab required

+Following a 4-mg/kg loading dose on day 1, cycle 1 (1 cycle = every 21 days).

Abbreviations: AE, adverse event; ECOG, Eastern Cooperative Oncology Group; EOT, end of treatment; EVE, everolimus; PD, progressive disease; PO, oral; PS, performance status; QoL, quality of life; TRAS, trastuzumab.


http://www.clinicaltrials.gov/ct2/show/NCT01007942?term=BOLERO3&rank=1

Presented by: Ruth M. O'Regan, ASCO 2013

PATIENTS. AT THE HE RT OF ALL WE DO.

BOLERO-3: PFS Results

Number at risk

Everolimus	284 259 233 200 161	126 98	78	54	40	35	26	18	14	14	9	5	4	2	2	1	1	1	1	1	1	1	1	1	0
Placebo	285 253 202 177 138	109 85	64	49	38	26	23	19	16	12	10	7	4	3	3	1	1	1	0	0	0	0	0	0	0

Andre et al, Lancet Oncology 2014

BOLERO-3: Forest plot of PFS

	n				HR (95% CI)	p value
All	569				0·78 (0·65-0·95)	0.0067
Age						
<65 years	472	_			0·77 (0·62–0·95)	
≥65 years	97				0.93 (0.56–1.57)	
Region						
Europe	223				0·72 (0·53–0·99)	
North America	123				0.86 (0.55–1.32)	
Asia	166				0.83 (0.59–1.18)	
Latin America	36 —			-	0.61 (0.27–1.38)	
Other	21				1·28 (0·48-3·45)	
Previous lapatinib‡						
Yes	161				0.79 (0.56–1.11)	
No	408				0.78 (0.62–0.99)	
Previous adjuvant or						
neoadjuvant trastuzumab						
Yes	251		<u> </u>		0.65 (0.48–0.87)	
No	318				0.92 (0.71–1.18)	
Baseline ECOG PS						
0	382	_			0.79 (0.63–1.00)	
1 or 2	186		╼┼		0.75 (0.53–1.05)	
Hormonal status						
ER-/PR-	250				0.65 (0.48–0.87)	
ER+/PR+	317				0.93 (0.72-1.20)	J
Visceral involvement						
Yes	439		_∎∔_		0·89 (0·72–1·10)	
No	130 —		-		0.48 (0.30–0.76)	
	—	<u> </u>		1		-
	0.25	0.5	1	2	4	

PFS according to pS6, PTEN, and PIK3CA status in patients with

assessable biomarker data (BOLERO-3)

	n	PFS events	Median PFS (95% CI)		HR (95% CI)	p value
Biomarker assessable				1		
Everolimus	130	95	7.0 (5.6-8.1)			
Placebo	132	104	5.7 (5.3-6.9)		0.88 (0.67–1.17)	
PIK3CA mutant						
Everolimus	15	9	5.5†			
Placebo	21	19	6.7 (4.8-7.6)		0.65 (0.29–1.45)	
PIK3CA wild-type						0.32
Everolimus	69	51	6.8 (5.5-8.2)			
Placebo	77	56	5.7 (5.2-7.8)		0.98 (0.67–1.44)	
PTEN low						
Everolimus	26	16	9.6 (5.5-12.2)			
Placebo	22	18	5-3 (2-8-5-7)		0.40 (0.20-0.82)	
PTEN high						0.01
Everolimus	89	67	6.9 (5.5-8.1)			
Placebo	100	78	6.9 (5.5-8.3)		1.05 (0.75-1.45)	
pS6 low						
Everolimus	66	47	5.7 (5.4-8.3)	i i 🖌 🔺		
Placebo	77	57	6.9 (5.5-8.3)		1.14 (0.77–1.68)	
pS6 high				1		0.04
Everolimus	23	15	6-8 (4-2-12-7)			
Placebo	22	20	3.9 (2.7-5.5)		0.48 (0.24–0.96)	
				0.88 1		
				Favours everolimus Favours placebo		

Andre et al, Lancet Oncology 2014

BOLERO-1/TRIO 019

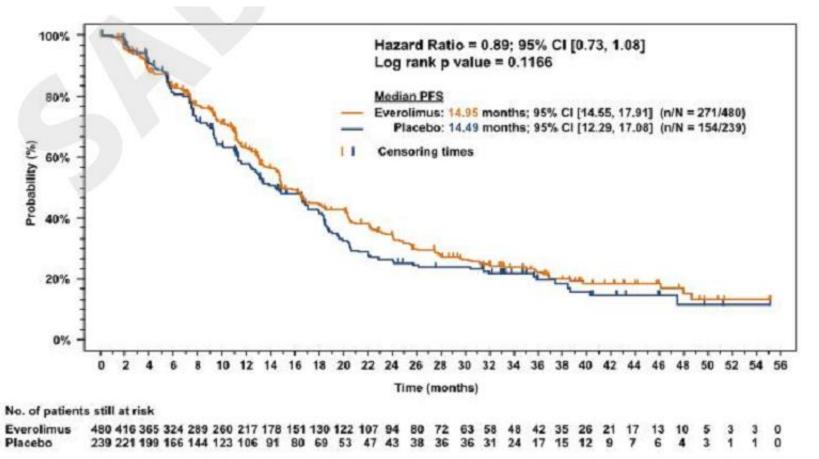
N = 719 Locally advanced or metastatic HER2+ breast cancer Everolimus (10 mg PO daily) + Paclitaxel² + Trastuzumab³ · No prior therapy for advanced or metastatic disease (except Randomized endocrine therapy) 2:1 Prior (neo)adjuvant TRAS and/or Placebo + chemotherapy allowed¹ Paclitaxel² + Trastuzumab³ Stratification factors: Measurable disease or presence of Prior neo/adjuvant TRAS bone lesions (lytic or mixed) Visceral metastases Therapy until disease progression or intolerable toxicity4 Endpoints Primary: PFS (investigator-assessed) · Secondary: OS, ORR, CBR, Time to response, Safety, Duration of Overall population and HR⁻ subpopulation response

¹Discontinued > 12 mo before randomization;

*Paclitaxel: 80 mg/m² weekly;

³Trastuzumab: 4 mg/kg loading dose on day 1 at cycle 1 followed by 2 mg/kg weekly doses

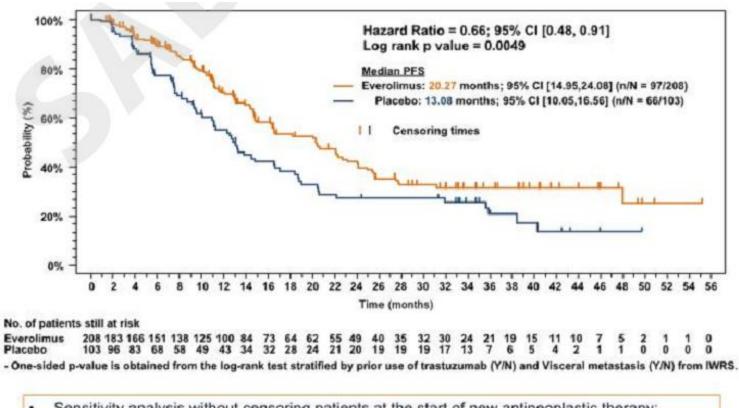
⁴Patients could discontinue any study treatment due to AEs; other study treatments continued until disease progression or intolerable toxicity


ABC, advanced breast cancer, CBR, chrical benefit rate; ORR, overall response rate; OS, overall survival; PFS, progression free survival.

Hurvitz et al, SABCS 2014

PATIENTS. AT THE HE RT OF ALL WE DO.

BOLERO-1/TRIO 019: PFS Full Population (Investigator-assessment)


- One-sided p-value is obtained from the log-rank test stratified by prior use of trastuzumab (Y/N) and Visceral metastasis (Y/N) from IWRS.

Hurvitz et al, SABCS 2014

Together **BOLERO-1/TRIO 019: PFS HR- Subpopulation** lancer-Free Iomorrow (Investigator-assessment)

For A

Sensitivity analysis without censoring patients at the start of new antineoplastic therapy;

Median PFS and 95% Cls

- HR=0.66 [0.48, 0.9], p = 0.0043
- 20.27 mo (14.82, 24.08) for everolimus [n = 102]
- 12.88 mo (10.94, 16.56) for placebo [n = 68]

Hurvitz et al, SABCS 2014

BOLERO-1/TRIO 019:Treatment exposure

	Full Po	oulation	HR- subp	opulation
Therapy	EVE + TRAS + PAC (N = 472)	PBO + TRAS + PAC (N = 238)	EVE + TRAS + PAC (N = 206)	PBO + TRAS + PAC (N = 103)
Relative dose intensity	/ (median)			
Everolimus	0.5	1	0.5	1
Trastuzumab	1	1	1	1
Paclitaxel	0.7	0.8	0.7	0.8
Duration of exposure (median, weeks)	-		
Everolimus	41	48	45	41
Trastuzumab	49	48	53	41
Paclitaxel	31	32	31	31

Safety profile was consistent with results previously reported: stomatitis,

diarrhea, neutropaenia, anaemia etc.

Higher rate of AE-related on-treatment deaths with everolimus (3.6% vs 0%);

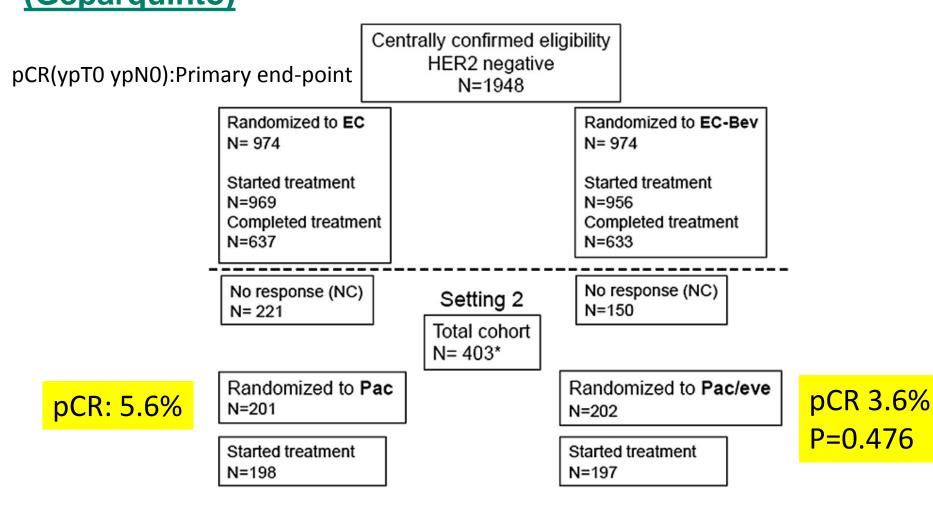
mainly related to respiratory problems/pneumonitis.

Proactive monitoring and early management of AEs is critical.

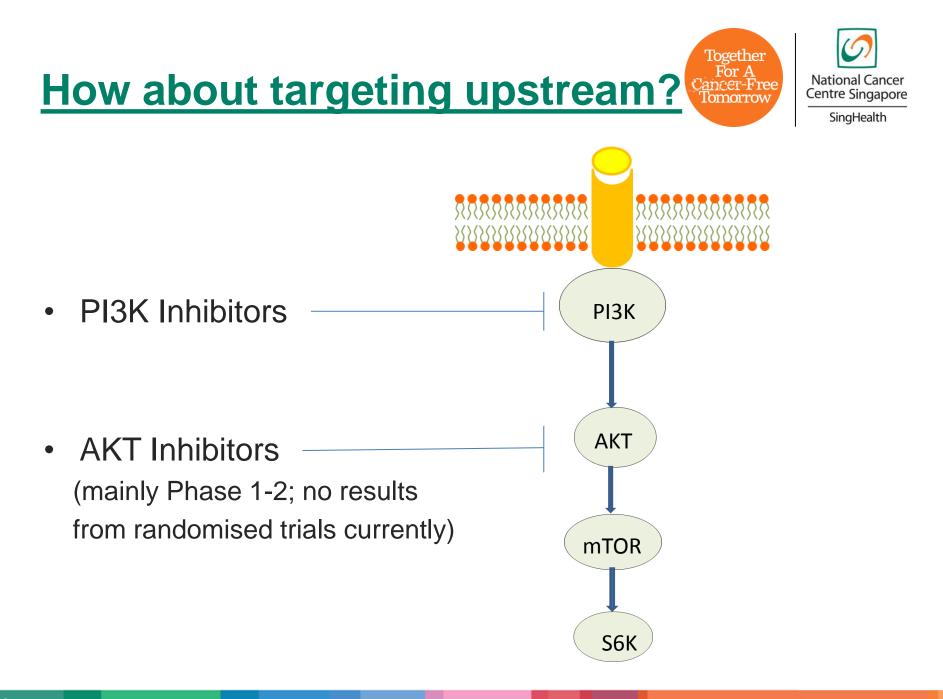
Hurvitz et al, SABCS 2014

Open-label randomized clinical trial of neoadjuvant chemotherapy with paclitaxel followed by FEC versus the combination of paclitaxel and everolimus followed by FEC in triple negative breast cancer

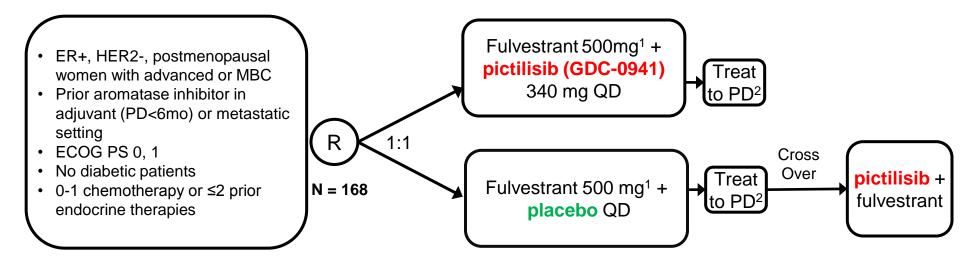
Variables	Patier	nts per trea	atment a	ırm	P-value	
	T-FE	С	TR-F	EC		
	(<i>n</i> = 2	27)	(n = 2)	.3)		
	No.	%	No.	%		
Response (12 weeks)						
Complete response	3	11.11	0	0	0.075	
Partial response	5	18.82	11	47.83		
Stable disease	16	59.26	11	47.83		
Progressive disease	3	11.11	1	4.35		
Response (24 weeks)						
Complete response	4	14.81	2	8.7	0.274	Gonzalez-Angulo et
Partial response	16	59.26	11	47.83		al, Ann Onc 2014
Stable disease	7	25.93	7	30.43		
Progressive disease	0	0	3	13.04		
Pathologic complete res	ponse					
Yes	7	25.93	7	30.43	0.761	
No	20	74.07	16	69.57		


PATIENTS. AT THE HE RT OF ALL WE DO.

Neoadjuvant chemotherapy with paclitaxel +


<u>everolimus for breast cancers not</u> <u>responding to EC ± bevacizumab</u> (Geparquinto)

Together For A Cancer-Free Tomorrow

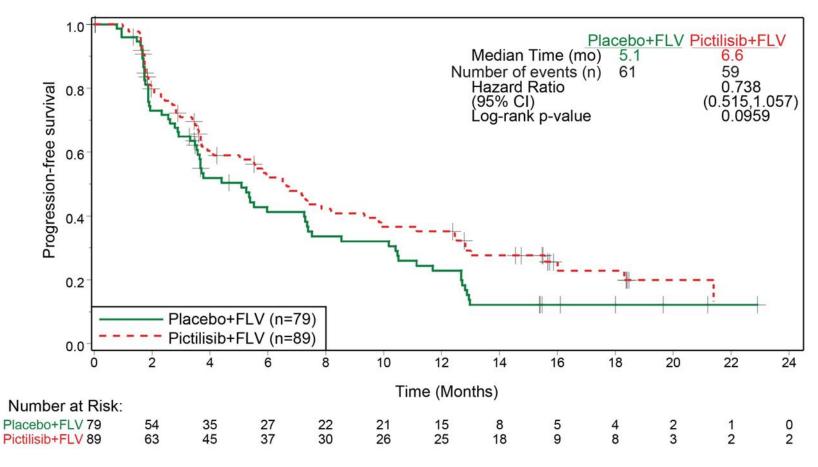


Huober et al, EJC 2013 PATIENTS. AT THE HE T OF ALL WE DO.

FERGI Study Design – Part I

Stratification factors	1° objective	2° objectives
 <i>PIK3CA</i>-MT and <i>PTEN</i> loss³ Measurable disease 1° vs. 2° resistance⁴ 	 PFS in the ITT PFS in <i>PIK3CA</i>-MT pts Safety 	Objective response rateDuration of objective responsePK

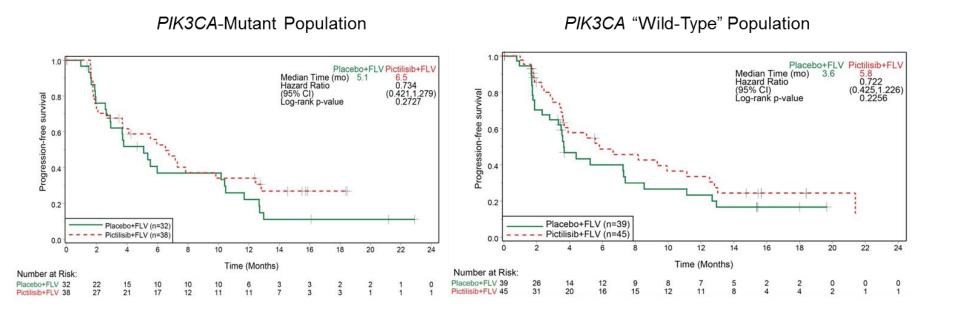
¹ Administered on D1 of each 28 day cycle and C1D15; ² Tumor assessments performed every 8 weeks; ³Exons 9 and 20 in the codons encoding amino acids E542, E545, and H1047 were detected by RT-PCR; ⁴ Disease relapse during or within 6 months of completing AI treatment in the adjuvant setting, or disease progression within 6 months of starting AI treatment in the metastatic setting. ⁵ Data presented is with an additional year of follow up per-protocol primary analysis


Median duration of follow up 17.5 months

Courtesy of Dr. Ian Krop, SABCS 2014

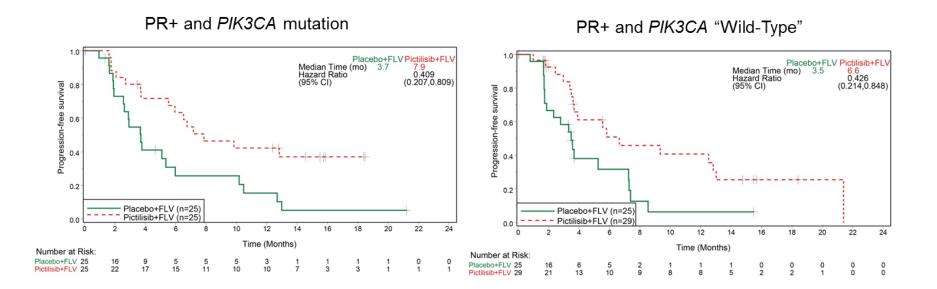
PATIENTS. AT THE HE RT OF ALL WE DO.

Progression-Free Survival in the ITT Population



Courtesy of Dr. Ian Krop, SABCS 2014

Progression-Free Survival based on Tumor PIK3CA Mutation Status



PIK3CA mutation status does not predict benefit of the addition of pictilisib to fulvestrant

Courtesy of Dr. Ian Krop, SABCS 2014

Progression-Free Survival in Patients with ER and PR Positive Disease Based on Tumor *PIK3CA* Mutation Status

Courtesy of Dr. Ian Krop, SABCS 2014

Together For A

ancer-Free

lomorrow

National Cancer

Centre Singapore

SingHealth

AEs Related to Any Study Drug

Together For A Cancer-Free Tomorrow National Cancer Centre Singapore SingHealth

		ilisib :89)	Placebo (n=79)			
Adverse Event ^{1,2}	All Grades	Grade ≥3	All Grades	Grade ≥3		
Diarrhea	56 (63%)	5 (7%)	7 (9%)	-		
Nausea	43 (48%)	3 (3.4%)	15 (19%)	-		
Rash ³	38 (43%)	15 (17%)	5 (6%)	-		
Dysgeusia	31 (35%)	-	-	-		
Fatigue	24 (27%)	5 (6%)	16 (20%)	-		
Vomiting	18 (20%)	3 (3%)	3 (4%)	-		
Decreased appetite	17 (19%)	1 (1%)	5 (6%)	-		
Hyperglycemia	15 (17%)	4 (5%)	4 (5%)	-		
Stomatitis	14 (16%)	2 (2%)	2 (2%)	-		
Hot flush	10 (11%)	-	10 (13%)	-		
AST increased	10 (11%)	3 (3%)	7 (8%)	2 (3%)		
Dyspepsia	8 (9%)	-	2 (3%)	-		
Mucosal inflammation	9 (10%)	-	2 (3%)	-		
Pneumonitis	7 (8%)	1 (1%)	1 (1%)	-		
Colitis	4 (5%)	3 (3%)	-	-		

- There were 28 (31%)
 SAEs in treatment arm
 vs 16 (20%) in
 placebo arm
- Safety is consistent with our single agent phase I experience
- No drug-drug interaction between pictilisib and fulvestrant
- There were no treatment related deaths reported

¹Adverse events independent of attribution; based on CTCAE v.3

²Adverse events >10% except pneumonitis and colitis

³Includes all rash, generalized, maculo-papular, pruritic, erythematous and papular rash

Courtesy of Dr. Ian Krop, SABCS 2014

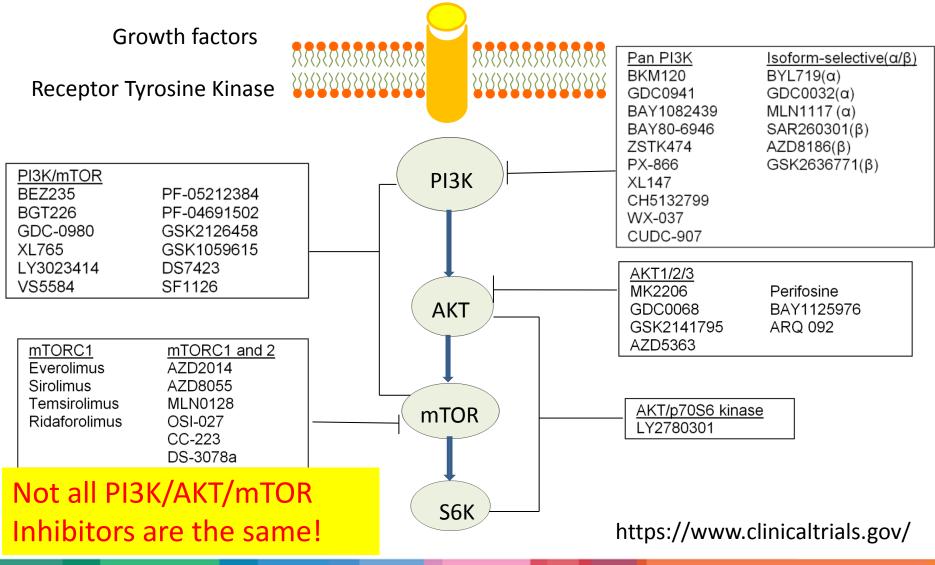
Patient Disposition

	Pictilisib	Placebo
Randomized (ITT)	89	79
Treated (Safety evaluable)	89	79
Discontinued pictilisib/placebo1	80 (90%)	69 (87%)
Disease progression	50 (56%)	57 (72%)
Non-PD	30 (34%)	12 (15%)
Adverse Events	16 (18%)	2 (2.5%)
Protocol-violation	0	1 (1%)
Withdrawal by subject	5 (6%)	4 (5%)
Physician Decision	8 (9%)	5 (6%)
Other	1 (1%)	0
Discontinued fulvestrant for non-PD ¹	18 (20%)	15 (19%)
Dose reduction for an AE ²	21 (24%)	1 (1%)

¹From treatment discontinuation eCRFs ²From AE eCRFs

 High rate of discontinuation of pictilisib for non-PD events, most occurred in the early cycles

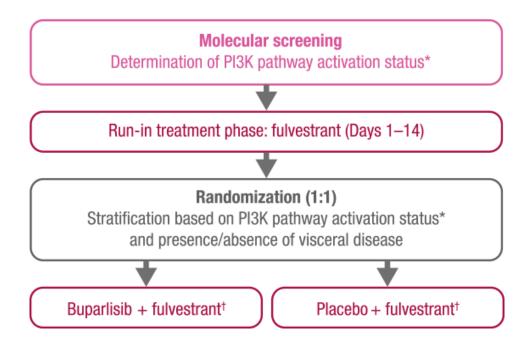
Courtesy of Dr. Ian Krop, SABCS 2014


PI3K Inhibitors in breast cancer

- PI3K mutation status not predictive of benefit?
 - Archived tissues? Not reflective of latest PI3K mutation status?
 - Other biomarkers?
 - PTEN, LKBP, pS6 etc?
 - Circulating markers?; tumour heterogeneity and evolution
- Toxicity Issues
- Some similarities with mTOR inhibitors
- Are all PI3K inhibitors the same?

Phase I-III trials in Breast Cancer and/or Solid Tumours

Are all PI3K/AKT/mTOR Inhibitors the same?


- Different targets, different selectivity for various isoforms
- Different pharmacology
- Optimal dosing schedule?
- Any differences in toxicity profile?

BELLE-2 Study

Phase III study of buparlisib + fulvestrant in HR+/HER2- breast cancer

Postmenopausal patients with HR+/HER2– locally advanced or metastatic breast cancer refractory to Als (N $\approx 1060)$

Endpoints

Primary end point

 Progression-free survival[‡]

Key secondary end point

Overall survival[‡]

Other Secondary endpoints

Progression-free survival[§]
Overall survival[§]
Objective response rate^{‡,§}
Clinical benefit rate^{‡,§}
Quality of life

Toxicity profile may vary with different agents.

- Metabolic: hyperglycaemia, hyperlipidaemia
- Dermatological: rash, photosensitivity
- Gastrointestinal: mucositis, nausea/vomiting, diarrhoea, transaminitis
- Respiratory: pneumonitis
- Haematological: cytopaenias, immunosuppression, infections
- Constitutional: fatigue, anorexia

Possible drug interactions.

Optimal management of adverse effects is crucial for safety and compliance.

Overcoming Resistance

Potential Combinations

- PI3K/AKT/mTOR Inhibitor and Endocrine therapy
- PI3K/AKT/mTOR Inhibitor and anti-HER2 therapy +/endocrine therapy?
- PI3K/AKT/mTOR Inhibitor and Chemotherapy
- PI3K inhibitor and mTOR Inhibitor
- PI3K/AKT Inhibitor and MEK Inhibitor
- PI3K Inhibitor and PARP Inhibitor
- PI3K Inhibitor and CDK Inhibitor
- PI3K Inhibitor and immunotherapy?
- Etc

Conclusions

- PI3K/AKT/mTOR Inhibitors have activity in breast cancer; clinical efficacy data is mainly in the setting of hormone receptor+, HER2- subtype for now. In HER2+ disease, benefit is seen mainly in ER- subset (BOLERO-1 and 3).
- Several other clinical trials in progress.
- Biomarkers predictive of benefit are currently unclear.
- Combination therapy with other agents may be more efficacious, though clinical data is awaited.
- Toxicity can be an issue; need to monitor and manage appropriately.

Thank you for your attention!