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Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 11 IntroductionIn cryptanalysis, how can a computer program recognize when it has discovered all or part of thesecret message?1 For example, how can a program recognize character strings such as \Attack atdawn!", \DES@RT ST&RM", or \?tta????t d?wn" as fragments of intelligible messages? In theearly days of cryptology, a human would perform these language-recognition tasks manually. Thispaper explains how to recognize language automatically with statistical techniques.Recognizing \valid" plaintext is a crucial step in many cryptanalytic tasks. For example, thisstep can enable a cryptanalyst to carry out an exhaustive key search of any cryptosystem, givenciphertext only: For each candidate key, the cryptanalyst checks the candidate key by decryptingthe given ciphertext under the candidate key and by inspecting the resulting candidate plaintext.Were corresponding plaintext also available, the cryptanalyst would simply accept the candidatekey if the candidate plaintext and known plaintext matched. With ciphertext only, however, thecryptanalyst accepts the candidate key when the candidate plaintext appears to be a valid message.Language recognition is also useful in searching for part of the secret key, since a portion ofthe key may produce a fragment of the message. For example, in his Crypt Breaker's Workbench,Baldwin [5] exploits language-recognition techniques to guess unknown wires in the Unix cryptcipher [74]. In addition, language recognition can enable a cryptanalyst to align adjacent columnsof plaintext in transposition ciphers and to complete partial solutions of polyalphabetic substi-tution ciphers. Furthermore, in their new ciphertext-only attack on �lter generators, Cain andSherman [16, 17] apply a language-recognition subroutine to detect when they have discovered partof the initial �ll. Related statistical techniques are also useful in breaking the Hagelin crypto-graph [75] and various rotor machines [2]. Despite the importance of recognizing valid plaintext,the cryptologic literature provides little practical advice on how to automate this task.Language recognition for cryptanalysis must deal with the following three constraints. First,cryptology is adversarial in nature. Therefore, the sender will not intentionally assist the cryptan-alyst (e.g. through adaptive training exercises), and the sender might maliciously attempt to foolthe cryptanalyst (e.g. by modifying the plaintext). Second, candidate plaintext can be short andincomplete. For example, the cryptanalyst might be able to decipher only a few isolated fragmentsof plaintext. Third, candidate plaintext is often contaminated with noise. For example, errors canappear in the candidate plaintext due to imperfect cryptanalysis or as a result of the sender in-jecting random bits into the plaintext. In addition, it must be possible to recognize valid plaintexteven when language is unknown or broadly de�ned (e.g. any human or machine language).In their solution of the $100,000 Decipher Puzzle, Baldwin and Sherman [6] devised a statisticaltechnique for recognizing English messages. They compared the observed bigram frequencies inthe candidate plaintext with those expected in a standard English message of the same length.2This engineering approach worked well for their application and motivated us to investigate thelanguage-recognition problem more closely.Although our motivation is cryptanalysis, language-recognition problems also arise in many non-cryptologic domains, including pattern recognition, voice recognition, optical character recognition,image analysis, submarine detection, and speaker identi�cation. Therefore, we expect our work to1We assume the reader is familiar with basics of cryptology|as explained by Beker and Piper [8], Denning [20],Rivest [76], or Simmons [81], for example. We also assume the reader is familiar with elementary statistics|asexplained by Hoel [48] or Larsen and Marx [62].2We use the term k-gram to refer to any sequence of exactly k letters. For k = 1; 2; 3, we call any such gram aunigram, bigram, or trigram, respectively.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 2apply in many of these other settings. For example, techniques described in this paper can enablea computerized telephone operator to determine what language the caller is speaking. Moreover,because of cryptology's challenging constraints, techniques that work well for cryptanalysis tendalso to work well in other less demanding applications.In this paper we answer the following questions. What is a useful framework in which to reasonabout language recognition, and what is a useful model of language? Within this framework,what does it mean|in a precise mathematical sense|to recognize language? In particular, whatare some important well-de�ned language-recognition problems that arise in cryptanalytic practice?What are e�ective methods for solving each problem? What are useful criteria by which to evaluatethese methods? Are there optimal techniques?We approach language recognition from a statistical model of pattern recognition in which wemodel language as a �nite stationary Markov process. Within this model, we take \valid messages"as strings generated from the Markov chain. We state four well-de�ned language-recognition prob-lems and identify test statistics for each problem. Speci�cally, we derive likelihood ratio tests. Forwhat we call Problem 2 (distinguishing a known language from uniform noise), the resulting testis optimal in the sense that it is a \most powerful test." In addition, we discuss the chi-squaredtest statistic X2 and the Index of Coincidence IC. Along the way, we also point out additionalapproaches from the statistics literature.Whereas this guide explains our framework, language model, problems, and test statistics, ourcompanion experimental paper [29] examines how well these methods work in practice, especiallywhen applied to natural language as opposed to the idealized language of the model. We hope ourguide will be helpful to cryptanalysts and to others as an introduction to statistical techniques forlanguage recognition.The rest of this paper is organized as follows. Section 2 brie
y reviews previous related workfrom the cryptologic literature. Section 3 explains how we apply a statistical model of patternrecognition to language recognition. Section 4 describes how we model language as a Markovchain. Section 5 states four well-de�ned plaintext-recognition problems and gives examples ofhow they apply in cryptanalytic practice. Section 6 reviews basic concepts and terminology fromstatistical inference, including the notion of a most powerful test and other criteria for evaluatingtest statistics. Section 7 de�nes and explains several tests statistics, including a most powerful testfor Problem 2. Section 8 brie
y discusses three practical variations of these techniques for dealingwith noisy plaintext, short plaintext, and plaintext that consists of multiple strings. This sectionalso gives pointers to further reading in the statistics and pattern-recognition literature and statesseveral open questions. Finally, Section 9 summarizes our conclusions.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 32 Previous Cryptologic WorkPrevious research relevant to language recognition is scattered throughout several diverse disci-plines, including statistics, pattern recognition, signal processing, computational linguistics, algo-rithms, and cryptology. Collectively, there is a large body of pertinent knowledge. But little of thisprior art deals explicitly with the cryptanalytic perspective. In particular, in books and journalsdevoted to cryptology, only three methods have been previously suggested for recognizing validplaintext: Sinkov's test and variations thereof by R. Anderson and by Baldwin and Sherman. Inthis section we brie
y review these methods, together with another useful statistic known as theIndex of Coincidence (IC). For a guide to further readings in the statistics and pattern-recognitionliterature, see Section 8.2.Sinkov's StatisticThe little that is written about language recognition for cryptanalysis is based on a log-weightstatistic suggested in passing by Sinkov [82, pp. 76{77] in the context of breaking Vigen�ere ciphers.Speci�cally, for any sequence X = x1x2 : : :xn of n unigrams, the Sinkov statistic S1 scores thecandidate plaintext X by the formula S1(X) = Pni=1 ln pxi , where for each i, pxi denotes the apriori unigram probability of the unigram xi.3 For example, if the a priori unigram probabilities ofthe letters `D', `E', `S' are 0.044, 0.130, 0.063, respectively, then S1(\DES") � �3:12�2:04�2:76 =�7:92. Intuitively, the Sinkov statistic measures the likelihood of the observed plaintext.Unfortunately, Sinkov neither explains the theoretical underpinnings of this remarkable statistic,characterizes its distribution, nor gives a decision procedure for accepting or rejecting candidateplaintexts on the basis of their S1 values. Thus, with what con�dence should we accept the plaintext\DES" as valid on the basis of a score of �7:92? The situation becomes more di�cult if we mustcompare strings of di�erent lengths because Sinkov does not explain how the distribution of hisstatistic changes with length, especially when applied to higher-order grams. As for how to acceptor reject a candidate plaintext, Sinkov simply says to try all possibilities and to pick the onewith the highest S1 value. Although this procedure works for some applications, it is inadequatefor applications that require on-line decisions. Furthermore, it is desirable to have a meaningfulinterpretation of the S1 values.Sinkov [82, p. 162] also points out that his statistic, applied to bigrams, is an e�ective way tomeasure how well two columns �t next to each other when anagramming columns of ciphertextin solving single-columnar transposition ciphers. But he does not address the interesting issue ofwhether the statistic should be computed using the unconditional bigram probabilities pxixi+1 (the apriori probability of the bigram xixi+1) or using the conditional bigram probabilities pxixi+1jxi (theposterior probability of the bigram �xi+1 given that � = xi).4 By default, Sinkov seems to suggestusing unconditional bigram probabilities. This issue deals primarily with the question of whetherthe input is a sequence of independent bigrams from isolated fragments of text or a sequence ofdependent bigrams, such as the \overlapping" bigrams \DE" and \ES" from the string \DES".To compute the likelihood of strings generated from our Markov model, for independent bigramsunconditional bigram probabilities should be used, and for dependent bigrams conditional bigram3Throughout this paper, let ln = loge.4In anticipation of our Markov model, we shall also refer to these conditional probabilities as transition probabilities.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 4probabilities should be used.5 Furthermore, the issue can be complicated by assumptions concern-ing the initial conditions of the string: using unigram initial conditions and conditional bigramprobabilities on a string of length one yields the same e�ect as using unconditional bigram proba-bilities without initial conditions (see Section 8.1). When computed on bigrams with conditionalbigram probabilities, we shall call the Sinkov statistic S2.Variations on Sinkov's StatisticToward the goal of separating vowels from consonants in substitution ciphers, Anderson [3] recom-mends a simple variation of the Sinkov statistic, which for any 1 � k � n, operates on k-gramsrather than on unigrams only. For any 1 � k � n, Anderson computes Ak = QNki=1 �n=(kNk)i ,where Nk = n � k + 1 is the number of k-grams in the candidate plaintext and �i is the uncon-ditional probability (not the transition probability) of the k-gram xixi+1 : : : xi+k�1.6 Thus, fork = 2, lnA2 = (n=(2N2))PN2i=1 ln �i � (S1 + S2)=2, since N2 = n � 1 and, for all 1 � i � n � 1,�i = pxixi+1 = pxipxixi+1jxi . As with Sinkov, Anderson does not explain how to interpret hisstatistic.Baldwin and Sherman [6] center and normalize S2=N by computing Ŝ2 = pN((S2=N)� �)=�,where N is the number of bigrams in the candidate plaintext. The constants � and � are, respec-tively, the mean and standard deviation of S2 applied to a randomly chosen bigram of English,with the bigram selected using unconditional bigram probabilities (see Section 7.5).7 To interprettheir statistic, these two cryptanalysts view it as a standard normal random variable, rejectingall values that fall outside some interval [��; � ].8 In solving the Decipher Puzzle, they arbitrarilyselected � = 4. Although the central limit theorem [64] guarantees that Ŝ2 is asymptotically stan-dard normal when applied to independent English bigrams (the special case of their application),Baldwin and Sherman say nothing about the distribution of Ŝ2 when applied to dependent bigrams.In addition, they provide no experimental evaluation of how well their method works in practice.After presenting our framework for language recognition, in Section 7 we will revisit the S2 and Ŝ2statistics from the new perspective of this framework.The Index of CoincidenceThe Index of Coincidence is another well-known tool for solving several related cryptanalytic prob-lems. For unigrams, it is de�ned by IC = Pm�=1 f�(f� � 1)=(n(n � 1)), where n is the length ofthe candidate plaintext; m is the alphabet size; and for all letters 1 � � � m, f� is the observedfrequency of letter �. This statistic is an unbiased estimator of the repeat rate � =Pm�=1 p2�, the apriori probability that two randomly chosen unigrams from the language coincide. Intuitively, theIC measures the roughness of the distribution of characters in the candidate plaintext. Accordingto Kahn [52, p. 376{382], the IC is due to Friedman [25].5Although their input was a sequence of independent bigrams, Baldwin and Sherman [6] used conditional bigramprobabilities and analyzed why their choice worked well for their application.6There is a typographical mistake in Anderson's [3, p. 162] formula: using Anderson's notation, in his displayequation the upper bound of the product should be N � n+ 1 rather than N � n� 1.7Baldwin and Sherman computed � � �2:51 and � � 0:98 from the language statistics given by Beker andPiper [8].8A random variable is standard normal if and only if it has a Gaussian distribution with mean 0 and variance 1.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 5Sinkov [82] points out two applications of the IC. First, as a measure of roughness of thedistribution of observed ciphertext characters, the IC can help identify the unknown encryptionscheme. Second, it can be similarly used to estimate the period of polyalphabetic substitutionciphers; for example, Beker and Piper [8] give a formula for doing so. Although Sinkov does notexplicitly say so, one could also use the IC to help identify language types. For more about theIC, see Section 7.4.3 A Framework for Language RecognitionWe adopt a classical statistical framework in which plaintext recognition is performed in two steps:Step 1 (o�-line): Identify features of the base language from a base sample.Step 2 (on-line): Compare features of the candidate plaintext with those ofthe base language.The o�-line step observes the base language through a base sample and extracts features from thebase sample. Similarly, the on-line step observes the candidate plaintext from an on-line sampleand extracts features from the on-line sample. In addition, the on-line step compares these featureswith those of the base language, and accepts or rejects the candidate plaintext by interpreting thevalue of a test statistic according to a decision procedure.We �nd it helpful to view the role of base language and candidate plaintext as symmetrical: eachis observed through samples consisting of character strings, and the same features are extractedfrom these samples. The base sample, however, is typically huge in comparison with the on-linesample. Furthermore, since the base sample is available o�-line, the cryptanalyst can a�ord tospend a large amount of time preprocessing the base sample; by contrast, typically the on-line stepmust be performed quickly since it is calculated many times.In our model, the extracted features are the frequency counts of the k-grams, for some k.9Hence, within our model, the only information from which the cryptanalyst can make a decision isthe frequency counts of the base and on-line samples.We view the test statistic as computing a \distance" between the features of the on-line sampleand those of the base sample. Each of these samples de�nes a point in \feature space"|the spaceof all possible feature values (e.g. the space of bigram frequencies). Any candidate plaintext isconsidered valid if and only if it is su�ciently close in distance to the base language in this space.Thus, the decision procedure de�nes a region in feature space around the base sample in whichall on-line samples are accepted. More generally, for classi�cation problems involving two or morebase languages, the decision procedure partitions feature space into regions, one corresponding toeach base language.Throughout this paper, we assume that the cryptanalyst has enough ciphertext to be able todistinguish valid messages from invalid messages. Thus, when applying language-recognition tech-niques in an exhaustive key search of any cipher, as a minimum information-theoretic requirement,we assume that the length of the ciphertext equals or exceeds the unicity distance of the cipher.109In our experimental work [29] we use k = 2.10As formalized by Shannon [79], the unicity distance of a cipher is the minimum number of ciphertext charactersrequired to guarantee that, for any cryptogram, the expected number of spurious decipherments is approximatelyzero.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 6For some ciphers, stronger assumptions may be needed to ensure further that the cryptanalyst canrecognize valid plaintext e�ciently.For those applications when the cryptanalyst does not know the base language, we omit Step 1and apply a statistic that detects some type of structure in the on-line sample. The next foursections explain how to perform the o�-line and on-line steps.4 A Markov Model of LanguageWe model any language as the set of �nite strings that can be generated by a Markov chain,together with the probability distribution on these strings induced by the chain.11 Markov chainsprovide a convenient, well-de�ned, well-understood model that captures useful statistical propertiesof language|especially the dependencies among successive characters of a string. By selectingan appropriate set of parameters (i.e. states, order, and transition probabilities), this model canbe customized to represent a variety of languages, including human languages (e.g. French) andprogramming languages (e.g. C). For these reasons, and since Markov chains seem to work well inpractice, we adopt this popular model. In the rest of this section, we explain our model of language;we explain how to estimate its parameters from a base sample; and we point out some sources oflanguage statistics for English and for other natural languages.What is a Markov Model?We represent a �nite Markov chain as a quadruple (m;A; fYtg; r), where m 2 Z+ is the numberof states, and A = fa1; a2; : : : ; amg is the state space.12 Usually we associate the states with theletters of the alphabet. For each time t 2 Z+, Yt is a random variable that takes on a value in A;this random variable describes the state of the chain at time t. The parameter r 2Z+ is the orderof the chain, the maximum number of previous states on which each random variable Yt depends.It is convenient to think of the chain as generating strings over A by outputting the values of Yt.For all t > 1, the distribution of Yt given Yt�1 is de�ned by transition probabilities. For each1 � i; j � m, the transition probability pi;j is the posterior probability that the chain will movefrom state i to state j, given that the chain is in state i. For any Markov chain of order 1, thetransition probabilities can be described by an m � m matrix. A more elaborate Markov modelmight also include an initial distribution of states. Unless otherwise noted, we shall assume thatthe Markov model for each base language is well-behaved in the technical sense that it is ergodic.13To construct a Markov model of a base language, it is necessary to select the state space, order,and transition probabilities.Choosing the State SpaceIt is natural to associate the states with the letters that appear in the base language. But if thealphabet is large and contains many infrequent letters, it may be convenient to reduce the number ofstates in the Markov model by partitioning the alphabet into equivalence classes. For example, one11Unless otherwise noted, we shall use the phrase Markov chain to mean a �nite stationary Markov process. Fora review of Markov chains, see Bhat [9], Billingsly [12], or Kemeny [56].12Throughout this paper, we denote the set of positive integers by the symbol Z+.13A Markov chain is ergodic if and only if it is stationary, recurrent, and aperiodic|see Bhat [9, pp. 47{48].



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 7might lump all low-frequency letters into one equivalence class. Doing so ameliorates one di�cultythat results from having a small number of observed grams for the infrequent transitions|albeit atthe loss of some information: To interpret the X2 statistic in the standard way, statisticians requirethat certain conditions be satis�ed. For instance, one common condition|arguably too strong|isto require that the expected number of observations for each category (i.e. gram) be at least 5.For low-frequency grams, a long on-line sample is required to satisfy the condition; by condensingstates, one can reduce the required length of the on-line sample.Another simple way to condense states is to order the bigrams by decreasing bigram probabilitiesand to assign a state to each letter in the most probable bigrams. All remaining letters could belumped into an additional state. An interesting and extreme example of condensing states is tomodel language with two states: vowel and consonant, as discussed by Bishop, Fienberg, andHolland [13, pp. 272{273].Choosing the OrderChoosing the order of the model is an important decision. The higher the order, the more accuratethe model|up to a point. For example, for English, a 2nd-order (trigram) model is more accuratethan a 1st-order (bigram) model, which is more accurate than a 0th-order (unigram) model. Butlittle, if anything, would likely be gained from using, say, a 20th-order model rather than a 15th-order model for English. Furthermore, higher-order models are more cumbersome than lower-ordermodels, and the space required for their representations grows exponentially with order.Sometimes, constraints of the application lead to a natural choice of order. In particular, insome cryptographic applications, high-order grams are not available. For example, Baldwin andSherman [6] chose a 1st-order model in part because unigrams and bigrams were the only completegrams available to them. We note, however, that although Baldwin and Sherman did not do so,they could have used higher-order incomplete grams, such as \t?e", where the wild card `?' matchesany single character.Some readers may wonder, Why not simply recognize English by checking if the candidateplaintext contains words from an English dictionary? Indeed, dictionary methods are extremelypowerful when they can be carried out. We chose not to pursue dictionary attacks because we areprimarily interested in general-purpose statistical methods and because dictionary methods can beanalyzed in the context of high-order Markov models. Moreover, it is not possible to carry out suchattacks when high-order grams are not available from the candidate plaintext, as was the case withBaldwin and Sherman. In addition, the adversary can easily complicate such attacks by addingnoise to the plaintext|though, even in the presence of noise, it is sometimes possible to carry outrelated pattern-word attacks.Estimating the Transition ProbabilitiesOnce the state space and order of the Markov model of the base language have been chosen, thetransition probabilities of this chain can be estimated from the base sample. A straightforward wayof estimating these probabilities is to use a maximum-likelihood estimator, as described for exampleby Bhat [9, p. 140]. Consider a 1st-order model, and let i; j be any letters. Having observed nijinstances of the bigram ij in the base sample, the maximum-likelihood estimate of the transitionprobability pij is p̂ij = nij=ni�, where ni� denotes the number of observed bigrams that begin withthe letter i. This process generalizes naturally to any order model.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 8In some applications it is helpful to adjust these maximum-likelihood estimates using a shrinkagetechnique, to move the estimated transition probabilities toward the uniform probability 1=m. Forexample, the maximum-likelihood estimates can yield poor results when the the sample is absolutelysmall (e.g. nij < 3), or when the sample is e�ectively small (e.g. nij � ni�=m) even though ni�might be absolutely large. Shrinkage extends the applicability of the asymptotic theory to smallersample sizes.One shrinkage technique, known as 
attening, computes the 
attened estimate p̂?ij of the tran-sition probability pij by the formula p̂?ij = nij + cni� + cm; (1)where c is the so-called 
attening constant. Two simple methods are to choose c = 0:5 or c = 1=m.Instead of directly adjusting the estimated parameters, it is possible to create an equivalent e�ectby appropriately modifying the test statistics. For a discussion and comparison of various 
atteningtechniques, see Good [39, 40].Language Statistics for Natural LanguagesTo carry out many tests described in this paper, it is necessary to know transition probabilities ofthe base language. Some practitioners may choose to estimate their own transition probabilities;others may prefer to use published language statistics, such as those reported by Solso, Juel, King,and Rubin [83, 84, 85, 86]. For additional sources of language statistics, see Shannon's study of theentropy and redundancy of English [80], Good's survey of the statistics of language [34, pp. 577{578], and cryptology texts by Beker and Piper [8], Denning [20], Friedman [26], and Kullbach [60].In addition to computing unigram, bigram, and trigram frequencies, Solso and his associatesalso compute: versatility of unigrams, bigrams, and trigrams [83, 86]; positional frequency andversatility of unigrams and bigrams [84, 86]; and frequency and versatility of initial and �nalletters [85]. The positional frequency of a gram is the number of times the gram appears in thespeci�ed position (within all words); the versatility of a gram is the number of di�erent words inwhich the gram appears. Solso and associates compute these statistics from word-frequency listscompiled from the Brown Corpus by Francis and Ku�cera [24, 59]. These positional frequencies andversatilities can be used in more elaborate models of language.In practice, it is important to know how broadly to de�ne valid plaintext. There are manydi�erent variations of each natural language. For example, New York Times sports English isdi�erent from the poetry English of e. e. Cummings. Some applications may need to recognize onlyShakespearian English; other applications may need to recognize any language coarsely resemblingEnglish. To handle this concern, parameters of the base language and thresholds of the decisionprocedure must be chosen appropriately.5 Four Language-Recognition ProblemsWe now formalize four plaintext-recognition problems as hypothesis-testing problems in statisticalinference on Markov chains: 1) recognizing a known language, 2) distinguishing a known languagefrom uniform noise, 3) distinguishing unknown 0th-order noise from unknown 1st-order language,and 4) detecting non-uniform unknown language. We also illustrate each problem with a concrete



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 9example. These four well-de�ned problems abstract many of the practical language-recognitiontasks faced in cryptanalysis.5.1 Problem StatementsWe state each problem as a hypothesis-testing problem in which we test some null hypothesis H0versus an alternative hypothesis H1, given the features of the candidate plaintext. For each problem,the candidate plaintext X is one string of n characters, and the features extracted from X are thek-gram frequency counts, for some �xed k. Furthermore, for H0 and H1, we assume that X wasproduced by some Markov chain M with alphabet A and matrix of transition probabilities PM ,and we assume that the cryptanalyst knows an upper bound (e.g. 1) on the order ofM . We de�nefour problems by stating di�erent hypotheses H0 and H1 concerning the parameters of M .Problem 1 (Recognizing a Single Known Language).Given candidate plaintext X , test the null hypothesis \X was produced by the known Markovchain B" versus the alternative hypothesis \X was produced by a di�erent Markov chain of thesame order." That is, H0 : PM = PB , and H1 : PM 6= PB , where PM is the matrix of transitionprobabilities for the Markov chain that produced X , and PB is a known matrix of transitionprobabilities.Problem 2 (Distinguishing a Known Language from Uniform Noise).Given candidate plaintext X , test the null hypothesis \X was produced by the known Markovchain B" versus the alternative hypothesis \X was produced by the uniform noise generator U ."That is, H0 : PM = PB , and H1 : PM = PU , where PU is the matrix of uniform transitionprobabilities.Problem 3 (Distinguishing Unknown 0th-Order Noise from Unknown 1st-Order Language).Given candidate plaintext X , test the null hypothesis \X was produced by some unknown 0th-order Markov chain" versus the alternative hypothesis \X was produced by some unknown 1st-orderMarkov chain." That is, H0 : order(M) = 0, and H1 : order(M) = 1.Problem 4 (Detecting Non-Uniform Unknown Language).Given candidate plaintext X , test the null hypothesis \X was produced by the uniform noisegenerator U" versus the alternative hypothesis \X was produced by a di�erent Markov chain of aknown order." That is, H0 : PM = PU , and H1 : PM 6= PU .In Problems 1 and 2, H0 represents the hypothesis that the plaintext is valid; in Problems 3and 4, H1 plays this role. As explained in Section 6.2, this reversal of roles between H0 and H1a�ects how the cryptanalyst will select critical values for decision procedures.To de�ne the problems, it is necessary to specify what is valid plaintext. For this purpose, letB denote a speci�c 1st-order Markov chain with alphabet A and transition probabilities PB. InProblems 1 and 2, chain B sharply de�nes the language of valid plaintext; for these two problems, weassume the cryptanalyst knows the order, alphabet, and transition probabilities of B. In Problem 3,we assume only that valid plaintext comes from some unknown 1st-order chain. In Problem 4, we



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 10Table 1: Summary of our four language-recognition problems. Each problem is de�ned by di�erent hypothe-ses H0 and H1 about the transitions probabilities PM of the Markov chain M that produced the candidateplaintext. Here, PB is a known matrix of transition probabilities, and PU is the matrix of uniform transitionprobabilities. Problem H0 H11 PM = PB PM 6= PB2 PM = PB PM = PU3 order(M ) = 0 order(M ) = 14 PM = PU PM 6= PUtake valid plaintext to be the unrestrictive alternative (within the Markov assumption) to uniformnoise.We must also specify what is invalid plaintext|the alternative to valid plaintext. To this end,let U be a Markov chain that generates uniform noise over A; that is, U is a 0th-order Markovchain on alphabet A with uniform transition probabilities PU = [1=m]. In Problems 2 and 4,chain U sharply de�nes the language of invalid plaintext. By contrast, in Problem 3, we assumeonly that invalid plaintext comes from some unknown, but not necessarily uniform, 0th-order chain.And in Problem 1, we take invalid plaintext to be the unrestrictive alternative (within the Markovassumption) to the known language B.Implicit in each problem is the assumption that the candidate plaintext was produced by someMarkov chainM with alphabet A. Knowing the alphabet A is a mild assumption since this alphabetcan be observed from the base and on-line samples. But assuming that the candidate plaintextcame from some Markov chain is signi�cant, since real language is not Markov and can only beapproximated by a Markov language.Since we nominally view each chain as a 1st-order chain, a clari�cation is needed for Problem 3.By testing if order(M) = 0, we test if the chain is also a 0th-order chain. Such a test is known asa test for independence.Table 1 summarizes our four problems. Problem 1 di�ers from Problem 2 in that Problem 1takes H1 to be the unrestrictive alternative hypothesis H1 = �H0, whereas Problem 2 takes H1 to bethe simple, sharp alternative hypothesis that X was produced from the uniform noise generator U .Although it is not always possible to do so, it is preferable to formulate applications with Problem 2rather than with Problem 1 because Problem 2 has an optimal test. Like Problem 1, Problem 4has an unrestrictive alternative hypothesis H1 = �H0. Moreover, chain U can be viewed as a specialcase of the known chain B. But here the roles of valid plaintext and invalid plaintext are reversed.In this sense we view Problem 4 as the dual of Problem 1.DiscussionWhenever possible the cryptanalyst should de�ne her hypotheses as sharply as possible. Doing somakes maximum use of available information and facilitates the selection of the most appropriatetest statistic. In particular, it is di�cult to say much about the relative performance of test statisticson any problem any of whose hypotheses is broadly de�ned. Therefore, the cryptanalyst shouldtry to avoid Problems 1 and 4, which have unrestrictive alternatives.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 11Zeroes in the matrices of transition probabilities require special attention. For example, considerProblem 1 and suppose the matrix PB of known transition probabilities contains exactly d zeroes.For this situation, we assume that the parameter space 
H1 for the alternative hypothesis H1consists of all m�m matrices over [0; 1], di�erent from PB, that contain exactly d zeroes and whosezeroes appear in the same positions as do the zeroes in PB . Similarly, for the other problems, weassume that the zeroes in the matrices of transition probabilities in the parameter spaces 
H0 and
H1 match. For more about zero transition probabilities, their di�culties, and how to cope withthem, see Section 7.1.Additional problems can be similarly de�ned, such as deciding if X was produced by a station-ary Markov chain, determining the order of the chain that produced X , or classifying X amongtwo or more known languages. For details about these addition problems, see T. Anderson andGoodman [4], Bhat [9], or Billingsly [11].5.2 ExamplesWe present four examples to illustrate how the foregoing language-recognition problems arise incryptanalytic practice. For each situation, the cryptanalyst selects one of the problems from thedetails of the application, de�ning her hypotheses as sharply as possible. In doing so, it is helpfulto answer the following questions: What are the possible plaintext languages? What are theirparameters? What are the alternatives to valid plaintext? For example, if the application is akey search, does the cryptanalyst know the statistical properties of strings produced by decryptingciphertext under incorrect keys?Example 1: Finding a C Program among Unknown Cleartext FilesThe analyst seeks an important cleartext �le written in the C programming language in a directoryof unencrypted �les of various unknown types. Problem 1 applies. Because of the predictablevocabulary of programming languages, a dictionary attack would also work especially well here.Example 2: Key Search of DES with French PlaintextThis situation is typical for plaintext recognition. The cryptanalyst knows the plaintext languageand the cipher. The plaintext language can be reasonably modeled with a Markov chain, andthe DES cipher appears to produce random strings when applied to decrypt any ciphertext underincorrect keys. Problem 2 nicely models this situation.Example 3: Key Search of a Beale Cipher with Unknown PlaintextBaldwin and Sherman [6] encountered this problem in their solution of the Decipher Puzzle. Inthe Beale cipher (see Kahn [52, pp. 771{772]), each plaintext character is encrypted as any integerfrom a set of codenumbers corresponding to that character. Each codenumber is a position indexof the plaintext character from an unknown keytext. For example, the keytext \BEETHOVEN"yields the codenumber set f2; 3; 8g for the letter `E' since `E' appears in positions 2, 3, and 8 of thekeytext. Neither the plaintext language nor the keytext language is known to the cryptanalyst.Decryption under an incorrect key produces 0th-order noise from the keytext language, sincesuch decryption has the e�ect of randomly indexing into the keytext. Typically, this noise is not



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 12uniform since it usually follows the unigram frequencies of the keytext language. By contrast, thecorrect key produces a candidate plaintext from the plaintext language, which we assume has ordergreater than zero and can be modeled as a 1st-order language. Therefore, Problem 3 applies.Problem 3 is also relevant when matching columns in solving transposition ciphers.Example 4: Key Search of REDOC II with Unknown PlaintextThe REDOC II cryptosystem appears to produce random-looking strings when used to decryptany ciphertext under incorrect keys. Therefore this situation is similar to Example 2, except theplaintext language is unknown. Hence Problem 4 could be used.It would be preferable, however, if the cryptanalyst could �nd a way to use a multi-languagevariation of Problem 2 and thereby use a sharply de�ned alternative hypothesis. For example,suppose the cryptanalyst could make a list of possible plaintext languages that is certain to includethe actual plaintext language. Then, the cryptanalyst could view her task as a classi�cation problemamong these languages and uniform noise.6 Testing a Statistical HypothesisIn each of the four plaintext-recognition problems we test a null hypothesis H0 versus an alternativehypothesis H1. We do so by computing some test statistic  , which depends on the candidateplaintext.14 To interpret the value of this statistic, we de�ne a critical region|a subset of image( )for which we reject H0. This testing process yields an e�ective way to solve our problems if thedistribution of  given H0 di�ers su�ciently from the the distribution of  given H1. In this sectionwe review the essentials of statistical hypothesis testing.The rest of this section is organized as follows. Section 6.1 reviews some fundamental conceptsand terminology from statistical inference. Section 6.2 explains how to select the critical region.And Section 6.3 discusses criteria for evaluating test statistics, including the notion of a uniformlymost powerful test. The reader familiar with statistical inference may wish to skip to Section 7.156.1 Fundamental Concepts and TerminologyIn testing a statistical hypothesis, the following three concepts play a crucial role: one-sided versustwo-sided tests, simple hypothesis versus compound hypothesis, type-I error versus type-II error.One-Sided versus Two-Sided TestsIn a one-sided test, the critical region is a single open or closed interval: for example, reject H0 ifand only if  > � , for some threshold � . In a two-sided test, the critical region is de�ned by twosuch intervals: for example, reject H0 if and only if  < �1 or �2 <  , for some thresholds �1 � �2.Whether it is possible or more appropriate to use a one-sided or two-sided test depends on thestatistic and alternative hypothesis.14The term test statistic refers to the random variable  ; the term test refers the entire testing process.15For a more detailed explanation of statistical hypothesis testing, see Lehmann [64], Rohatgi [77], and Wilks [93].



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 13Simple versus Compound HypothesesWe assume the distribution of  belongs to some known class of parameterized distributionsP = fP� : � 2 
g, for some set of parameters 
. For example, in Problem 1, 
 is the set of allpossible transition probabilities for a Markov chain with the speci�ed state space and order. Eachhypothesis corresponds to some subset of 
, and 
 = 
H0 [ 
H1 , where 
H0 and 
H1 are subsetsof parameters corresponding to hypotheses H0 and H1, respectively.A hypothesis is simple if it corresponds to a singleton subset of 
; otherwise, it is compound.For example, in Problem 1, H0 is simple and H1 is compound.Type I versus Type II ErrorsFor any critical region C, two types of errors can arise. A type-I error occurs when the test rejectsH0even though H0 is true. A type-II error occurs when the test accepts H0 when H1 is true. WhenH0 is simple, let e1 = Prob[ 2 CjH0] denote the probability of a type-I error, with respect to C.Similarly, when H1 is simple, let e2 = Prob[ 62 CjH1] denote the probability of a type-II error.Thus for Problem 2, e1 is the probability of rejecting valid plaintext, and e2 is the probability ofaccepting uniform noise as plaintext.When H0 is compound, we view e1 : 
H0 ! [0; 1] as a function of the parameters � 2 
H0 .Speci�cally, for any � 2 
H0 , e1(�) = Prob[ 2 CjH0(�)], where H0(�) is the restriction of H0 toparameter �. Similarly, when H1 is compound, we view e2 : 
H1 ! [0; 1] as a function of theparameters � 2 
H1 .6.2 Selecting the Critical RegionThe most appropriate method for selecting the critical region depends in part on the problem andon the application. For Problems 1 and 2, in which H0 signi�es valid plaintext, the cryptanalystwould typically carry out the following standard three-step procedure:1. Decide whether to use a one-sided or two-sided test.2. Choose a critical level � 2 [0; 1], which speci�es the maximum tolerable type-I error rate.3. From this critical level and from the distribution of  jH0, compute threshold(s) for  thatsatisfy e1 � �.In this procedure, an important goal is to minimize e2 subject to e1 � �. For Problems 1 and 2, weset the type-I error rate �rst, because in most applications it would be very unfortunate to overlookvalid plaintext.For Problems 3 and 4, in which H1 signi�es valid plaintext, the cryptanalyst might prefer tocarry out a variation of this procedure in which she �rst sets the type-II error rate. In this variation,the cryptanalyst would choose threshold(s) for  , minimizing e1 subject to e2 � �. For Problems 3and 4, however, this variation presents the additional di�culty that H1 is composite.It is important to be aware that the actual distribution of  might di�er from its theoreticaldistribution, since in practice the assumptions of the underlying model are usually not satis�edcompletely. For example, American English is not an ergodic 1st-order �nite stationary Markovlanguage. Similarly, the asymptotic distribution of  might di�er from the distribution for the



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 14�nite-size messages that arise in practice. Consequently, the cryptanalyst should experiment toverify the actual error rates or to determine the thresholds empirically.For applications where on-line decisions are not required, it may be helpful also to rank allcandidate plaintexts by their  values, as suggested by Sinkov [82].6.3 Criteria for Evaluating Test StatisticsThere are three main criteria by which we evaluate test statistics: time and space complexity,quality of results, and implementation di�culty. Traditionally, statisticians have focused on qualityof results, and more narrowly, on statistical power and robustness. In this section, we brie
y explainthe concepts of statistical power and robustness and the notion of a uniformly most powerful test.The question of how time and space relate to quality of statistical tests remains a fascinating activearea of research today (see Section 8.3).Statistical Power and StrengthWhen testing the null hypothesis H0 versus the simple alternative H1 at critical level �, the powerof  at level � is � = Prob[ 2 CjH1], where C is the critical region. That is, � = 1� e2, where e2is the type-II error rate at critical level �. When H1 is compound, we view � : 
H1 ! [0; 1] as afunction of the parameters � 2 
H1 .In their experimental studies, Good and Crook [19, 44] de�ne and apply a more general notioncalled strength, where the strength of a test statistic is a weighted average of its power, averagedover all parameters � 2 
H1 , where the weights are given by a prior distribution of the parameters.Most Powerful and Uniformly Most Powerful TestsWith respect to statistical power, there is a standard notion of an optimal test. When H1 is simple,we say that a test is most powerful at level � if and only if its power at level � is at least as greatas that for all other tests. When H1 is compound, we say that a test is uniformly most powerfulat level � if and only if it is a most powerful test at level � for all parameters � 2 
H1 .When both H0 and H1 are simple, for any critical level �, it is possible to construct a mostpowerful test at level � following the criteria of the Neyman-Pearson Lemma [64, p. 74]. In Sec-tion 7.2, we de�ne such an optimal test for Problem 2. For compound H1, however, typically nouniformly most powerful tests exist. When a uniformly most powerful test cannot be constructed,a common practice is to de�ne likelihood ratio tests following the maximum-likelihood principleapplied to the Neyman-Pearson criteria. In Section 7.3, we de�ne such likelihood ratio tests forProblems 1, 3, and 4.RobustnessInformally, a statistic is robust if its actual behavior does not deviate much from its theoreticalbehavior when the assumptions of the model are not fully satis�ed. Thus, a robust test for recogniz-ing Markov English should still work well when applied to real English. It is possible to constructformal models of robustness classes|for example, see Huber [50] and Poor [71].



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 157 Test Statistics and Decision Procedures:Solutions to Problems 1{4We now present solutions to each of the four language-recognition problems de�ned in Section 5.For Problem 2, which has a sharply de�ned alternative hypothesis, we give a most powerful testbased on the Neyman-Pearson Lemma [64]. For Problems 1, 3, and 4, which typically do not haveuniformly most powerful tests, we give likelihood ratio tests derived from the maximum-likelihoodprinciple applied to the Neyman-Pearson Lemma. We also discuss the X2 and IC statistics.Furthermore, we point out the asymptotic distributions of these test statistics, and we explain twouseful decision procedures based on approximate �2 and Gaussian interpretations.7.1 Likelihood Ratio TestsLikelihood ratio tests are natural, powerful statistical tests based on the log-likelihood ratio. Beforederiving particular likelihood ratio test statistics, we brie
y de�ne our notation and review the log-likelihood ratio and its asymptotic distribution. For convenience, we de�ne each test statistic withrespect to a 1st-order (bigram) model of language; the generalization to higher-order models isstraightforward.NotationWe de�ne each statistic in terms of the following convenient notation, which describes the observedfrequency counts in the candidate plaintext and the constant parameters of the Markov model ofthe base language. The candidate plaintext is a sequence of n letters from an alphabet f1; : : : ; mg ofsizem. This sequence formsN = n�1 overlapping bigrams. For each 1 � i; j � m, let ni denote theobserved frequency of letter i in the candidate plaintext, and let nij denote the observed frequencyof bigram ij. There are ni� = Pmj=1 nij bigrams beginning with the letter i, and n�j = Pmi=1 nijbigrams ending with the letter j.16 The constants pij and pi denote, respectively, the transitionprobability and state probability (i.e. unigram probability) from the Markov model of the baselanguage.From the frequency counts, we compute the observed relative unigram frequencies p̂i = ni=nand the observed relative transition frequencies p̂ij = nij=ni�. Also, let bij = pipij denote thecorresponding unconditional bigram probability in the Markov model of the base language.Finally, let PB = [pij ]1�i;j�m denote the m � m matrix of transition probabilities from theMarkov model B of the base language, and let P̂X = [p̂ij ]1�i;j�m denote the m � m matrix ofobserved relative transition frequencies from the candidate plaintext X . Similarly, let PU = [1=m]be the m �m matrix of uniform transition probabilities, and let P̂0 = [p̂j ]1�i;j�m be the m �mmatrix of observed relative unigram frequencies from X .The Log-Likelihood RatioGiven any two competing hypotheses H0 and H1, we construct the log-likelihood ratio16If the last plaintext letter is an i, then ni� = ni � 1; otherwise, ni� = ni. Similarly, if the �rst plaintext letter isa j, then n�j = nj � 1; otherwise, n�j = nj.
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H0 Prob[X jH0(�0)]max�12
H1 Prob[X jH1(�1)] ; (2)where X is the candidate plaintext, and H0(�0) and H1(�1) are, respectively, the restrictions of H0and H1 to parameters �0 and �1. This ratio is sometimes called the weight of evidence in favor ofH0 as opposed to H1, provided by X ; for example, see Good [32, 38, 70].For Problem 2, whose hypotheses are simple, this construction yields a most powerful testby the Neyman-Pearson Lemma. For Problems 1, 3, and 4, whose alternative hypotheses arecompound, we compute the log-likelihood ratio, replacing the unknown parameters PM with theirmaximum-likelihood estimates P̂X computed from X . At least for Problems 1 and 4, each of whichhas one simple hypothesis, this construction is equivalent to the common practice of computingthe log-likelihood ratio replacing the unknown parameters with those obtained by maximizing (forProblem 4, minimizing) the log-likelihood ratio. The resulting tests are called likelihood ratio tests.To derive particular test statistics, it is necessary to compute the likelihood function LH(X) =Prob[X jH ], or its natural logarithm, for various hypotheses H ; this function computes the a prioriprobability that a candidate plaintext X yields the observed frequency counts fnijg under thespeci�ed hypothesis H . For example, in Problem 1, H0 is the hypothesis that the candidateplaintext was produced by a 1st-order Markov chain with known transition probabilities PM = PB.In this case, we write L(PB) = LH0(X) since it is traditional to view L as a function of thelanguage parameters rather than of the plaintext. Ignoring initial conditions of the Markov chain,for Problem 1 we have L(PB) = Prob[X jPM = PB] = mYi=1 pni1i1 pni2i2 � � �pnimim ; (3)and therefore lnL(PB) = X1�i;j�mnij ln pij : (4)Although Bhat [9, p. 138] states that the frequency counts \can be considered as a sample : : : froma multinomial distribution," due to linear dependencies among these counts (e.g. jni� � n�ij � 1),the frequency counts are not exactly so distributed.Asymptotic Distribution of the Log-Likelihood RatioUnder suitable regularity conditions, such as those described by Wilks [93], it is known that un-der H0 the test statistic �2� has an asymptotically �2 distribution. This asymptotic distributionfollows from a Taylor series expansion of the likelihood function around the known parametersof 
H0 (for compound H0, around their maximum-likelihood estimates). Intuitively, the regularityconditions ensure in part, that under H0, this Taylor series expansion exists in a suitable neigh-borhood within the parameter space 
. The mysterious �2 factor stems from a constant factor inthis expansion. In Section 7.5 we explain how to carry out this approximate �2 interpretation inpractice, and we discuss two additional options for interpreting �.In the asymptotically �2 distribution of �2�, the number of degrees of freedom is equal tothe number of unknown parameters (i.e. transition probabilities) minus the number of constrained



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 17parameters. These parameters can be constrained, for example, from the de�nition of a Markovchain (e.g. it must be true for each 1 � i � m that Pmj=1 pij = 1) and from zeroes in the matrixof known transition probabilities. As explained in Section 5.1, we assume that the zeroes in thematrices of transition probabilities in the parameter spaces 
H0 and 
H1 match.Zero transition probabilities can cause theoretical and practical di�culties. The theoreticaldi�culty is that, unless the zeroes in the matrices of transition probabilities in the parameterspaces 
H0 and 
H1 match, such zeroes might violate the regularity conditions. The practicaldi�culty is that the cryptanalyst must deal with impossible bigrams, such as \QZ", that appear incandidate plaintext despite having zero transition probabilities in the theoretical model. How bestto handle such impossible bigrams in practice depends on the application. One simple strategy,which avoids the theoretical di�culties, is to replace each zero transition probability with a smallnumber, as did Baldwin and Sherman [6].7.2 A Most Powerful Test for Problem 2For Problem 2 (distinguishing a known language from uniform noise), Equations 2 and 4 yield thetest statistic�2 = ln L(PB)L(PU ) = 0@ X1�i;j�mnij ln pij1A � X1�i;j�mnij ln 1m = 0@ X1�i;j�mnij ln pij1A+N lnm: (5)In Equation 5, and analogously for all summations in this section, we assume the sum is computedover only those indices i; j such that pij 6= 0. For this problem the parameter space 
 = fPB; PUgconsists of exactly two points; consequently, the regularity conditions for �2�2 to have an asymp-totically �2 distribution do not make sense. Therefore, we suggest applying decision proceduresbased on a Gaussian interpretation of �2=N , as explained in Section 7.5.By the Neyman-Pearson Lemma and by the ergodicity of PB , �2 is an asymptotically mostpowerful test for Problem 2. Moreover, with initial conditions included, �2 would become a mostpowerful test for Problem 2 (without the asymptotic quali�cation).Equation 5 explains the Sinkov statistic S2(X) = Pni=1 ln pxijjxi de�ned in Section 2: By rear-ranging Sinkov's summation over all possible bigrams in the base language rather than over theobserved bigrams in the candidate plaintext, we see that S2 is simply the log-likelihood functionS2 = X1�i;j�m nij ln pij : (6)Moreover, since the linear summand N lnm in Equation 5 does not a�ect the essential character of�2 (S2 is a monotonically decreasing function of �2), the statistics �2 and S2 are equivalent.17 Wenote further that the Sinkov statistic is closely related to concepts in information theory. For exam-ple, as observed by Bartlett [7, p. 88], when applied to unigrams, limn!1 S1=n = (�1=log2e)H(X),where H(X) is the entropy of X .18A similar construction also yields a most powerful test for classifying among two or more knownlanguages.17For a formal de�nition of when two statistics are equivalent, see Lehmann [64, p. 43].18Entropy is a measure of uncertainty, expressed in bits|for details see Gallager [28]. Shannon [80] measured theentropy of printed English experimentally and found that it is approximately 1.0 bit/character.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 187.3 Likelihood Ratio Tests for Problems 1, 3, and 4For Problems 1, 3, and 4, we de�ne likelihood ratio tests from Equations 2 and 4 by replacing theunknown parameters PM with their maximum-likelihood estimates computed from the candidateplaintext.A Likelihood Ratio Test for Problem 1For Problem 1 (recognizing a known language), the maximum-likelihood criterion applied to Equa-tions 2 and 4 yields the log-likelihood ratio�1 = ln L(PB)L(P̂X) = 0@ X1�i;j�mnij ln pij1A� X1�i;j�mnij ln p̂ij = X1�i;j�mnij ln pijp̂ij ; (7)where PB is the matrix of known transition probabilities from the base language and P̂X is thematrix of observed relative transition frequencies from the candidate plaintext X . Note that P̂X isalso the maximum-likelihood estimate computed fromX of the parameters PM . Since hypothesisH1is compound, in computing the log-likelihood ratio �1 we replace the unknown parameters PMcorresponding to H1 with P̂X .From Equation 7, we de�ne the related test statisticML = �2�1 = 2 X1�i;j�mnij ln p̂ijpij : (8)Under hypothesis H0 : PM = PB , the statistic ML has an asymptotically �2 distribution withm(m � 1) � d degrees of freedom, where d is the number of zero transition probabilities in thebase language. To compute the degrees of freedom, note that there are m2 � d nonzero transitionprobabilities in PB, among which there are m constraints that force each row sum of PB to be 1.For more details, see Anderson and Goodman [4].A Likelihood Ratio Test for Problem 3For Problem 3 (distinguishing 0th-order noise from unknown 1st-order language), we obtain thelog-likelihood ratio�3 = ln L(P̂0)L(P̂X) = 0@ X1�i;j�mnij p̂j1A� X1�i;j�mnij p̂ij = X1�i;j�mnij ln p̂jp̂ij ; (9)where P̂0 is the matrix of observed relative unigram frequencies from the candidate plaintext. It iscustomary to use the related test statisticIND = �2�3 = 2 X1�i;j�mnij ln p̂ijp̂j ; (10)which under hypothesis H0 : PM = P̂0, has an asymptotically �2 distribution with (m � 1)2 � ddegrees of freedom. This distribution has m� 1 additional constraints beyond those for Problem 1.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 19A Likelihood Ratio Test for Problem 4Similarly for Problem 4 (detecting non-uniform unknown language), we have the log-likelihoodratio�4 = ln L(PU )L(P̂X) = 0@ X1�i;j�m nij ln(1=m)1A� X1�i;j�m nij ln p̂ij = �N lgm� X1�i;j�m nij ln p̂ij : (11)Under hypothesis H0 : PM = PU , the related statistic �2�4 has an asymptotically �2 distributionwith m(m� 1) degrees of freedom. For the degrees of freedom, the situation is similar to that inProblem 1, except PU has no zeroes.7.4 Additional Test StatisticsThe chi-squared test statistic X2, and the Index of Coincidence IC introduced in Section 2, areuseful for a variety of inference problems including Problems 1 and 4. We now explain these teststatistics and point out a few selected other tests.Chi-Squared Test StatisticThe well-known chi-squared test statisticX2 = X1�i;j�m (nip̂ij � nipij)2nipij (12)is asymptotically equivalent to ML, as can be proven by a Taylor series expansion of the likelihoodfunction L around the known parameters PB. Thus, under hypothesis H0 : PM = PB, the teststatistic X2 has an asymptotically �2 distribution with m(m�1)�d degrees of freedom.19 As men-tioned in Section 4, certain conditions must be satis�ed for the �2 interpretation of the X2 statisticto be accurate. For example, some statisticians require that, for each 1 � i; j � m, the expectednumber of observed bigrams ij be at least 5. For a discussion of such conditions, see Good, Gover,and Mitchell [45, p. 268].Several embellishments of X2 are possible. For example in Equation 12, the squaring operationloses information by treating observed positive and negative deviations from the expected value nipijequivalently. For some applications, slightly better results can be obtained by using a variationof X2, as derived by Lehmann [64], that takes advantage of the signs of these deviations. Forindependence problems related to Problem 3, Diaconis and Efron [21] propose a new interpretationof the X2 statistic. And for Problem 4, Good [40], Good, Gover, and Mitchell [45], and Good andCrook [44] recommend using Cochran's continuity-adjusted X 02 statistic in place of X2.The Index of CoincidenceApplied to bigrams, the Index of Coincidence is de�ned by19We distinguish between the test statistic X2 and the related random variable �2.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 20IC = X1�i;j�m nij(nij � 1)N(N � 1) : (13)The IC is similar to X2 in that both statistics are quadratic functions of the frequency counts.Good, Gover, and Mitchell [45] claim that the IC is especially useful when the conditions for usingX2 are not satis�ed.As for its distribution, Kullback [60, pp. 151{153] gives a lengthy formula for a related statisticfrom which the variance of IC can be calculated, and Good [42] describes how to compute thisvariance exactly using computer techniques. In addition, Good, Gover, and Mitchell [45] and Goodand Crook [44] present experimental evidence that, under hypothesis H0 : PM = PU for Problem 4,when N � t=12, the statistic N(N� 1)IC=2 has an approximately Poisson distribution with meanN(N � 1)=(2t), for t = m2. For more about the IC, including an experimental evaluation of itsapplication to Problem 4, see Good [36, 40, 42].Selected other TestsOther relevant statistics are also suggested in the statistics and computer science literature. Forexample, Good [40] introduces a non-Bayesian statistic G, based on his Bayes/Non-Bayes Compro-mise [43, 44]. Good claims this statistic is sometimes useful for Problem 4 for small samples whenthe X2 statistic does not apply. Good and Crook [18, 19, 41] analyze the G statistic and compareit with the X2 and log-likelihood statistics and with a Bayes factor F .In his study of pseudorandom number generators, Knuth [57] describes many tests for non-randomness, including his so-called spectral test which interprets frequency counts in a geometricfashion. Knuth [57, p. 89] asserts, that for linear congruential generators, his test \is by far themost powerful test known."Using ideas from digital signal processing, Feldman [23] proposes a new spectral test for non-randomness that interprets the power spectrum of �nite strings. To evaluate his statistic, Feldmanapplies it to strings produced by short-round versions of the DES cryptosystem.In addition, Dickey and Lientz [22] propose a Bayesian test for Markov order based on a weightedlikelihood ratio.7.5 Decision ProceduresTo interpret values of these test statistics, the cryptanalyst must adopt some decision procedure.One option is to approximate the test statistic with an appropriate �2 distribution. Since manylog-likelihood statistics have an asymptotically �2 distribution under the null hypothesis, using a �2approximation is an attractive theoretical and practical option when the asymptotic theory applies.Good [33, p. 40] admonishes, however, that such �2 approximations \are at best asymptotic, andare usually inapplicable." A second option is to center and normalize the test statistic using aconstruction from the central limit theorem. This method yields a convenient practical decisionprocedure, which for some cases is theoretically justi�ed. These two options enable the cryptanalystto use standard tables in selecting thresholds for the critical regions. A third option is to computecritical regions based on experimentally-determined exact or approximate distributions. This optionrequires a precomputation, but often produces the best practical results. In the rest of this section,we explain how to carry out decision procedures based on the �rst two options.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 21Normalizing a Chi-Squared StatisticLet  be any test statistic that has an approximately �2 distribution with � degrees of freedom.For small values of �, the cryptanalyst can interpret  using standard tables of the �2 distribution.For large values of �, another method is usually needed since most tables do not give critical valuesfor large values of �. When � > 100, the cryptanalyst can center and normalize  by computing� = p2 �p2� � 1; (14)as recommended by Trivedi [90, p. 593]. The resulting random variable � can be interpreted asapproximately standard normal.For example, in our experiments [29] in which we interpret the ML, IND, and X2 statisticsusing this normalization technique, � is typically approximately 500. For such large degrees offreedom, it may be helpful to condense states, as described in Section 4.Standard NormalizationLet Y be any test statistic that can be viewed as the sum of N identical random variables applied toN bigrams. For example, the S2 statistic can be so viewed by organizing its sum over the candidateplaintext|as we did in Section 2|rather than over all possible bigrams of the base language. Asimple and e�ective way to interpret Y is to center and normalize Y=N and to view the resultingrandom variable Ŷ as approximately standard normal.For example, Baldwin and Sherman [6] computedŜ2 = (S2=N)� �S�S=pN ; (15)where �S and �S are, respectively, the mean and standard deviation of S2 applied to a randomlychosen bigram, with the bigram chosen according to the unconditional bigram probabilities of thebase language. Speci�cally, Baldwin and Sherman computed constants �S and �S = p�S2 fromthe de�nitions of mean and variance as follows:�S = X1�i;j�m bij ln pij (16)and �2S = X1�i;j�m bij ((ln pij)� �S)2 ; (17)where for all 1 � i; j � m, pij and bij are, respectively, the conditional and unconditional bigramprobabilities of the bigram ij in the base language.When the S2 statistic is applied to independent bigrams from the base language, the centrallimit theorem [64] guarantees that the random variable Ŝ2 is asymptotically standard normal.However, when the S2 statistic is applied to dependent bigrams, simple versions of the central limittheorem do not apply because the underlying random variable summands are not independent. Inthis dependent-bigram case, the more general central limit theorem for dependent random variablesensures only that Ŝ2 is asymptotically Gaussian with mean 0. For this case, the variance of S2=Ncan be exactly computed from the covariance matrix of the frequency counts, which matrix is given



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 22by Good [31]. Alternatively, the cryptanalyst can approximate this variance experimentally. Inpractice, as con�rmed by our experiments [29], Equation 17 yields a good approximation of thevariance of pN((S2=N)� �S) for standard English.Especially when the number of degrees of freedom is large, there may also be some practicalvalue in devising similar Gaussian interpretations for X2=N and for other test statistics.8 DiscussionIn Section 7 we presented solutions to our four language-recognition problems, assuming the inputis a single unadulterated string of su�cient length. But in practice, a cryptanalyst must sometimesdeal with candidate plaintext that is very short, is contaminated with noise, and consists of two ormore separate strings. In this section, we brie
y discuss techniques for dealing with these practicalcomplications. In addition, we point out useful references in the statistics and pattern-recognitionliterature for further reading, and we raise some open problems.8.1 Practical VariationsTo cope with the aforementioned three practical complications, one could simply apply the standardmethods described in Section 7, or one could choose special-purpose methods. This section describesvariations of the standard methods for coping with these complications. First, we outline how touse Hidden Markov Models to deal with noisy plaintext. Second, we show how to exploit initialconditions to obtain better results for short candidate plaintexts. Third, we note that the problemof dealing with multiple input strings can be reduced to the problem of dealing with one longerinput string. For an experimental evaluation of how well the standard methods work for short andnoisy plaintext, see our companion paper [29].Noisy PlaintextIn practical cryptanalysis, candidate plaintext is often contaminated with noise that injects, deletes,or modi�es characters. Such noise can result, for example, from incomplete knowledge of the key,transmission errors, or errors in the original plaintext. Moreover, the sender might maliciouslyadd noise to the plaintext. It is desirable for language-recognition techniques to be robust in thepresence of such noise.The problem of recognizing plaintext in the presence of noise is a discrete version of the signal-detection problem, which has been extensively studied. For example, van Trees [88, 89] gives athorough engineering treatment of this problem, and Osteyee and Good [70] discuss the problemfrom the point of view of information theory and the weight of evidence. In the rest of this section,we brie
y explain a general model of language for dealing with noisy plaintext and point out a fewhelpful references for learning about this model.The hidden Markov model (HMM) is an especially useful model of noisy language. A HMM isa variation of the Markov model in which, at each state, the model randomly outputs any letterof the alphabet according to a speci�ed probability distribution. By contrast, in a Markov chain,for each state the chain always outputs the single �xed letter corresponding to that state. Forexample, consider a 0th-order HMM of English for which 10% of the outputs are randomized byuniform noise. When this model is in the state corresponding to the letter `Z', with probability 0.9



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 23it outputs `Z', and with probability 0.1 it ouputs a randomly chosen letter of the alphabet. Trivially,each Markov model is also a degenerate HMM.Rabiner [72] reviews the hidden Markovmodel and its applications to speech recognition, includ-ing an explanation of the forward-backward procedure for computing the likelihood of an observedplaintext given a particular HMM. Juang and Rabiner [51] develop a distance measure for thismodel. As a recent practical example, Krishnamurthy, Moore, and Chung [58], who to enhance theperformance of a biomedical instrument, develop maximum-likelihood techniques for interpretingMarkov signals that are simultaneously contaminated with white Gaussian noise and a determin-istic signal. In addition to modeling noisy plaintext, HMMs may also be helpful simply as a moregeneral model of language.Short StringsCryptanalysts must deal with short strings. Short strings can occur from short messages or fromincomplete cryptanalysis, as can result from incomplete knowledge of the key or ciphertext. Forexample, in their solution of the Decipher Puzzle, Baldwin and Sherman [6] produced for eachcandidate key fragment a set of approximately ten independent bigrams. Moreover, when us-ing language-recognition techniques as subroutines within more elaborate attacks against strongciphers, often it is not possible to generate long substrings.Short plaintext presents two problems. First, less information is available; for example, re-peated grams are unlikely in very short messages. Second, the asymptotic distributions of the teststatistics might not apply. On the other hand, for short strings it may be feasible to determine thedistributions of test statistics exactly through computer simulations.To make better use of available information, for short strings it is often bene�cial to includethe initial conditions of the Markov chain in the test statistics. For example, the cryptanalystcould take as her initial conditions the state probabilities. Alternatively, if the cryptanalyst knowsthat the �rst character of the candidate plaintext begins a word, then the cryptanalyst could takeas her initial conditions frequencies for initial letters of words. For long strings, however, thereis little value in using initial conditions because, for ergodic chains, the initial conditions do nota�ect the asymptotic behavior of the tests. For each test statistic based on the log-likelihood ratio,initial conditions can be simply incorporated by adding the appropriate summand, as shown byBartlett [7] for example.Another approach for dealing with small samples is given by Yakowitz [94], who motivated byriver modeling problems, proposes a new class of tests for the order of a Markov chain.Multiple StringsSometimes the candidate plaintext consists of a set of separate strings rather than of one longstring. For example, multiple strings can result from incomplete cryptanalysis or from severalmessages that are written in the same language and encrypted with the same key. When each ofthe component strings is very short, it may be bene�cial to combine the strings.A simple and e�ective approach is to combine the observed frequency counts from all stringsand to apply the usual tests: each string contributes a set of overlapping grams, but the strings arenot concatenated. Anderson and Goodman [4, p. 105] explain that, for stationary Markov chains,this procedure is asymptotically equivalent to observing one long string. This procedure can befurther re�ned by separately incorporating the initial conditions for each string.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 24For any component string that is long enough to be tested separately, it is usually advisable totest that string separately. Doing so helps limit the type-I errors caused by irregularities in anyone component string. Alternatively, the cryptanalyst could test each component string separatelyin addition to testing the combined string.8.2 Further ReadingAs a guide to further reading on language recognition, we point out some of the relevant researchpapers and survey articles from the statistics literature. We also list selected works from thepattern-recognition literature that apply statistical techniques to voice recognition and to otherrelated problems.Statistical Inference on Markov Chains and Contingency TablesTraditionally, mathematicians view language recognition as a problem in statistical inference onMarkov chains. From this perspective, Anderson and Goodman [4] review standard tests based onasymptotic theory; most of these tests stem from the seminal work of Hoel and Peterson [49] andBartlett [7], as re�ned by Hoel [47] and Good [30].20 For a concise summary of this review, seeBhat [9, Chapter 5]. For an extensive survey of the asymptotic theory of statistical methods onMarkov chains, see Billingsley [10, 11].Another similar and more general view is to cast the problem as an inference problem on con-tingency tables. A contingency table is simply a table of data (e.g. observed k-gram frequencies)that can be analyzed under various assumptions about dependencies among the data. Agresti [1]reviews exact techniques for such problems, and Bishop, Fienberg, and Holland [13] provide a basicintroduction to the related area of discrete multivariate analysis. McCloskey and Pittenger [68]give closed-form expressions for maximum-likelihood estimates that arise from testing if a multidi-mensional contingency table satis�es speci�ed linear constraints that meet certain group-theoreticassumptions. In addition, from an information-theoretic perspective, Kullback, Kupperman, andKu [61] review a variety of practical tests for inference on Markov chains and contingency tables.A popular theme in statistical inference is to evaluate statistical tests and to compare them toother tests for solving various inference problems. For example, West and Kempthorne [92] comparethe �2 and likelihood ratio tests in selected restrictive settings with unremarkable conclusions.To carry out such evaluations, many mathematicians resort to asymptotic theory to characterizethe distributions of their statistics. To deal with non-asymptotic sizes, others perform computersimulations to compute the distributions exactly or approximately, as done for example in manypapers in the Journal of Statistical Computation and Simulation.C. Kelton and W. Kelton [54, 55] consider hypothesis-testing problems on Markov chains whenthe only observable features are unigram frequencies. For this scenario they propose and analyzeseveral tests, including tests for 0th order, stationarity, and speci�c chains.A review of prior statistics research on language recognition would be incomplete without men-tioning the proli�c work of I. J. Good [35, 37], who was Turing's chief statistical assistant duringWorld War II. In his work on likelihood ratio tests [30] and on the frequency counts of Markovchains [31], Good re�nes some of the seminal results. Good [39] also analyzes methods for estimatinglanguage parameters, both with respect to various philosophical assumptions and with the purpose20By \asymptotic theory," we mean the theory as the length of the plaintext sample tends to in�nity.



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 25of developing better practical techniques for small samples. Assuming a symmetric Dirichlet priordistribution on the parameters, Good [40, 41] and Crook and Good [18] extensively analyze severalstatistics for solving inference problems with composite alternative hypotheses. Through computersimulations, Good, Gover, and Mitchel [45]; Good and Crook [18, 19, 44]; and Good [42] compareseveral statistics. Based on his Bayes/Non-Bayes Compromise [43, 44], which interprets a Bayesfactor as a traditional tail-area statistic, Good [40, 41, 18, 19] develops, analyzes, and advocates hisG statistic. Good [34] also studies statistical models of natural language. Finally, his theory of theweight of evidence [32, 38] provides a practical rational approach to many cryptographic problems.Pattern RecognitionBy viewing language recognition as a form of pattern recognition, one can draw upon the manystatistical techniques developed in arti�cial intelligence for automatic pattern recognition. Mendaland Fu [67] overview such statistical techniques. Niemann [69] also o�ers an introduction to thisarea, with an emphasis on the analysis of patterns from visual images and sound. For surveys onautomatic pattern recognition and statistical techniques in pattern classi�cation, see Kanal [53]and Ho and Agrawala [46]. Other techniques, such as neural networks, rule-based systems, andfuzzy logic, have also been tried in pattern recognition, but we shall focus here on the applicationof statistical techniques. In the rest of this section, we point out several instructive engineeringprojects that apply statistical pattern-recognition techniques.In speech-recognition tasks, many researchers have extensively used the hidden Markov model(HMM), which we discuss in Section 8.1. For example, Tishby [87] applies a HMM to identifyspeakers. Ljolje and Levinson [65] and Lee and Hon [63] also apply this model to speech-recognitionproblems.Using Bayesian techniques, Raviv [73] developed a program to recognize printed characters inlegal text, and Valiveti and Oommen [91] present algorithms for classifying strings into knowndistributions. In addition, Lund and Lee [66] apply Wald's Sequential Probability Ratio Test(SPRT) to authenticate speakers, and Fukunaga and Hayes [27] study the e�ect of sample size onparameter estimates used in linear and quadratic classi�ers.8.3 Open ProblemsOur study of language recognition raises several important questions involving: theoretical modelsof language, robustness of statistical tests when applied to real language, statistical properties ofnatural languages, the special nature of cryptanalysis, and theoretical statistics. We now discusssome of these questions.Markov models of language are convenient and well understood, but are there better modelsfor language recognition? For example, in cryptanalysis it might be helpful to make better useof available information by constructing a composite model that incorporates k-gram frequencycounts, pattern words, word dictionaries, and other detailed language properties. Such a compositemodel might provide the statistical power of a high-order Markov model in a more versatile ande�cient fashion. In addition, though apparently more di�cult, it would be useful to take advantageof language semantics.Although much is known about statistical techniques for language recognition in theoreticalMarkov models, little is known about how well such models and techniques work for real language.For 0 � r � 10, how accurate is a r-th order model of English? What is the minimum order



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 26required to achieve a good model of English? For each test statistic mentioned in this paper, whatis its distribution when applied to real English and to other natural languages?High-quality language processing requires detailed knowledge of the statistical properties ofnatural language. It would be helpful to have access to better databases of such knowledge. Whattypes of language statistics are useful? How should they be computed? And how can they be madeconveniently available?Section 8.1 outlines some standard methods for dealing with plaintext that is short or noisyor that consists of multiple strings. But are there better ways to exploit the special nature ofcryptanalysis? In addition, are there methods that exploit the fact that cryptanalytic problemstypically come with a \promise" that some solution exists, and that they typically seek \a needlein the haystack" in the sense that they seek a low-probability event (i.e. the particular choice of asecret key) among exponentially many possibilities?The power of \negative deductions" is well known to cryptanalysts. For example, in his CryptBreaker's Workbench, Baldwin [5] rejects any candidate wire that implies any non-ASCII character.Yet negative deductions seem to be in con
ict with robust decision making in the presence of noise.For example, it would be in
exible to reject a candidate English plaintext solely on the basisof observing the single impossible bigram \XZ". Is it possible to harness the power of negativedeductions in language recognition while maintaining a su�cient level of robustness? From astatistical perspective, part of this question deals with how to treat situations in which parameterslie on the boundary of the parameter space (e.g. see Self and Liang [78])|but the traditionalstatistical model is not necessarily the most useful model for harnessing the power of negativedeductions.Finally, a fundamental challenge is to develop and to extend the theory of \optimal" statisticaltests for time- and space-bounded computations, and to identify such optimal tests for language-recognition problems. For some relevant foundational work, see Blum and Goldreich [14], Boppanaand Hirschfeld [15], and Yao [95]. This important area o�ers a synergistic opportunity for cooper-ation among statisticians, complexity theorists, and cryptologists.9 ConclusionIn this introductory guide, we have shown how language recognition can be performed in a classicalstatistical model of pattern recognition using standard statistical tests based on Markov models oflanguage. We identi�ed four well-de�ned plaintext recognition problems, and we derived likelihoodratio tests for each of these problems. For Problem 2 (distinguishing a known language from uniformnoise) we observed that the Sinkov test is optimal in the sense that it is a most powerful test. Alongthe way, we have identi�ed useful references in the statistics and pattern-recognition literature forfurther reading.For language-recognition problems which typically have no uniformly most powerful test, in-cluding Problems 1, 3, and 4, the theory of statistics o�ers no clear recommendation on what testto use. In particular, many tests for problems with composite alternative hypotheses are incom-parable with regard to the standard notion of statistical power. What test is most appropriatedepends on many factors, including: the application; the model; how well the model �ts the appli-cation; the particular problem; the costs of various types of experimental outcomes; engineering,�nancial, and computational constraints; and the cryptanalyst's philosophical beliefs. Moreover,statisticians have been debating this question for decades and still have not reached a consensus,



Ganesan and Sherman, Statistical Techniques for Language Recognition|February 25, 1993 27except to agree that many tests are incomparable with respect to statistical power. And little isknown about optimal statistical tests when time and space complexity are included in the evalu-ation criteria. Nevertheless, the test statistics described in this paper o�er a reasonable startingpoint and are likely to yield good results for many applications.If better methods exist for solving practical language-recognition problems, they are likely toexploit particular constraints of the application or to exploit alternative models. For example, ifrestrictions can be imposed on a composite hypothesis, such restrictions might lead to more e�ectivetests.Despite extensive knowledge about the behavior of test statistics when applied to the idealizedmodels of Markov languages, little is known about their distributions when applied to naturallanguages. In our companion paper [29], we explore this question through computer experiments,using real and simulated English from the Brown Corpus [24, 59].Language-recognition problems are important both in cryptanalysis and in other settings. Forexample, in our multi-lingual society it would be useful to have communication systems and natural-language interfaces that automatically recognize what language is being spoken. Similarly, byclassifying the base language of unknown words and phrases, programs that read text aloud couldintelligently guess how to pronounce such unknown phrases. Statistical techniques in languagerecognition provide powerful tools for solving these and other language-recognition problems.At the beginning of this project we started with the three works on plaintext recognition that hadbeen published in the cryptologic literature (see Section 2). This paper extends that knowledgeby applying techniques from the theory of statistical inference on Markov chains. We hope ourintroduction and guide will be of interest and use to practitioners who wish to solve language-recognition problems.AcknowledgmentsWe are very grateful to Peter Matthews for helpful comments and suggestions, and for pointingout works by Diaconis and Efron [21], Huber [50], McCloskey and Pittenger [68], and Self andLiang [78]. In addition, we thank Robert Baldwin, James May�eld, Raymond Pyle (Bell Atlantic),and James Sasaki for editorial comments. At the beginning of the project, Harold P. Edmundsonpointed out papers by Billingsley [10] and Hoel [47].References[1] Agresti, Alan, \A survey of exact inference for contingency tables," Statistical Science, 7:1 (February1992), 313{177.[2] Andelman, Dov; and James Reeds, \On the cryptanalysis of rotor machines and substitution-permutation networks," IEEE Transactions on Information Theory, IT-28:4 (July 1982), 578{584.[3] Anderson, Roland, \Recognizing complete and partial plaintext," Cryptologia, 13:2 (April 1989), 161{166.[4] Anderson, T. W.; and Leo A. Goodman, \Statistical inference about Markov chains," Annals of Math-ematical Statistics, 28 (1957), 89{110.
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