Effects of voltage trajectory on action potential voltage threshold in simulations of cat spinal motoneurons

Yue Dai, Kelvin E. Jones, Brent Fedirchuk, Larry M. Jordan*

Department of Physiology, University of Manitoba, 730 William Avenue, BMSB 404, Winnipeg, MB, Canada R3E 3J7

Accepted 13 January 2000

Abstract

A single-cell neuronal model was used to investigate the effect of membrane trajectory on voltage threshold (V_{th}) for action potential generation. Previous results suggested that hyperpolarization of V_{th} could be produced by a rapid membrane depolarization, but this effect is limited to the first spike in a train. This study shows rapid current injections hyperpolarize V_{th} because they are more effective in activating the sodium current underlying spiking. The hyperpolarization of V_{th} induced by rapid membrane depolarization becomes less effective in altering V_{th} when other mechanisms of enhancing the fast sodium current underlying action potentials are activated. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Voltage threshold; Spike initiation; Fictive locomotion; Computer simulation

1. Introduction

During fictive locomotion evoked by stimulation of the midbrain locomotor region (MLR) in decerebrate cat, motoneurons receive alternating excitatory and inhibitory inputs from the central pattern generator (CPG). These inputs produce rhythmic oscillations of membrane potential termed locomotor drive potentials (LDPs, [3]). If the neuron is recruited during locomotion, it fires action potentials on the depolarized portion of the LDP. Compared to the resting condition, cat lumbar motoneurones undergo various changes in excitability during fictive locomotion. Recently, Krawitz et al. [4] showed that the voltage threshold (V_{th}) for action potential generation becomes hyperpolarized during fictive locomotion.

*Corresponding author. Tel.: 204-789-3694; fax: 204-789-3930.
E-mail address: larry@src.umanitoba.ca (L.M. Jordan).

0925-2312/00/$-see front matter © 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0925-2312(00)00150-8
The effects of a rapid membrane potential depolarization on V_{th} were examined in our recent study [4]. Current pulses (15 nA and 500 ms) were injected into the motoneurons at rest to produce very rapid membrane depolarizations. The results showed that the V_{th} for action potential generation could be hyperpolarized by a rapid membrane depolarization produced by the injection of a rapid current pulse at rest. But the V_{th} hyperpolarization produced by the current pulses was restricted to the first spikes of the train and was small compared to the amount of the V_{th} hyperpolarization seen during locomotion. The present study utilizes a single cell computer model to examine the mechanisms by which the membrane potential trajectory can affect V_{th} as part of our larger goal of understanding how the V_{th} is modulated during fictive locomotion.

2. Computer model

A single-cell model with five compartments (axon, initial segment (IS), soma, proximal dendrite and distal dendrite) was built using GENESIS software [1]. The details of building the model cell are described in another manuscript [2]. Briefly, the model included a fast sodium current (I_{Na}) and a delayed rectifier potassium current ($I_{K(DR)}$) in the axon, initial segment and soma compartments. Additional currents included in the soma compartment were a calcium-dependent potassium current ($I_{K(AHP)}$), a fast transient potassium current ($I_{K(A)}$), a hyperpolarization activated current (I_{h}) and three classes of voltage activated calcium currents (L-Type: $I_{Ca(L)}$, N-Type: $I_{Ca(N)}$, and T-type: $I_{Ca(T)}$). The proximal dendritic compartment included

Fig. 1. Single-cell model and initial properties. A. A single-cell model with five compartments was built that retained morphological features of motoneurones important for the generation of anti- and orthodromic action potentials. The input resistance of the model cell $R = 2.0 \ \text{M\Omega}$; membrane time constant $t_m = 4 \ \text{ms}$; and the rheobase current $I_{rb} = 11 \ \text{nA}$. B. Repetitive firing of the model cell was evoked by injecting a triangular current (starting from $-5 \ \text{nA}$ with peak $30 \ \text{nA}$ and duration $1 \ \text{s}$, not shown) to the soma compartment. The mean value of the voltage threshold was $-35.8 \pm 0.7 \ \text{mV}$ (dark line). C. Frequency-current ($F-I$) relation produced by step current injections into the soma compartment. The slope of the primary range is $1.1 \ \text{Hz/nA}$, and the slope of the secondary range is $11 \ \text{Hz/nA}$. The frequency was calculated by dividing the number of spikes by the duration (500 ms) of each step current.
$I_{K(AHP)}$, $I_{Ca(N)}$ and $I_{Ca(L)}$. No active conductance was included in the distal dendrite compartment. The input resistance of the model cell = 2.0 MΩ; membrane time constant = 4 ms; and the rheobase current = 11 nA. Resting membrane potential = -60 mV. The time step for simulation was = 0.05 ms. The simulations were done on Pentium PCs running the Linux operating system.

Fig. 1A illustrates a schematic of the single-cell model. Repetitive firing of the model cell was evoked by injection of a triangular current to the soma compartment (starting from -5 nA with peak of 30 nA and duration of 1 s, not shown) as shown in panel B. The mean value of V_{th} was -35.8 ± 0.7 mV. The $F-I$ relation produced by step current injections is shown in panel C.

3. Results

In order to examine the possible mechanisms by which a rapid change in membrane potential produces the V_{th} hyperpolarization, we injected triangular currents with varying slopes into the soma compartment of the model. Fig. 2 shows these simulation results. In panels A and B the somatic membrane potentials were shown in the top panels, the net membrane currents (I_m) in the middle, and the injected triangular currents in the bottom.

Fig. 2A shows that a single spike was evoked by injecting a triangular current (starting at -5 nA with peak 15 nA and duration 125 ms) into the soma compartment. The slope of the ramp current was 0.33 nA/ms (bottom panel in A). The V_{th} for this spike was -42.0 mV (top panel in A), and the peak membrane current (I_m) underlying the spike was -126 nA (middle panel in A). Increasing the slope of the ramp current to 0.66 nA/ms (bottom panel in B) evoked three spikes in the model cell (top panel in B). The V_{th} for the first spike was -43.4, ~ 1.5 mV lower than that in panel A. The peak I_m for this spike was -140 nA (middle panel in B), 14 nA larger than that in A. The V_{th} for the remaining two spikes were -40.2 and -39.9 mV, respectively, which were relatively depolarized compared with the first spike. The I_m corresponding to these two spikes were also smaller than that for the first spike. These results suggest that steeper slopes of the ramp current produce a larger peak I_m and a lower V_{th} for the first spike initiation. A systematic series of simulations were done and the results are summarized in Fig. 2C. These results show that increasing the slope of the ramp current results in an increase in the peak I_m. This increased I_m would in turn cause a lowering of V_{th}.

In regard to spike initiation, the major component of the I_m at the rising phase of the spike was mainly from the fast sodium current (I_{Na}). Therefore, the hyperpolarization of V_{th} produced by a rapid membrane depolarization is likely due to a rapid activation of the I_{Na}, which was relatively limited to the first spike of the train. In contrast, slower depolarizations would cause relatively greater accommodation and be relatively less effective in activating the I_{Na} underlying the action potential.

The relationship between the enhanced activation of the fast sodium current by rapid membrane depolarization and the V_{th} hyperpolarization during fictive locomotion was further explored in Fig. 3. Panels A and B illustrate conditions where
Faster rates of current injection are more effective at activating action potentials. A. A triangular current (bottom panel: starting at -5 nA with peak 15 nA and duration 125 ms) was injected into the soma compartment. The slope of the ramp was 0.33 nA/ms. Peak membrane current (I_m) underlying the action potential was -126 nA (middle panel), and the V_{th} of the spike was -42.0 mV (top panel). B. Doubling the slope of the ramp current to 0.66 nA/ms (bottom panel: starting at -5 nA with peak 35 nA and duration 125 ms) increased the peak I_m for the first spike to -140 nA (middle panel) and hyperpolarized the V_{th} of the first spike to -43.4 mV (top panel). V_{th} for the remaining two spikes were -40.2 mV and -39.0 mV respectively. C. Upper panel: relation between the slope of the injected ramp current and the peak I_m. Lower panel: relation between the slope of the ramp current and the V_{th} of the first spike of the spike train.

Conductances of the initial segment compartment have been modified to produce V_{th} effects which we have previously postulated to be analogous to that observed during fictive locomotion [2]. In panel A the max g_{Na} was increased by 100% and in panel B the delayed rectifier potassium conductance (max $g_{K(DR)}$) was decreased by 70%. Panel C shows the control response, without modification of the model’s properties. In each condition the membrane potential is shown in top the panel, current injection in the middle, and action potential V_{th} in the bottom. The V_{th} was plotted as dot corresponding to each spike in the top panel. The circled dot represents V_{th} of the first spike in each spike train. Current pulses (middle panels: 15 nA and 500 ms) superimposed on triangular current (starting at -10 nA with peak 15 nA and duration 10 s) were used to produce rapid membrane depolarizations similar to a procedure used in our cat experiments [4].

A rapid membrane depolarization produced hyperpolarization of the V_{th} when comparing the first spikes to subsequent spikes in the train. The difference was 1.7 mV.
Fig. 3. Effects of rapid membrane depolarizations on voltage threshold (V_{th}). The membrane potential is shown in the top panel, current injection in the middle, and voltage threshold in the bottom. In all three panels current pulses (15 nA, 500 ms) were superimposed on triangular current (starting at -10 nA with peak 15 nA and duration 10 s) and injected into the soma compartment to produce rapid membrane depolarizations. The fictive locomotion state was simulated by increasing initial segment (IS) sodium conductance ($\max g_{Na}$) by 100% (panel A) or by reducing the IS delayed rectified ($\max g_{K(DR)}$) by 70% (panel B). Each dot shown in the bottom panels represents the V_{th} for each spike shown in the top panels, respectively. The circled dots represent the V_{th} of the first spikes in the spike trains. Dashed lines represent the mean values of V_{th} for the first spikes in the spike train while the dark lines represent the mean values of the V_{th} for the subsequent spikes. A. The fictive locomotion state was simulated by increasing IS $\max g_{Na}$ by 100%. The mean value of the V_{th} for all spikes was -43.5 ± 1.4 mV. The mean values of the V_{th} for the first and subsequent spikes were -44.7 ± 0.8 (dashed line) and -43.0 ± 0.7 mV (dark line), respectively. B. The fictive locomotion state could be also simulated by reducing the IS $\max g_{K(DR)}$ by 70%. The mean value of V_{th} for all spikes was -41.4 ± 1.2 mV while the mean values of the V_{th} for the first and subsequent spikes were -42.6 ± 0.7 (dashed line) and -41.1 ± 0.4 mV (dark line) respectively. C. Repetitive firing was evoked by the same current injection as used in A and B. Conductances of the model cell were not modified. The mean values of V_{th} were -37.6 ± 3.0 mV for all spikes, -41.4 ± 1.6 mV for the first spikes (dashed line), and -36.2 ± 0.6 mV for the subsequent spikes (dark line).

in panel A, 1.5 mV in panel B, and 5.2 mV in panel C while the mean values of V_{th} for the first spikes (dashed lines) were -44.7, -42.6, and -41.4 mV and those for the subsequent spikes (dark lines) were -43.0, -41.1 and -36.2 mV, respectively. These results indicated that the effect of rapid membrane depolarizations on V_{th} was smaller in simulated fictive locomotion (A and B) than that in control (C). The hyperpolarization of the V_{th} produced by the rapid depolarization was restricted to the first spike in the spike train.

On the other hand, the mean value of V_{th} for all spikes was hyperpolarized by 7.7 mV in panel A (mean -43.5 mV), 5.6 mV in panel B (mean -41.4 mV), and
1.8 mV in panel C (mean −37.6 mV) compared to the mean value of the V_{th} (−35.8 mV) measured under triangular current injection in control (Fig. 1B). The amount of V_{th} hyperpolarization produced by the rapid membrane depolarization in control (panel C) was smaller than the amount of V_{th} hyperpolarization produced by a modulation of IS g_{Na} (panel A) or IS $g_{K(DR)}$ (panel B). This result suggests that the hyperpolarization of V_{th} seen during fictive locomotion is not dependent on the rapid membrane depolarization.

The above results suggest that the hyperpolarization of V_{th} induced by rapid membrane depolarization (as illustrated in Fig. 2) is less effective in altering V_{th} during fictive locomotion when other mechanisms of enhancing the sodium conductance underlying action potentials (either directly through modification of the sodium conductance, or indirectly by modification of the delayed rectifier conductance) are activated. The fact that the two mechanisms of altering V_{th}: (1) rapid membrane depolarization and (2) modulation of conductance properties seem to not be additive provides further evidence that neuronal V_{th} is likely more affected by modulation of neuronal conductances rather than being determined by the trajectory of the membrane potential.

4. Conclusion

These simulation results compliment experimental observations that the V_{th} for action potential generation can be hyperpolarized by a rapid membrane depolarization. However, V_{th} hyperpolarization produced in this way was limited to only the first spike in the spike train, and the amount of the V_{th} hyperpolarization was small. These limitations are likely due to the kinetics of the fast sodium channel. The hyperpolarization of V_{th} induced by rapid membrane depolarization seems less effective in altering V_{th} when other mechanisms of enhancing the fast sodium current underlying action potentials are activated.

References

Yue Dai, a Ph.D. student supervised by Dr. Larry Jordan in the Department of Physiology at the University of Manitoba. He graduated from the Department of Mathematics at Yunnan University with B.Sc. and from the Department of Applied Mathematics at the University of Manitoba with M.Sc. Projects related to Ph.D. thesis involved electrophysiological and computational study of changes in membrane properties of cat lumbar motoneurons during fictive locomotion.

Kelvin Jones received a Ph.D. in Neuroscience from Simon Fraser University in 1996. It was during this time that he developed a love affair with motoneurones and wrote his first haiku in their honor. Since that time he has pursued a wide range of activities, scientific and otherwise, in hopes of impressing his grade nine Language Arts teacher who lamented the decline of the Renaissance.

Brent Fedirchuk is a Research Associate in Dr. Larry Jordan's laboratory in the Department of Physiology at the University of Manitoba. He obtained his Ph.D. degree from the same department examining the spinal circuitry subserving micturition and urinary continence with Dr. Susan Shefchyk. He has also done Postdoctoral work with Dr. Hans Hultborn (Copenhagen) and Dr. Michael O'Donovan (N.I.H.) examining spinal and supraspinal aspects of motor control.