Neural Network in Scheduling Linear Controllers
With Application to a Solar Power Plant

P. Gil, J. Henriques, A. Cardoso and A. Dourado
CISUC - Centro de Informática e Sistemas da Universidade de Coimbra,
Departamento de Engenharia Informática, 3030 Coimbra, Portugal
{pgil, jh, alberto, dourado}@dei.uc.pt

ABSTRACT
This work presents a hybrid scheme combining the potentialities of neural networks for approximation purposes with the well-know theory and widespread industrial application of PID techniques. The neural network is trained based on measured data from the plant providing a way of scheduling between a set of PID controllers, a priori tuned in different operating points by means of Takahashi rules. This neural network control strategy is in practice applied to the control of a distributed collector field of a solar power plant. Experimental results collected at Plataforma Solar de Almeria (Spain), show the effectiveness of the proposed approach.

Keywords: Neural networks; Input space partitioning; Scheduling PID control; Solar power plants.

1. INTRODUCTION
In a solar thermal power plant (SPP) solar radiation is used to heat a working fluid as it circulates through the receivers. The heated fluid may then be used to generate high-pressure superheated steam to feed a conventional turbine/generator system for producing electricity or heating water for industrial use, just to name a few applications. Thus, using solar energy to produce industrial process, heat not only conserves non-renewable energy sources but also reduces anthropogenic gas emissions.

One drawback of solar energy, apart from its intermittency, is that the sun’s direct beam radiation at the earth’s surface is profoundly influenced by climate conditions, such as clouds and fog, and atmospheric turbidity, not to mention the fact that it changes considerably throughout the daylight. In such a scenario, maximizing the usage of available energy, while maintaining desired operating conditions for the heat consumer process, should be a primary concern of the control policy.

The main control prerequisite in a SPP is to maintain the outlet temperature of the heat transfer fluid at a prescribed value by suitably manipulating its flow rate through the receivers. Since the SPP dynamics depends mainly on the working fluid flow rate and beam radiation at the mirror aperture varies throughout the daylight and additionally it is subject to the mentioned atmospheric disturbances, substantial variations in the SPP dynamics (e.g. the response rate and the time delay) will occur.

For dealing with this inherent feature of the plant several control schemes have been proposed and implemented on real SPPs, such as adaptive control schemes using local linear models of the plant, within self-tuning [1], [2], or predictive controllers frameworks [3]. Other approaches have suggested intelligent control techniques, such as neural networks [4], [5], or fuzzy systems [6], [7], [8]. Another alternative is to use distinct controllers for the different operating points and to provide a switching strategy to select the most appropriate controller for each operating point. In this context, Rato et al [9] have suggested a switching scheme based on the MUSMAR algorithm. Combining intelligent techniques with conventional control methodologies, Henriques et al [10] have proposed a control strategy based on a fuzzy logic switching of PID controllers. This work follows this idea, exploiting the potentialities of neural networks for approximation purposes with the of industrial application success of PID techniques.

In the past few years the development of artificial neural networks (NN) methodologies have been receiving a great deal of attention in a variety of scientific fields, owing to the approximation capabilities of multi-layer networks. Control scheduling techniques are well-known strategies appropriate to deal with systems whose dynamics change with the operating conditions. They involve three main tasks: partition the operation region into several local models, designing a local controller for each region and switching between local controllers [11].

The partitioning of the operating regime space into a number of sets leads to a reduction of the problem complexity by discarding irrelevant interactions and thus considering regions that are easier to handle. It involves the selection of variables that allows characterizing different operating conditions and the appropriate mapping, which relates them with a given operating point. Obtaining these variables and the respective mapping is the main drawback of control scheduling approaches.

Concerning the representation of each local region, there has been much enthusiasm in the past few years about local modeling approaches, see [12] and [13] for a review. Such
methods include the well-known Takagi-Sugeno Fuzzy models [14] and local model networks [15]. Once obtained
a local representation there are several techniques to design
a local controller. Following a conventional approach the
design of a controller usually requires a good analytical
model of the process under consideration. However, solar
power plants are very complex and, as a result, it is very
difficult to derive a useful analytical model.

One the other hand, traditional PID controllers have
some advantages, such as the dynamic performance
reached in well-defined nominal operating conditions and
their industrial widespread. They are simple to implement,
they need very little knowledge about the process and they
can successfully regulate many industrial processes with
different specifications [16].

The incorporation of PID controllers within scheduling
mechanisms can be support by the following [17]: i) PID
scheduling schemes are able to cope with most of the cases
that leave the PID under-optimal [18]; ii) the combination
of a PID control law and a scheduling strategy can lead to a
highly nonlinear control law, which can allow increasing
significantly the robustness of the control system [19]; iii)
the effectiveness of this scheme is validated by practice,
since most of control methods in process industry are
actually a combination of simple PID controllers with
control actions performed by human operators in order to
adjust the PID parameters according to the operating point.

The Accurex field is a particular process where the main
variables that define the different operating points, are
known and accessible. Additionally, a lot of experimental
data characterizing the plant input-output behavior is
available. Therefore, the partitioning of the input space is
reduced, in this particular case, to establishing a suitable
mapping, which can be set as an approximation problem.
One the other hand, it is known that the most interesting
feature of neural networks is their ability to learn and
generalize nonlinear functions, from input-output data
examples. Consequently they provide an obvious
methodology to be used concerning the learning of the
scheduler relationship [20]. In this way, they avoid the need
to manually design a scheduling mapping or determine a
suitable inference system.

In this context, Maia and Resende [21] have presented a
neural controller technique for MIMO plants. Their
technique is based on the linearisation of a nonlinear plant
model at different operating points. A global nonlinear
controller is obtained by scheduling the gains of the local
operating designs. In [22] an on-line approach to
scheduling control of a nonlinear plant was discussed. The
technique consists in a partition algorithm used to split
the plant operation space into several regions and a mechanism
that designs a linear controller for each region. A radial
basis function neural network is considered for on-line
interpolation of the controller parameters of the different
regions. This type of technique has been applied
successfully in several fields such as hydroelectric
generation [23], communication systems [24] and aircraft
flight control systems [26], just to name a few.

The present work intends to exploit a simple and
effective structure that uses a neural network for scheduling
a set of PID controllers, previously tuned for each operating
point by means of Takahashi rules [27]. It provides a bridge
between the field of neural networks and linear control
techniques. The main goal is to investigate the combination of
the potentialities of neural networks for approximate
nonlinear mappings and the well-know features of PID
t control techniques.

The paper is organized as follows: section 2 gives a short
description of the solar power plant. In section 3 the neural
network scheduling structure is described as well as the
local PID controllers tuning. Section 4 deals with the
application of the proposed methodology to the solar power
plant and, finally, section 5 concludes the paper.

2. THE SOLAR POWER PLANT

The Accurex distributed solar collector field at Plataforma
Solar de Almeria (PSA) is located at the desert of Tabernas,
in south of Spain. The field consists of 480 distributed solar
collectors arranged in 20 rows, which form 10 parallel
loops. Each loop is 172 m long and the total aperture
surface is 2672m², enabling to provide 1.2MW peak of
thermal power. A schematic diagram of the plant is shown in Figure 1.

![Figure 1. Schematic diagram of the Accurex field.](image)

The cold inlet synthetic oil is collected from the bottom
of the storage tank and is passed through the field by using
a pump at the field inlet. After having picked up the heat
transferred from the tube walls the heated fluid is fed to the
storage tank to be used for electrical energy generation or
feeding a heat exchanger of the desalination plant. The
fluid used for heat transmission is the Santotherm 55,
which is a synthetic hydrocarbon with a maximum film
temperature of 318°C and autoignition temperature of
357°C. Therefore 300°C is set as the maximum temperature
allowed. If the system reaches this temperature in any loop
the collectors are sent into deester for safety reasons.

Each collector uses parabolic mirrors to concentrate the
radiation in a receiver tube being the field also provided
with a sun-tracking system that causes the mirrors to
revolve around an axis parallel to that of the pipe. The
manipulated variable in the plant is the oil flow rate, \(Q_{in} \),
being the main goal to regulate the outlet field oil
temperature, T_{out}, at a desired value, T_{ref}. The main disturbances are the solar radiation, I_{rr}, and the inlet oil temperature, T_{in}. The pump has maximum flow rate of 12 l/s and the lowest flow rate permitted is 1.6 l/s but, by safety reasons, it is set between 2 l/s and 9 l/s. If the pump stops the field goes automatically into desteer, in order to avoid overheating the oil in the parabolic-trough loops.

3. NEURAL NETWORKS FOR SCHEDULING BETWEEN LOCAL CONTROLLERS

3.1. Scheduling Variables to the Accurex Field

It is known that the plant dynamics is quite influenced by the oil flow rate, Q_{in} provided by the pump. Thus, the strategy followed here considers this variable as the one used in the scheduling mechanism, enabling to infer the operating point. The variables that directly influence the operating conditions are the desired output temperature, T_{ref}, the solar radiation, I_{rr}, and the inlet oil temperature, T_{in}, being the auxiliary information vector given by:

$$x = \begin{bmatrix} T_{ref} \\ T_{in} \\ I_{rr} \end{bmatrix}$$

The scheduling variable is then computed as follows:

$$Q_{in} = f(T_{ref}, T_{in}, I_{rr}) = f(x)$$

However, the actual value of Q_{in} is unknown in advance. Instead of using directly the flow rate as the scheduling variable it was used the output from a neural network.

3.2. Neural Network Structure

Given the approximation capabilities of feedforward neural networks it is assumed that there exists a neural network, described by (3), and shown in Figure 2 able to describe the input-output scheduling mechanism.

$$Q_{nn} = W_2(\sigma(W_1 x + B_1))$$

Figure 2. Feedforward neural network scheduler.

W_1 and W_2 are weights matrices of appropriate dimensions and B_1 is a bias vector. The activation function considered was the hyperbolic tangent function $\sigma(\cdot)$ in the hidden layer and the linear function in the output layer. The data of interest to be used for training set is a set of steady state vector consisting of I_{rr}, T_{in}, T_{out} and Q_{in}. Instead of the reference temperature, T_{ref}, the output temperature, T_{out}, was used as the scheduling variable. In fact, assuming a correct behavior, the output temperature T_{out} converges approximately to the desired temperature T_{ref} in the steady state. According to equation (2) the scheduler actually implements an inverse of the plant at steady sate.

The selection of the data set was considered to cover the whole operating range of the plant to as great and extend as possible and the Levenberg-Marquardt was used in the network weights learning stage. As it has been pointed out by Hagan [28] this algorithm is more efficient than other techniques when the network contains no more than a few hundred of parameters, the present situation.

3.3. Experimental Tuning of the PID controllers

In order to compute the PID parameters several step responses obtained from the available experimental data were used. From the time response three parameters were obtained: the pure time delay L, the rise time T and the static gain K as shown in Figure 3.

The knowledge of this parameters allows to evaluate the PID parameters q_0, q_1 and q_2 using the discrete Takahashi rules described in Table 1, where T_s defines the sampling time.

<table>
<thead>
<tr>
<th>PID</th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{in}(k) = Q_{in}(k-1) + q_0 e(k) + q_1 e(k-1) + q_2 e(k-2)$ (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where $e(k)$ is the output error at each discrete time k, defined as

$$e(k) = T_{ref}(k) - T_{out}(k)$$

Table 1. PID tuning with discrete Takahashi rules.

This procedure was applied to M different operating points, being the resulting PID controller is describe by

Figure 3. PID tuning with Takahashi rules.
3.4. Neural Scheduler Control Structure

A schematic diagram of the proposed neural scheduling PID control is depicted in Figure 4.

The effectiveness of the proposed approach was first tested using a nonlinear distributed parameter model of the Accurex field developed at the University of Sevilla [29]. These simulations were used to further adjust the PID parameters in order to improve the performance of the controllers.

Figure 4. Schematic diagram of neural switching PID control.

4. APPLICATION to the SOLAR POWER PLANT

The experiments reported here were conducted on the Accurex Solar Collectors Field of the PSA on 08 and 12 June 2001. The proposed control was implemented in C code and operates over a software developed at PSA [Reference source not found.] also in C code. The sampling time was 15 seconds and the output temperature, T_{out}, was considered as the maximum temperature of all loops.

4.1. Specification and Training of the Neural Network

To obtain the weights for the neural network a number of test inputs were applied. The number of training patterns, hidden neurons, and input sequence are all chosen by experiments since there is still no reliable method for systematically determining these parameters. It was found that 8 hidden neurons was suitable to obtain a good model for the scheduler. The weights were randomly initialized to a value in $[-0.1,0.1]$ and, as mentioned, the Levenberg-Marquardt algorithm was applied to evaluate the weights of neural network. In Figure 5 the neural network output is compared with the training target.

As can be observed the neural network output Q_{nn} is quite good in describing the desired output good Q_{in}. In fact, the matching between the real and neural output values in some cases is so close that the two lines are almost indistinguishable.

4.2. Specification and Tuning of PID controllers

The number of local distinct controllers, to be used by the scheduler, was set to $M = 5$, a value established based on the experience acquired from the plant dynamics. The defined regions as well as the PID parameters defined in (4), are presented in Table 2.

<table>
<thead>
<tr>
<th>Region</th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{in} \leq 3.5$</td>
<td>-0.0875</td>
<td>0.1125</td>
<td>-0.0333</td>
</tr>
<tr>
<td>$3.5 < Q_{in} \leq 5.5$</td>
<td>-0.0865</td>
<td>0.1135</td>
<td>-0.0333</td>
</tr>
<tr>
<td>$5.5 < Q_{in} \leq 6.5$</td>
<td>-0.2387</td>
<td>0.3613</td>
<td>-0.1333</td>
</tr>
<tr>
<td>$6.5 < Q_{in} \leq 8.0$</td>
<td>-0.2075</td>
<td>0.2725</td>
<td>-0.0800</td>
</tr>
<tr>
<td>$Q_{in} > 5.5$</td>
<td>-0.0973</td>
<td>0.0947</td>
<td>-0.0107</td>
</tr>
</tbody>
</table>

Table 2. PID parameters.
4.3. Experimental Results

08 June 2001

The first experiment was carried out on 08 June 2001. It was intended to assess the behavior of the control system at several operation points, by providing different reference temperatures.

As can be seen in Figure 6 the controlled plant behavior is quite acceptable. The neural network scheduler deals quite well with the different nominal conditions switching to the most suitable controller C_i, as shown in Figure 6(a).

However, as can be observed from Figure 6a, the transient response in the interval $[12.6h, 13.6h]$, corresponding to the controller $C_i = 2$, is not acceptable. This behavior may be due to a wrong PID parameters or to an incorrect controller selection. Thus, for these operating conditions, either a retuning should be performed or a new controller should be incorporated within the scheduling scheme. The first approach, i.e., the retuning of the controller, was followed and applied again on 12 June.

12 June 2001

The second experiment was carried out on 12 June 2001. Figure 7 shows the results for which several reference temperatures changes were performed. Also, in order to show the rejection capabilities of the proposed control strategy, a change in the inlet oil temperature ΔT_{in}, was intentionally done at instant $14.10h$.

As can be seen the behavior is quite good. The response presents almost no oscillations neither overshoot and settles for the new value of the reference temperature in about 15 minutes. The disturbance rejection capabilities of the controller were also acceptable, illustrated by the acceptable behavior that results from the inlet oil temperature variation.

The effects of strong disturbances, caused by large passing clouds which produce drastic changes in the direct solar radiation level, ΔI_{rr}, were also possible to test. As shown in Figure 6 the behavior of the control system when intermittent passing clouds occur (at interval $[14.6h, 14.8h]$) is acceptable.
5. CONCLUSIONS

A PID based control scheme with a neural network scheduling strategy has been developed and applied to the distributed collector field of a solar power plant. The main purpose was to investigate the use of multiple local linear controllers to cope with changes in the plant dynamic behavior induced by different operating conditions.

Neural networks are information systems that demonstrate the ability to learn, recall and generalize from training patterns or data. These specific features constitute an advantage to be taken and incorporated in industrial control applications. In this work a neural network was effectively used in the control design of nonlinear systems combined with traditional PID controllers. In this sense neural networks are seen as an extension, rather than replacement, of linear identifiers and controllers that may be already working.

Moreover, the proposed strategy is a systematic one, it can be easily applied to a wide variety of processes with a small initial knowledge of the plant model and the computational requirements of this type of controllers are very acceptable for real time control. Experimental results were reported assessing the feasibility of this control strategy.

ACKNOWLEDGEMENTS

This work was partially supported by Project ALCINE Praxis/EEI/14155/98 and POSI Programa Operacional Sociedade de Informação de Portuguese Fundação para a Ciência e Tecnologia and the European Union FEDER.

The experiments described in this paper were carried out within the project Improving Human Potential Program (EC-DGXII) supported by the European Union Program Training and Mobility of Researchers. The authors would like to express their gratitude to the staff of PSA.

REFERENCES

