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Abstract. An approach for LIDAR-based localization at high speeds is presented. In the proposed
framework, the laser pose estimation is treated as a parallel redundant information, which is fused in
an adjacent Kalman filter. The measurement and motion update step of the ROS-based adaptive
Monte Carlo localization package is modified, in order to meet the requirements of a high-speed race
scenario. Thereby, the key focus is on computational efficiency and the adaptation to characteristics
arising at high speeds and at the limits of handling. An introspective performance evaluation
monitors the position estimation process and labels generated outputs for adjacent components
accordingly. The effectiveness of the proposed algorithm is illustrated in a real world high-speed
experiment, autonomously driving a race vehicle – the DevBot – in a typical race environment.

1 Introduction

Racing in motorsports is a complex and demanding
task. Even professional human drivers reach their
cognitive and executive limits during a regular
competition. Within the race series Roborace [1],
the team of the Technical University of Munich aims
to equip a race vehicle with the required software
components enabling it to drive autonomously in a
competitive manner. In an initial public event the
DevBot (Figure 1) drove autonomously 150 km/h at
the E-Prix event in Berlin [2]. The vision of this
project is to transfer the gained knowledge from a race
setting to automated urban traffic [3].

In order to drive fast and safe, an autonomous
car needs to know accurately where it is located
relative to its planned path and obstacles. Technically
speaking, the task is called localization and describes
the process of determining an agents pose relative
to its surrounding environment. Several techniques
serve this purpose, each coupled to their individual
advantages and disadvantages. State of the
art technologies include GPS/GLONASS, odometry
information and optical localization.

In this paper, we focus on the latter one using
LIDAR sensors. However, when pursuing a laser based
approach for localization at high velocities on a race
track, the following challenges have to be addressed:
•Computation time has to be low in order to maintain

a decent update frequency (large distances traveled
in short periods)

•Long straights on a race track provide few unique
features for the LIDAR sensors and algorithms

Figure 1. DevBot - The development vehicle of Roborace
holding various sensors and control units.[1]

•Uncertain motion model at high speeds and high
lateral forces

•Inaccurate localizations should be detected and
handled swiftly in order to react properly during
high-speed segments

We present an extended particle filter based
localization algorithm as well as an interfacing
structure used for introspective performance
evaluation. Our main contribution in this paper is the
extension of the ROS1-based Adaptive Monte Carlo
Localization (AMCL) algorithm, in a way to cope
with high speeds on a race track, introspective status
indicators and the performance evaluation on a real

1Robot Operating System [4]
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race vehicle. Within this process, we reworked the
motion and measurement update step of the particle
filter to improve high speed localization on a race
track.

The rest of the paper is organized as follows.
The subsequent Section 2 covers related localization
approaches in the field of mobile robotics and
autonomous vehicles. The overall localization
approach embodied in the DevBot is covered within
Section 3. Key features of our LIDAR based
localization approach are tackled in Section 4.
Experimental results of the presented approach are
given in Section 5. A discussion and concluding
remarks are provided in Section 6 and Section 7,
respectively.

2 Related Work
Automated vehicles require a robust and precise
localization method. Especially when moving at high
speeds, it is essential to position oneself precisely
relative to the environment and to the planned
trajectory. Several sensors and algorithms can be
used to provide pose estimates. This paper focuses on
laser based localization techniques.

Even within the domain of LIDAR based
localization, a vast variety of techniques have been
proposed. One prominent strategy is to rely on
reflectivity variances of the ground plane. Structural
features like pavement variations and lane markings
are used for mapping and localization. Levinson et
al. [5] initially proposed an approach based on ground
reflectivity paired with a 3D LIDAR and IMU. Several
modified versions followed while relying on a 2D laser
only [6], being robust to slight changes in ground
appearance [7] or handling weather variations like snow
fall and wet roads by relying on Gaussian mixture maps
[8, 9]. However, these approaches rely on lane markings
and structural differences in the ground plane. When
facing racetracks in the Formula-E series, the tracks
often do not offer such features (e.g. a track is layed
out by concrete walls in a city or an empty space).

Another group of approaches use 3D LIDAR
sensors and focus on striking landmarks or objects in
the environment. Schlichting et al. [10] save pole-like
objects and planes in a feature map, which serves for
localization landmarks in preceding runs. Wang et
al. [11] implement an curb detection algorithm and
use this information fused with GPS for localization.
Obviously, those algorithms require these specialized
objects to be present in the dedicated environment,
which is not by default the case for race tracks.
Furthermore, most of the approaches have only been
tested at moderate speeds (e.g. 26.9 km/h on average)
and require medium to high computational time
(ranging from 50 ms to above 100 ms). Based on these
facts it is questionable how these approaches would
translate to high speeds.

To the best of the authors knowledge, only a few
approaches address LIDAR localization at high speeds.

Daoust et al. [12] propose a high-speed localization
approach for railed vehicles up to a speed of 70 km/h.
The approach is specifically tailored to a subway
application and hardly applicable to a road scenario.
Other approaches addressing high-speed agents [13? ]
consider the term ”high-speed” in the robotic domain,
which is the case for robots moving at 4 m/s.

Monte Carlo localization, first introduced by Fox et
al. [14] is a particle filter based localization approach
broadly used for several years now. In the past
years various improvements and adaptations have
been presented. Kümmerle et al. [15] extended
the framework to utilize multilevel surface maps,
which enables the robot to represent multiple levels
in the environment. Recently, Bedkowski et al.
[16] introduced a promising approach for parallel
particle filter evaluation in order to process 3D
maps and LIDAR sensors. However, none of the
inspected approaches designed or evaluated their
method at higher speeds than 75 km/h. Bedkowski
et al. [16] noted that ”it is evident that such
numbers of calculation determine the applicability
by only assuming the slow-motion robot equipped
with the powerful GPU”. An extended, adaptive
version of the basic Monte Carlo localization algorithm
is throughly presented in the book ”Probabilistic
Robotics” [17]. The version described in the book
has been adopted by the ROS community [18] and
is utilized on many mobile robots all over the world.
Exemplary mentioned, Zaman et al. [19] as well as An
et al. [20] use ROS packages – including Monte Carlo
localization – for indoor navigation of a Pioneer 3-DX
Robot and a custom mobile platform, respectively.

The proposed method for high-speed LIDAR
localization of a race vehicle is based on an adaptive
Monte Carlo approach, which will be revisited in
Section 4.1. The extension is based on the open
source package published in the ROS-community. We
improved the motion update and measurement step
in the particle filter to support vehicles at high speeds.
Furthermore, a real world verification of the proposed
method is provided.

3 Localization Framework

A vast variety of sensors can be used to generate
a localization estimate of an autonomous system.
Figure 2 gives a rough overview of a set of
commonly used devices for localization. While
some sensors provide position (or N-time derivative)
estimates directly, optical based approaches require an
algorithmic processing in order to generate an estimate.
The proposed overall approach is based on a parallel,
redundant information flow framework. As envisioned
in Figure 2, various position estimates are generated
and selectively fused in a Kalman filter. The benefit of
this parallel structure is the independence of an specific
sensor and the exploitation of the sensors’ individual
strengths.
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Figure 2. Sketch of available sensors used for localization.
All sensors shown in red are included in our setup. This
paper focuses on the LIDAR and AMCL, highlighted with
a red frame.

In the wake of this, the overall localization
estimation can cope with a GPS signal loss or a
temporarily unavailable LIDAR estimate. This way,
only the highly unlikely event of several systems being
inactive would cause an emergency stop. Additionally,
based on the parametrization of the Kalman filter’s
covariances, the framework can adapt to individual
characteristics of every single estimator.

This paper focuses on LIDAR localization based
on a particle filter (AMCL), as highlighted by the red
box in Figure 2. Since the LIDAR estimate should
serve as a redundant information, a requirement is
to not use GPS measurements in the motion update
at all. The characteristic of the LIDAR estimation –
performing very accurate in the lateral direction and
only decently in the longitudinal direction (Section 5)
– is considered in the Kalman filter parametrization.
Thereby, the trust in the lateral information is rated
higher than the longitudinal estimate.

4 High-Speed LIDAR Localization

The presented approach builds upon AMCL, a popular
particle filter based localization framework. Section 4.1
revisits the basic functionality and its components. In
order to keep track of the vehicles position estimate
at high speeds, several modifications of the basic
algorithm were introduced (Section 4.2). The most
crucial goal is to provide a reliable overall position
estimate at any time. In the wake of this, the system
should detect localization degrades introspectively and
label the generated estimates correspondingly. The
module providing this functionality is elaborated in
Section 4.3. One of the most crucial parameters – the
maximum amount of particles – is investigated and
adapted to the target hardware in Section 4.4.

4.1 Basic Adaptive Monte Carlo Localization

Monte Carlo localization (MCL) is a localization
algorithm based on a particle filter described by [17].
The method uses a particle filter to converge to the
most probable pose within a given occupancy grid
representation of the environment (Algorithm 1). In

Algorithm 1 Monte Carlo Localization
1: procedure MCL(Xt−1, ut, zt,m)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: x[m]

t = sampleMotionModel(ut, x
[m]
t−1)

5: w
[m]
t = measurementModel(zt, x

[m]
t ,m)

6: X̄t = X̄t +
〈
x[m]

t , w
[m]
t

〉
7: for m = 1 to M do
8: draw x[m]

t from X̄t with probability ∝ w[m]
t

9: Xt = Xt + x[m]
t

10: return Xt

this setup, each particle m represents a potential
pose xm

t , i.e. a hypothesis of the agents position and
orientation in the grid. Initially at time step t = 0, the
particles Xt=0 = {x10, x

2
0, ..., x

M
0 } are spread randomly in

a predefined region, i.e. the whole map or a certain
spot on the map. In other words, the algorithm
is not sure about the actual pose and distributes
several random guesses. Whenever the agent moves
(action ut), all the existing particles are shifted along
while introducing some noise. The amount of noise
added is described in an underlying odometry model.
Thereafter, every incoming LIDAR measurement zt is
evaluated by utilizing recursive Bayesian estimation.
Within this process, the measurement zt is transformed
into each of the particles poses and evaluated with
respect to the degree of compliance between map
and measurement. Particles are re-sampled according
to the correlation scores wm

t , i.e. more particles
are generated in the region of high weights. After
several update iterations, the particles should converge
towards the actual position of the vehicle.

MCL has been improved by using an adaptive
amount of particles. The number of particles used
within AMCL is then determined by an error estimate.
Due to this improvement, the algorithm uses many
particles whenever the estimation performance is poor
and saves computation effort by using few particles
whenever the particles converged nicely. Readers
interested in further insights to this topic are referred
to [17]. When facing a high-speed scenario one has to
take special care of this issue, which will be further
investigated in Section 4.4.

4.2 Modifications Monte Carlo Localization

Besides resampling, the two major steps in the particle
filter are the motion and measurement updates. We
investigate both of them and introduce improvements
regarding a race scenario.

4.2.1 Measurement Update

One of the most crucial issues when facing high speeds
is the calculation time. The longer the calculation
takes, the further the vehicle travels in the meantime.
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Since the position is calculated based on a LIDAR
stream captured at the start of the calculation period,
the position estimate is always outdated to a certain
extent.

In order to match the calculation cost of
the measurement step (Algorithm 1-5) to the
used hardware, the ROS-package provides several
parameters, which influence the computational load.
Probably the most trivial option is to limit the number
of particles M used in the filter (Section 4.4). Another
option is to reduce the amount of LIDAR beams
to be processed in the sensor update. Especially
when using multiple and/or high-resolution LIDAR
sensors it is infeasible to evaluate every single beam,
since – depending on the map resolution – no
further information is gained. Commonly, only a
representative subset of all the LIDAR measurements
is evaluated, since this is sufficient to generate a
matching score for each particle pose. The stock
package provided by ROS samples a parameterizable
amount of entities at an equal angular displacement
from the full measurement set.

Since a race vehicle is commonly driving in a sort
of corridor with walls to the sides and free space
ahead of the vehicle, this approach is not the most
efficient. A simplistic extracted 360 deg LIDAR beam
model, hosting the constant angular displacement in
the before mentioned environment, is illustrated in
Figure 3. Most of the extracted beams hit the wall
right next to the vehicle in a similar spot, which
does not provide a substantial information gain. On
the other hand, only few information is gained at
the far end ahead and behind the vehicle due to
a sparse coverage with LIDAR beams. Following
the default model, the only chance to gain more
information is to increase the number of extracted
entities, which results in a higher computational
load. We introduce an approach to extract a corridor
optimized pattern of measurements. The goal is
to increase the information gain, while keeping the
amount of extracted LIDAR beams constant. For this
purpose, the angular displacement is calculated based
on equal distances on the borderline of a surrounding
rectangle with parameterizable aspect ratio. In order
to envision this effect more clearly, the two left-hand
plots in Figure 3 hold only 10 extracted beams. One
can clearly see that the default approach primarily
extracts information of beams in the close proximity
to the origin, whereas the boxed approach is evenly
spread in this corridor example. When increasing the
number of extracted beams to 30 (default value of
the ROS AMCL implementation), a similar density
distribution unfolds (Figure 3, right).

The method introduced in this paper determines
the best angular displacement for each single beam,
given a number of beams to be extracted Nout as well
as the aspect ratio of the bounding box. The routine
calculates the surrounding distance of an rectangle
with the shape defined by the rectangle and divides
it into Nout equal distance segments. Afterwards,

x

y

Default

x

y

Boxed

x

y

Default

x

y

Boxed

Figure 3. Comparison of default and introduced boxed
approach for LIDAR beam extraction. Here shown for a
corridor with an aspect ratio of 4:1. The two plots on the
left simulate an extraction of 10 beams, whereas the two
plots on the right hold 30 beams. It can be seen, that with
the default approach several beams hit the wall right next
to the origin and only provide sparse information in the far
front and rear region. In this sketch a 360 deg LIDAR is
assumed as extraction basis, with an angular increment of
0.25 deg (Corresponding actual minimal increment, when
fusing multiple Ibeo ScaLa B2® LIDARs).

temporary coordinates along the outline of this box are
calculated. In order to obtain a symmetrical pattern,
the first beam is always placed in the front center of the
vehicle. Each temporary coordinate (x, y) is converted
into an angle in the LIDAR’s frame. Based on this
calculation, the algorithm returns the indexes I of the
physical LIDAR beams closest to those calculated
angles. It should be noted, that this calculation only
has to be performed once, since every consecutive
LIDAR evaluation uses the same angular pattern.

4.2.2 Motion Update

The motion update step in the ROS version of
AMCL is tailored to indoor robotic agents. Most of
these platforms provide omni-directional or differential
drives. These vehicle dynamics differ from car-like
dynamics and are not suited to high velocities by
default. The approach presented in this work is
based on the differential drive model, since it is
the most similar to car like dynamics. Thrun et al.
[17] presented a basic probabilistic odometry model
(Algorithm 2), where each movement is represented by
three steps: an initial rotation δrot1, a translational
shift δtrans and another rotation δrot2 at the translated
pose (Figure 4). These step offsets are calculated
based on the last odometry reading ut = (x̄t−1, x̄t)

T =
((x̄, ȳ, θ̄), (x̄′, ȳ′, θ̄′))T and the last state2 xt−1, as shown
in Algorithm 2-(2–4). The resulting values represent

2State variables without a bar refer to the particle filter’s
internal state representation, whereas a bar above the variable
indicates odometry measures.
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Algorithm 2 Sample Odometry Motion
1: procedure SampleMotionModel(ut, xt−1)
2: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄) − θ̄
3: δtrans =

√
(x̄ − x̄′)2 + (ȳ − ȳ′)2

4: δrot2 = θ̄ − θ̄′ − δrot1
5:
6: δ̂rot1 = δrot1 − nN (α1δrot1 + α2δtrans)
7: δ̂trans = δtrans −

nN (α3δtrans + α4(δrot1 + δrot2))
8: δ̂rot2 = δrot2 − nN (α1δrot2 + α2δtrans)
9:

10: x′ = x + δ̂trans cos(θ + δ̂rot1)
11: y′ = y+ δ̂trans sin(θ + δ̂rot1)
12: θ′ = θ + δ̂rot1 + δ̂rot2
13: return xt = (x′, y′, θ′)T

the observed motion step and are the basis for
individual particle motion entities

〈
δ̂rot1, δ̂trans, δ̂rot2

〉
,

generated by summing each of them with a unique,
zero-mean Gaussian sample nN(σ) = x ∼ N(µ = 0, σ)
(parameterized via α{1,2,3,4}, see Algorithm 2-(6–8)).
Finally, these values are translated back into poses by
applying simple trigonometrical rules. Further details
and a proof of this approach can be found in [17].

One of the key features of this motion sample step
is to at least cover or better overestimate the whole
area of expected maximal error in the provided motion
step ut. When moving a moderate speeds coupled with
a proper parameter tuning, this introduced odometry
approach performs well. However, when facing high
velocities (i.e. larger motion steps δtrans), more and
more rotational noise is introduced (Algorithm 2-(6,8)).
This spread in particles causes localization inaccuracies
and a growing computational effort (due to the
generation of further particles for adaptive filters).

Since the absolute extent of the expected noise
originating from relative sensor inaccuracies scales
with the available action space, we propose a velocity
dependent angular noise generation. Road vehicles
are limited in their available lateral tire force, which
is easily exceeded when traveling at high speeds [21].
The centripetal acceleration ac for simple point masses
traveling on a circle with radius r is defined as:

ac =
v2

r
. (1)

One can easily see, that the required lateral force rises
quadratically with higher speeds, while keeping the
track radius constant. The sum of longitudinal and
lateral force may not exceed a certain ground and tire
specific value. In the region of low speeds, this fact
does not play an important role, since the traction
forces will stay in their bounds. However, when facing
higher velocities, the executable turn radius grows with
the vehicles speed. In order to cope with this issue,
we reduce the introduced rotational noise δ̂rot1, δ̂rot2
according to the current speed (i.e. with the translated
distance δtrans). The relation of approximated track

x

y

δtrans

r2

r1

δrot1

(x̄, ȳ, θ̄)

δrot2

(x̄′, ȳ′, θ̄′)

Figure 4. Geometrical relations of the utilized odometry
model consisting of two rotation and one translation step.
The blue discs indicate the vehicles start and end pose,
where the black arrow represents the heading.

radius r and rotation change δrot{1,2} is found to be
non-linear3:

r =
δtrans

(
sin

(
π
2 − δrot1

)
+ sin

(
π
2 − δrot2

))
2 sin (δrot1 + δrot2)

, (2)

which can be approximated to

r ≈
δtrans

(δrot1 + δrot2)
, (3)

especially when facing moderate angles (< 30 deg).
Putting everything together, the maximum

executable radius increases with the square of
the executed velocity (assuming no longitudinal
acceleration and ideally a constant maximum
sustainable lateral force by the tire). The radius itself
is reciprocally proportional to the sum of the angular
components in the described motion model. In order
to achieve a conservative and linear representation
of this behavior, we reduce the angular noise of
samples linearly with larger translated distances, i.e.
higher velocities. Thereby, a threshold γth defines
the minimum translation required for the mechanism
to become active in scaling. The lines 6 and 8 in
Algorithm 2 get replaced by the structure as follows:

δ̂rot1 = δrot1 − nN

(
α1δrot1 + α2

1

max(δtrans, γth)

)
, (4)

here shown exemplary for δrot1.
In order to achieve an accurate lateral localization,

parameterizable (α5) lateral noise is added to each
sample’s pose. In contrast to lateral particle spread
added via rotational noise, these entities maintain the
same heading tendency. At this point it should be
noted, that this lateral noise is chosen large on purpose
in order to enable the filter to pick the optimal lateral

3Utilizing the law of sines for the triangle defined by the
intersection of orthogonal lines on the initial and resulting
velocity vector (r1 and r2 in Figure 4).
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Figure 5. Comparison of differently parametrized position
belief based on stock (blue and green) and proposed (red)
odometry calculation for N = 20 time steps. The simulated
incoming odometry measures from adjacent time steps are
shown in black. The green line in the bottom plot displays
the velocity along the course. For visualization purposes
(distinguishable time steps), the longitudinal noise in the
model was reduced significantly.

displacement in each update step. When following
this strategy, we obtain particles with less angular
spread at high speeds while maintaining a decent
lateral coverage.

A comparison of two parameterizations of the stock
update step and a parameterization of the proposed
motion update step is shown in Figure 5. The two
models were parameterized identically (the modified
angular spread for the stock model was parametrized
with proper angular noise for low velocities (blue)
and high velocities (green)) and supplied with ideal
pose measures (vmax = 50 m/s, a = 7 m/s2, update
frequency f = 2 Hz, no heading variation). In this
simulation, no measurement steps were performed.
Therefore, the motion update was applied iteratively
to each particle. When parameterizing the odometry
model, one tries to fit or even overestimate the
maximal error in the odometry measurement. In this
example, the stock odometry model is tuned to suit the
spread at low velocities (blue, i.e. a reasonable spread
of the particles can be observed on the first 50 m) and
at high velocities (green, i.e. a decent further spread
of the particles can be observed while moving at vmax).
Thereby, it can be seen that the pose candidates based
on the stock odometry model spread either to much
at high speeds (blue) or introduce almost no variance

at low speeds (green). In contrast, the spread of the
proposed approach (red) reaches a steady spread at
a certain velocity level while still offering variance at
low speeds.

4.3 Introspective Performance Evaluation

Since a wrong localization estimate could cause severe
accidents, it must be avoided by all means. In order to
tackle this issue, we introduced several introspective
watchdogs and mechanisms. The proposed methods
check the generated location estimate for validity and
publish a corresponding localization status sloc. The
adjacent Kalman filter then considers this information
in the location estimate fusion. Along with the pose
estimate, the proposed framework holds three status
levels:
•2 – proper functionality
•1 – estimate of poor quality
•0 – invalid location estimate
The status bit is composed of an initialization flag
sinit (rising to 1 upon availability of all required
components), a map dependent status smap as well as
a covariance evaluation scov.

sloc =


2, if sinit , 0 ∧ smap , 0 ∧ scov , 0

1, if sinit , 0 ∧ smap , 0

0, otherwise
(5)

When the particle filter is unable to properly match
the perceived environment to the map representation,
the odometry updates commonly carry the localization
estimate outside the maps known free space. A
common occupancy grid representation holds values
for each grid cell mi in the range of [−1, 1], where −1
represents unknown space and 0 to 1 the probability of
occupation. During execution, the algorithm reads the
occupancy probability entry p(mi) of the grid cell mi

at the location of the pose estimate and returns a null
status when exceeding the range [0, γ]. The constant
γ is a parameterizable upper threshold.

smap =

1, if p(mi) ∈ [0, γ]

0, otherwise
(6)

Another performance indicator is the variance of
the pose estimation. This property correlates to
the spread of the particles. The proposed method
transforms the variances from map coordinates to
the vehicles coordinate frame (relying on the current
heading estimate). Thereafter, lateral (Cyy) and
longitudinal (Cxx) variances are evaluated and rated
against thresholds θ{x,y} individually. Since the pose
estimation in long corridors performs better in lateral
than in longitudinal direction, the thresholds are set
accordingly.

scov =

1, if Cxx < θx ∧Cyy < θy ∧Cyawyaw < θyaw

0, otherwise
(7)
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Figure 6. Mean lateral, longitudinal and angular
displacement along one lap on a track, while varying the
number of maximal particles used.

4.4 Particle Quantity

As mentioned in the subsections before, computation
time is one of the most crucial topics when facing
high speeds. When dealing with particle filters, the
amount of particles used has a linear influence on
the calculation time. For adaptive particle filters,
one usually limits the maximum amount of particles
used. When facing high speeds, setting the proper
maximum amount of particles is a crucial step. A
number chosen too high may result in a computation
delay on the target hardware, which is self-enforcing.
For example, a computation delay may result in
an outdated estimate, the uncertainty raises, more
particles are added and thereby even further delay
is introduced. On the other hand, to few particles
result in inaccurate localization results. In order
to determine the proper dimension for the specific
machine used, we simulated several track runs with
varying maximal particle numbers on the target
hardware (NVIDIA DRIVE PX2). For each run,
the mean estimation error compared to the reference
pose was evaluated. We evaluated the performance
at an upper bound of {1, 50, . . . , 500, 600, . . . , 10000}
particles, while averaging 10 runs of each quantity step
(resulting in a total of 1060 runs). Figure 6 visualizes
the number of particles and the corresponding
averaged lateral, longitudinal and angular estimation
error for a complete simulated lap on the Formula-E
race track in Hongkong. It was found, that the
position estimation performance started to drop above
1900 particles (given the reason explained above) and
performed good above a minimum of 300 particles.
We picked an upper limit of 600 particles for our
target machine, in order to be on the safe side with
respect to dexterous situations (more particles needed)
and the fact of sharing the computation power with
other algorithms on the machine (less particles can be
handled properly).

Figure 7. Areal footage of the test field with overlayed
LIDAR scans (red) visualizing the test track (blue) framed
by cones.

5 Experimental Results
The described method was evaluated on a real
autonomous race vehicle, called DevBot (Figure 1).
The vehicle is equipped with four Ibeo ScaLa B2®

LIDAR sensors (two on the front wing facing forward
and two on the sides facing slightly backwards). For
global localization, the vehicle is equipped with an
OXTS 4000 inertial and position measurement unit,
which is solely used for particle filter initialization
within the algorithm. The odometry information is
extracted from an optical, slip-free dynamics sensor
(Kistler Correvit® SFII P).

Most of the tests were executed on a custom track
layout marked by cones on an abandoned airfield
(Figure 7). Furthermore, data recorded on various
Formula-E race tracks was used for development
and validation. Within this paper, we analyze an
autonomously driven high-speed (> 150 km/h) run on
the test track. One lap on the test track is about
970 m long. The discussed run includes 8 laps on the
track, with lowered velocity and acceleration profile
in the first two laps. The planned maximum lateral
and longitudinal acceleration were both set to 8 m/s2.
The run was executed autonomously without a backup
driver inside, but several emergency stop transmitters
positioned around the track.

First, the actual performance on the track is
evaluated in the following subsection. Second,
the stock and modified localization approach is
compared based on a bag record of the discussed run
(Section 5.2).

5.1 Real World Run Analysis

The position logs of the localization estimation,
odometry and GPS reference are visualized in Figure 8.
It can be seen that the odometry position estimate is
fairly good, but still drifts away several meters each
lap. In contrast, the LIDAR based estimation sticks
to the GPS reference.
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Figure 8. Position (x,y) log of the odometry output
(green), GPS reference (blue) and AMCL position estimate
(red). The yellow circle highlights positions, where a
particle filter initialization was triggered.
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Figure 9. Temporal course of the vehicles velocity (blue),
based on GPS measurements. The prediction status of
AMCL is shown in red, where high amplitudes resemble
the status 2 and the dashed reference line status 0.
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Figure 10. Absolute lateral (red), longitudinal (blue) and
angular (green) offset of predicted AMCL pose compared
to GPS reference.

The vehicles velocity throughout the run peaked
> 150 km/h several times on the long straight, plotted
blue in Figure 9. The average velocity for a flying
racing lap settled at 72.6 km/h. All calculated metrics
in the following are based on the data gathered during
a driving phase (v > 0).

Figures 10 and 11 visualize the euclidean4 and
angular displacement as well as the covariances in these

4It should be noted that the euclidean displacement was split
into lateral and longitudinal error, where the estimated heading
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Figure 11. Temporal course of the squared covariance in
the vehicles lateral (red), longitudinal (blue) and rotational
(green, up-scaled by factor 200) component.

dimensions. It can be seen, that the longitudinal offset
between GPS and AMCL estimation is relatively high
on the long straights and reduces again at each corner.
One possible cause for this is the feature similarity
along the track. The feature patterns extracted on long
straights or long bended curves resemble the LIDAR
patterns extracted on various spots along the track.
Furthermore, the temporal offset between time-stamp
of LIDAR perception and finally estimated pose has
an noticeable impact on the longitudinal component
at high-speeds. For example, when traveling at a
speed of 42 m/s and a LIDAR to estimation period5 of
40 ms, the induced offset calculated to 42 m/s ·0.04 s =
1.68 m. While this offset is present in Figure 10, the
overall framework offers a delay compensation, which is
implemented in the adjacent Kalman filter. Displayed
in numbers, the longitudinal error had a few peaks
slightly below 5 m with an average absolute error of
1.96 m.

When analyzing the angular error, one can find
a decent performance with maximal outliers of 5 deg.
The peaks in the angular error mainly occur at sharp
turns. Thereby, the temporal shift between LIDAR
measurement and GPS reference may play a major
role at locations of high curvature changes.

As mentioned in Section 3, the main focus of this
approach is on the lateral localization. The lateral
position accuracy is throughout the run good, with
an average value of 0.086 m. Figure 10 shows a few
peaks in the lateral offset (e.g. at 311 s), ranging up
to 0.70 m. In these cases, the longitudinal error was
still present at the entry of a corner – i.e. the pose
estimate is a couple of meters behind the actual pose –
and therefore caused a cutting behavior in that curve.
Nevertheless, all of the peaks have been identified by
the introspective performance rating. During these
periods, the status was set to 1 and therefore not fused
into the overall localization estimate. By utilizing
the introspective status management as described in

of the vehicle was used as reference. Therefore, this calculation
may be subjected to slight inaccuracies.

5While using 600 particles in the discussed run, the lower and
upper 5% percentile of this temporal offset (incoming LIDAR
message to estimated pose) settled at 19.3 ms and 28.7 ms,
respectively. The actual offset will be higher due to sensor
internal and transmission delays.
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Table 1. Performance Comparison

Odometry Model Boxed Lateral Offset
stock - tuned low v false 0.169 m
stock - tuned high v false 0.179 m
proposed true 0.111 m

Section 4.3, the mean absolute lateral error drops
from 0.086 m (including the spikes) to 0.084 m (the
peak error drops from 0.70 m to 0.45 m).

Overall, the introspective component holds a low
false alarm rate and intervened for relatively short
periods. In the driving period of the vehicle, only
2.96 % of the time resulted in a status other than
2 (red in Figure 9). It should be noted, that the
status 0 flags in the status plot result from single false
occupancy values in the grid map.

5.2 Comparison

In order to properly compare the proposed localization
approach to the stock AMCL algorithm, both methods
are subjected to an identical bag file of the previously
discussed run. The bag file contains all relevant sensor
messages and the occupancy grid of the race track.
We used the same overall tuned parameters for all
approaches, except the parameters of interest.

As discussed in Section 4.2.2, the stock odometry
model is not designed to cover low and high velocities
concurrently. Therefore, we compare the proposed
algorithm against two parameterizations of the stock
odometry model (”diff-corrected”) as introduced in
Figure 5. Thereby, two configurations are tackled:
one realization is tuned to perform best at low and
the other at high velocities. We averaged the lateral
offset of five consecutive runs for each considered
approach. In order to exclude influences by the
number of maximal particles used, each run was
parametrized with an individual upper limit of the
set 600, 700, . . . , 1000 (reasonable values according to
results in Section 4.4). Table 1 holds the results of
this analysis.

It should be noted that the introspective
performance evaluation was not active in any of the
runs. That way one can compare the plain algorithms
on itself. The proposed methods reduce the averaged
lateral estimation error by more than 34%. One
prominent observed reason for the higher mean errors
of the stock approach are sporadic wrong localization
estimates.

6 Discussion
While the lateral estimation performance of the
proposed approach is good, the longitudinal estimation
at high speeds should be further investigated. The
limiting factors in this sense are the lack of unique
features on long straights on a race track as well as
the time delay between LIDAR capture and calculated
pose estimate.

Furthermore, the proposed approach relies on a
fairly accurate initial location guess (maximal offset
of actual pose about 10 m). In this sense, we did not
investigate the kidnapped robot problem [22], where
many more particles would be required for an initial
global pose estimation. In order to up the particle
count, multi-core or GPU particle filters [23] promise
further acceleration.

7 Conclusion
The presented approach allows LIDAR based
localization at high speeds. The proposed framework
is based on a parallel structure, fusing independent
LIDAR and GPS position estimates in an adjacent
Kalman filter. An open source adaptive particle filter
– integrated into the ROS framework – is extended
in a way to cope with high speeds. As highlighted in
this work, computation time is the key limiting factor
when hitting high velocities. In the wake of this, the
measurement and motion update step of the particle
filter is adapted to fit the race scenario requirements.
In order to improve the gained information for a
constant computation effort, a boxed LIDAR beam
extraction method is proposed, designed to suit the
corridor like structure of Formula-E race tracks. The
motion update step is based on a new odometry
model, taking the reduced available lateral action
space into account. Additionally, the introduced
introspective performance evaluation monitors the
position estimation process and sends a corresponding
status message to the adjacent Kalman filter. That
way, wrong or inaccurate measures do not get fused
into the overall position estimate. Finally, the
framework is parametrized for a target vehicle and
evaluated in a real world scenario.
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