Fubini Theorems for Generalized Lebesgue-Bochner-Stieltjes Integral

by Witold M. Bogdanowicz also known as Victor M. Bogdan

[Communicated by Kinjirō Kunugi, M.J.A., December 13, 1965]
214. Fubini Theorems for Generalized Lebesgue-Bochner-Stieltjes Integral

By Witold M. Bogdanowicz
Catholic University of America, Washington, D.C.

Let R be the space of reals. If $Y_i, W (i=1, \ldots, k)$ are semi-normed spaces then by $L(Y_1, \ldots, Y_k; W)$ we shall denote the space of all operators u which are k-linear and continuous from the product of the spaces $Y_i (i=1, \ldots, k)$ into the space W. The semi-norm of elements in the above spaces will be denoted by $| |$.

A family of sets V of an abstract space X will be called a pre-ring if for any two sets $A_1, A_2 \in V$ we have $A_1 \cap A_2 \in V$, and there exists disjoint sets $B_1, \ldots, B_k \in V$ such that $A_1 \setminus A_2 = B_1 \cup \cdots \cup B_k$.

A nonnegative function v on the pre-ring V will be called a volume if for every countable family of disjoint sets $A_t \in V (t \in T)$ such that $A_t \supseteq \bigcup_{t \in T} A_t \in V$ we have $v(A) = \sum_{t \in T} v(A_t)$.

A triple (X, V, v) where V is a pre-ring of sets of X and v is a volume on V, will be called a volume space. If the triples $(X_i, V_i, v_i) (i=1, \ldots, k)$ are volume spaces then the triple (X, V, v) defined by $X = X_1 \times \cdots \times X_k$ and $V = V_1 \times \cdots \times V_k$ consisting of all sets of the form $A = A_1 \times \cdots \times A_k; A_t \in V_t$ with $v(A) = v(A_1) \cdots v(A_k)$ is a volume space.

Let (X, V, v) be a fixed volume space. Denote by $M_q(v, Z) (1 < q < \infty)$ the space of all finite additive functions μ from the pre-ring V into a Banach space Z and such that $\mu(A) = 0$ if $v(A) = 0$ and

$$
\sup \{|\mu(A)| \mid v(A)^{1-q} \leq 1, \|\mu\|_q < \infty\}
$$

when $q \neq \infty$, where the supremum is taken over all finite families of disjoint sets $A_t \in V$ such that $v(A_t) > 0$. In the case when $q = \infty$, let $\sup \{|\mu(A)| \mid v(A)^{-1} \leq 1, A \in V\} = \|\mu\|_\infty < \infty$ where the supremum is taken over all sets $A \in V$ such that $v(A) > 0$.

Now if $1/p_i + 1/q_i = 1, p_i, q_i \geq 1, i=1, 2$ and $u \in L(Y_i, Y_i, Z; W)$, denote by $M(q_i, v_i, Z, u)$ the family of all functions $\mu(A_1, A_2)$ from $V_1 \times V_2$ into Z which are additive in each variable A_i separately and $\mu(A_1, A_2) = 0$ if $v_i(A_i) = 0$ or $v_i(A_2) = 0$; moreover assume that the following norm is finite $\|\mu\| = \sup \{|\mu(A_1, A_2)| : u(y_i, z_i, \mu(A_1, A_2)) (v_1(A_1))^{-1/p_1} (v_2(A_2))^{-1/p_2} |a_1| |a_2| \}$ where the supremum is taken over all finite systems such that $|y_i| \leq 1, |z_i| \leq 1, \sum |a_1|^{p_1} \leq 1, \sum |a_2|^{p_2} \leq 1$, where A_1 is a family of disjoint sets of the pre-ring V_1 such that $v_1(A_1) > 0$ and similarly A_2 is a finite family of disjoint sets of the pre-ring V_2 such that $v_2(A_2) > 0$.

If \(q=q_i=q_z \) and \(u(y_i, y_z, z)=z(y_i, y_z) \) for \(y_i \in Y_i, z \in L(Y_i, Y_z; W) \) then we have \(M_3(v, Z) \subset M(q_3, q, v_3, v_z, Z, u) \).

Theorem 1. Let \((X, V, v)\) be the product volume space of the volume spaces \((X_i, V_i, v_i)\) \((i=1, \cdots, k)\). If \(\mu_i \in M_4(v_i, Z_i) \) where \(1 \leq q \leq \infty \) and \(u \in L(Z_i, \cdots, Z_n; W) \) then \(\mu \in M_4(v, W) \) where

\[
\mu(A_1 \times \cdots \times A_k) = u(\mu(A_1), \cdots, \mu(A_k)) \quad \text{for} \quad A \in V
\]

Let \((X, V, v)\) be a volume space and \(Y \) be a fixed Banach space. Denote by \(S(V, Y) = S(Y) \) the set of all functions of the form \(h = y_1 x_{A_1} + \cdots + y_k x_{A_k} \) where \(y_i \in Y_i \) and \(A_i \in V \) are disjoint sets. Put \(\|h\|_V = |y_i| v(A_i) + \cdots + |y_k| v(A_k) \).

A sequence of functions \(s_n \) is called basic if there exist a sequence \(h_n \in S(Y) \) and a constant \(M > 0 \) such that \(s_n = h_1 + \cdots + h_n, \|h_n\| \leq M 4^{-n} \) for \(n = 1, 2, \cdots \).

A set \(A \subset X \) is called a null set if for every \(\varepsilon > 0 \) there exists a countable family of sets \(A_t \in V \) \((t \in T)\) such that \(A \subset \bigcup_t A_t \) and \(\sum_t v(A_t) < \varepsilon \).

A condition \(c(x) \) depending on a parameter \(x \in A \subset X \) is said to be satisfied almost everywhere on the set \(A \) if there exists a null set \(A \) such that condition is satisfied at every point of the set \(A \backslash A \).

Denote by \(L_b(v, Y) \) the space of all functions \(f \) such that there exists a basic sequence \(s_n \) convergent almost everywhere on the space \(X \) to the function \(f \). Put \(\|f\| = \lim \|s_n\| \). This definition is correct, that is, it doesn’t depend on the particular choice of the basic sequence. It follows from Theorem 1 [1], that the space \((L_b(v, Y), \|\|) \) is a complete seminormed space. The set of simple functions \(S(V, Y) \) is dense in the space \(L_b(v, Y) \) according to Lemmas 1 and 4 [1].

Now let \(1 \leq p < \infty \). Denote by \(a(y) = \|y\|^{p-1} y \) for \(y \in Y \). Since the function and its inverse \(a^{-1}(y) = \|y\|^{1/p -1} y \) for \(y \in Y \) are continuous on the space \(Y \) therefore it establishes a homeomorphism of the space onto itself.

Denote by \(L_p(v, Y) \) the space of all functions \(f \) from the set \(X \) into the space \(Y \) such that \(a \circ f \in L_b(v, Y) \). Put

\[
\|f\|_p = \left(\int |a \circ f|^p \, dv \right)^{1/p} = \left(\int |f(x)|^p \, dv \right)^{1/p}.
\]

The space \((L_p(v, Y), \|\|_p) \) is a complete seminormed space and the set \(S(V, Y) \) is dense in it according to Theorem 1 [4].

Now let \((X, V, v)\) be the product space of the volume spaces \((X_i, V_i, v_i)\) \((i=1, 2)\). Take any simple functions \(s_i \in S(V_i, Y_i) \) and assume that \(s_i = \sum_i y_{n_i} x_{A_{n_i}} \). Let \(\mu \in M_3(v, Z) \) and let \(u \) be a multilinear continuous operator from the product of the Banach spaces \(Y_i, Y_z, Z \) into a Banach space \(W \). Define
\[\int u(s_1, s_2, d\mu) = \sum_{n_1, n_2} u(y_{n_1}, y_{n_2}; \mu(A_{n_1} \times A_{n_2})). \]

It is easy to see that the definition is correct. Put \(U = L(Y_1, Y_2, Z; W) \).

The integral operator just defined is linear in each variable \(u, s_1, s_2, \mu \) separately and is defined on a dense set of the product of the spaces \(U, L_p(v_1, Y_1), L_p(v_2, Y_2), M_q(v, A) \), where \(1 < p < \infty \) and \(1/p + 1/q = 1 \).

Now from the inequality
\[\left| \int u(s_1, s_2, d\mu) \right| \leq |u| \| s_1 \|_p \| s_2 \|_p \| \mu \|_q \]

and from the completeness of the space \(W \) we get that there exists a unique extension of the operator to a multilinear continuous operator defined on \(U \times L_p(v_1, Y_1) \times L_p(v_2, Y_2) \times M_q(v, Z) \).

In a similar way one could define the integral operator \(\int u_0(f, d\mu) \) for \(f \in L_p(v, Y) \), \(\mu \in M_q(v, X) \), \(u_0 \in L(Y, Z; W) \). When it is important to indicate the variable of integration which shall use the symbol
\[\int u_0(f(x), \mu(dx)). \]

§ Fubini's Theorem for the integral \(\int u(f_1, f_2, d\mu) \)

Take any multilinear continuous operator \(u \in L(Y_1, Y_2, Z; W) = U \).

Define an operator \(u_0(y, z) = u(\cdot, y, z) \) for \(y \in Y_1, z \in Z \). We see that \(u_0 \in L(Y_1, Z; W) = U_1 \) for \(Z_0 = L(Y_1, W) \). Define also the operator \(u_0(y, z_0) = z_0(y_1) \) for \(y_1 \in Y_1, z_0 \in Z_0 \). We have \(u_0 \in L(Y_1, Z; W) \) and
\[|u| = |u_1|, \quad |u_0| = 1. \]

Let \((X, V, v) \) be the product volume space of the volume spaces \((X_1, V_1, v_1) \) \((i=1, 2)\). Assume that \(1 \leq p < \infty \) and \(1/p + 1/q = 1 \). We have the following theorem.

Theorem 1.

1. If \(\mu \in M_q(v, Z) \) then for all \(A_1 \in V_1 \) the vector function \(\mu_{A_1} \) defined by the formula
 \[\mu_{A_1}(A_2) = \mu(A_1 \times A_2) \]
 \(A_2 \in V_2 \)
 belongs to the space \(M_q(v_2, Z) \).

2. The operator \(\mu_2 = r(f_2, \mu) \) defined by means of the integral
 \[\mu_2(A_1) = \int u(f_2, d\mu_{A_1}) \]
 for all \(A_1 \in V_1 \)
 is bilinear from the product \(L_p(v_1, Y_2) \times M_q(v, Z) \) into the space \(M_q(v, Z_0) \)
 and
 \[|| \mu_2 || \leq |u| || f_2 ||_p || \mu ||_q \]
 for all \(f_2 \in L_p(v_1, Y_2), \mu \in M_q(v, Z) \).

3. Moreover the following equality holds
 \[\int u(f_1, f_2, d\mu) = \int u_0(f_1, d\mu(f_2, \mu)) \]
 for all \(f_2 \in L_p(v_1, Y_2) \) \((i=1, 2), \mu \in M_q(v, Z) \).

(The above theorem can be easily generalized to the case when \(f_1 \in L_p(v_1, Y_1), f_2 \in L_p(v_2, Y_2), \) and \(\mu \in M(q_1, q_2, v_1, v_2, Z, w) = M \).
If we take the trilinear operator \(u(y_1, y_2, z) = z(y_1, y_2) \) for \(y_i \in Y_i \), \(z \in Z \) and define \(Z = L(Y_1, Y_2; W) \), then the space \(M \) is isomorphic and isometric to the space of all bilinear continuous operators \(h \) from the product \(L_p(v_1, Y_1) \times L_p(v_2, Y_2) \) into the space \(W \).

Consider the following example. Let \(Y_1, Z, W \) be equal to the space \(C \) of complex numbers. Let \(u(y_1, y_2, z) = y_1 y_2 z \). Then we have \(u_1(y_2, z) = y_2 z \) and \(u_0(y_1, z_0) = y_1 z_0 \). If \(f_i \in L_p(v_i, C) \), \(\mu \in M_\mu(v, C) \) then we get from the theorem

\[
\int f_i(x_i) f_2(x_2) d\mu(dx_1 \times dx_2) = \int f_i(x_i) d\mu_i(dx_i)
\]

where \(\mu_i(A) = \int f_i(x_i) d\mu_i(A \times dx_2) \) for all \(A \in V_i \).

\[\text{R_2} \] Fubini's theorem for generalized Lebesgue-Bochner-Stieltjes integral.

Denote by \((X, V, v) \) the product volume space of the volume spaces \((X_i, V_i, v_i) \). Let \(1 \leq p < \infty \) and \(1/p + 1/q = 1 \).

Let \(Y, Z, W \) be Banach spaces. Assume that \(u \in U = L(Y, Z_i, Z_2; W) \) and define a new operator \(u(y, z_i, z_2) = u(y, \cdot, z_i) \) for \(y \in Y \), and \(z_2 \in Z_2 \). We see that \(u_i \in L(Y, Z_i, Y_1) \), where \(Y_i = L(Z_i; W) \). Define \(u_0(y, z_2) = y(z_2) \) for \(y \in Y_i \) and \(z_2 \in Z_2 \). Notice that \(u_0 \in L(Y, Z_i, W) \) and \(\| u \| = \| u_1 \| \) and \(\| u_0 \| = \| 1 \| \).

Put \(N = \{ f \in L_p(v_1, Y_1); \| f \|_p = 0 \} \). The set \(N \) is linear and according Theorem 1 [1], coincides with the set of all functions \(f \) from the set \(X_i \) into the space \(Y_i \) such that \(f(x) = 0 \) \(v_1 \)-a.e.

Consider the quotient space \(L_p(v_1, Y_1)/N \) and define the norm of a class \([f] = f + N \) by \(\| [f] \|_p = \| f \|_p \). This definition is correct. Notice that in order to determine a class \([f] \) it is enough to give the values of the function \(f(x_i) \) \(v_i \)-almost everywhere.

Since the integral operator \(\int u_0(f, d\mu) \) is linear in the variable \(f \), and we have the estimation

\[
\int u_0(f, d\mu) \leq |u_0| \| f \|_p \| \mu \|_q,
\]

therefore the following definition

\[
\int u_0([f], d\mu) = \int u_0(f, d\mu)
\]

is correct where \([f] \in L_p(v_1, Y_1)/N \). The operator defined in this way \(\int u_0(g, d\mu) \) is bilinear and we have

\[
\int u_0(g, d\mu) \leq |u_0| \| g \|_p \| \mu \|_q
\]

where \(g \in L_p(v_1, Y_1)/N \) and \(\mu \in M_\mu(v_1, Z_i) \).

Theorem 3.

1. If \(f \in L_p(v, Y) \), there exists a \(v \)-null set \(C \) such that \(f(x_i, \cdot) \in L_p(v_i, Y) \) if \(x_i \in C \).

2. The operator \(\tilde{f_i} = r(f, \mu_2) \) defined by the formula
Fubini Theorems for Integral

\[\tilde{f}(x_i) = \int u_0(f(x_i, \cdot), d\mu) \]

is bilinear from the product \(L^p(v, Y) \times M_q(v, Z) \) into the space \(L^p(v, Y)/N \) and

\[||\tilde{f}||_p \leq ||u||_p ||f||_p ||\mu||_q \]

for all \(f \in L^p(v, Y) \) and \(\mu \in M_q(v, Z) \).

(3) Moreover \(u(f, d\mu_1, d\mu_2) = \int u_0(f, \mu, d\mu) \) for all \(f \in L^p(v, Y) \), \(\mu \in M_q(v, Z) \) \((i=1, 2)\).

Consider the following example. Let \(Y = \mathbb{W} \) be a complex Banach space and let \(Z = C \) be the space of complex numbers. Define \(u(y, z_i) = z_i y \) for all \(z_i \in C \), \(y \in Y \). We see that we may identify \(Y = \mathbb{W} \). Thus we have \(u_0(y, z_i) = y z_i \) and also \(u_0(y, z_i) = z_i y \).

Now if \(f \in L^p(v, Y) \) and \(\mu \in M_q(v, C) \) then \(f(x_i, \cdot) \in L^p(v, Y) \)

for \(v_i \)-almost all \(x_i \in X_i \). For the function \(h(x_i) = \int f(x_i, \cdot) d\mu \) we have \(h \in L^p(v, Y) \) and

\[\int h d\mu = \int \left(\int f(x_i, x_i) d\mu \right) (dx) = \int \int (\mu_1 \times \mu_2) (dx) \]

For the case \(p = 1 \) we get the classical Fubini theorem for Bochner summable functions (compare Dunford and Schwartz: Linear Operators, p. 193).

This work was partially supported by National Science Foundation grant GP2565.

References

References

