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Abstract. A synthesis inversion based on the atmospheric
zoom model TM5 is used to derive top-down estimates of
CH4 emissions from individual European countries for the
year 2001. We employ a model zoom over Europe with
1��1� resolution that is two-way nested into the global
model domain (with resolution of 6��4�/. This approach
ensures consistent boundary conditions for the zoom domain
and thus European top-down estimates consistent with global
CH4 observations. The TM5 model, driven by ECMWF
analyses, simulates synoptic scale events at most European
and global sites fairly well, and the use of high-frequency
observations allows exploiting the information content of in-
dividual synoptic events. A detailed source attribution is pre-
sented for a comprehensive set of 56 monitoring sites, as-
signing the atmospheric signal to the emissions of individual
European countries and larger global regions.

The available observational data put signi�cant constraints
on emissions from different regions. Within Europe, in par-
ticular several Western European countries are well con-
strained. The inversion results suggest up to 50�90% higher
anthropogenic CH4 emissions in 2001 for Germany, France
and UK compared to reported UNFCCC values (EEA, 2003).
A recent revision of the German inventory, however, resulted
in an increase of reported CH4 emissions by 68.5% (EEA,
2004), being now in very good agreement with our top-down
estimate. The top-down estimate for Finland is distinctly
smaller than the a priori estimate, suggesting much smaller
CH4 emissions from Finnish wetlands than derived from the
bottom-up inventory. The EU-15 totals are relatively close to
UNFCCC values (within 4�30%) and appear very robust for
different inversion scenarios.

Correspondence to: P. Bergamaschi
(peter.bergamaschi@jrc.it)

1 Introduction

Atmospheric CH4 is the second-most important anthro-
pogenic greenhouse gas (after CO2/ with a direct radiative
forcing of 0.48 Wm�2 (IPCC, 2001) and an additional in-
direct forcing of �0.13 Wm�2 due to chemically induced
effects (tropospheric ozone and stratospheric water vapor)
(Lelieveld et al., 1998). Furthermore, CH4 has a signi�-
cant in�uence on the oxidizing capacity of the atmosphere
and hence the lifetime of other trace gases, such as CO, non-
methanehydrocarbons (NMHCs), and hydrochloro�uorocar-
bons (HCFCs).

General concern about increasing atmospheric levels of
greenhouse gases (GHGs) has lead to the United Nations
Framework Convention on Climate Change (UNFCCC),
which obligates signatory countries to report their annual
greenhouse gas emissions, and the Kyoto protocol, which
sets legally-binding emission reduction targets for the so-
called Annex-1 parties by 2008�2012. The required total re-
duction of all Kyoto gases together (CO2, CH4, N2O, HFCs,
PFCs, and SF6/ for all Annex 1 parties is 5% below the 1990
CO2 equivalent emissions, while the European Union has
committed itself to reduce its total emissions by 8%. Emis-
sions reported to UNFCCC are based on bottom-up inven-
tories, and guidelines for compilation have been elaborated
by IPCC (IPCC, 1996). Despite ongoing improvements of
these bottom-up inventories, signi�cant uncertainties remain,
in particular for some source categories where emission fac-
tors may be highly variable (e.g. CH4 emissions from land�ll
sites or N2O emissions from agricultural soils).

' 2005 Author(s). This work is licensed under a Creative Commons License.
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Fig. 1. TM5 grid (6��4� global grid and 3��2� and 1��1� zoom over Europe) and atmospheric CH4 monitoring sites.

Thus, it is recognized that independent veri�cation of
reported national GHG inventories would be very useful
(IPCC, 2000). Such a veri�cation could in principle be pro-
vided by top-down approaches, based on measurements of
atmospheric mixing ratios and inverse modelling.

Inverse techniques have been widely used on the global
scale to derive the sources and sinks of the major greenhouse
gases CO2 (Bousquet et al., 1999a, b; Kaminski et al., 1999a,
b; Gurney et al., 2002; R¤odenbeck et al., 2003), CH4 (Hein
et al., 1997; Houweling et al., 1999; Bergamaschi et al.,
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Fig. 2. Station Schauinsland: 222Rn (upper two panels) and SF6 (lower two panels). Measurements (black) and TM5 model results (red).
Bars represent the �1� standard deviation of measurements and model simulations during 24 h.

2000; Dentener et al., 2003a; Mikaloff Fletcher et al., 2004a,
b), and N2O (Prinn et al., 1990). Only during the last few
years have attempts been made to derive top-down estimates
on national scales, mainly based on Lagrangian back trajec-
tory or Lagrangian particle dispersion models (Vermeulen et
al., 1999; Manning et al., 2003). The use of inverse mod-
elling for veri�cation of national bottom-up inventories has
recently been discussed at an EU workshop (Bergamaschi et
al., 2004).

The global inversions obtained until now generally provide
a globally consistent picture; however, they have made little
use of synoptic scale variations (usually they use monthly
mean values of atmospheric mixing ratios) and provided re-

sults only on relatively coarse model grids. In contrast, the
studies based on Lagrangian models use short-term variabil-
ity of meteorological conditions, but are focused on a lim-
ited spatial domain (e.g. Europe) and are not, or only weakly,
coupled to the global tracer �elds.

Here we present an inverse study of European national
CH4 emissions based on the recently developed atmospheric
zoom model TM5, which allows us to overcome this scale
gap. The zooming approach facilitates � at reasonable CPU
costs � consistent high resolution simulations over Europe
(1��1�/, two-way nested into the global model domain (with
a resolution of 6��4�/.
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Observational constraints are provided by high-frequency
(quasi-continuous) measurements of atmospheric CH4 mix-
ing ratios at several western European monitoring sites (and
some global sites), complemented by a comprehensive set of
global �ask measurements.

2 Inverse modelling setup

2.1 TM5 model

We use TM5, a two-way nested atmospheric zoom model
(Berkvens et al., 1999; Krol et al., 2003, 2005). TM5 is
an off-line model that uses meteorological �elds from the
ECMWF IFS model (6-hourly forecast, based on 4D-VAR
analyses) (ECMWF, 2002). The global simulations are per-
formed at a horizontal resolution of 6��4�. The embed-
ded European zoom domain is run at a resolution of 1��1�

(Fig. 1), and is surrounded by a somewhat larger 3��2� zoom
region in order to ensure smooth transition between the dif-
ferent domains. We employ the tropospheric standard ver-
sion of TM5 with 25 vertical layers, which are de�ned as a
subset of the 60 layers of the current ECMWF operational
model. About 5 vertical TM5 layers represent the bound-
ary layer (up to �1 km), 10 the free troposphere, and 10 the
stratosphere. Advection is simulated using the slopes advec-
tion scheme (Russell and Lerner, 1981). For non resolved
vertical transport by deep and shallow cumulus convection
the parameterisation of Tiedtke (1987) is used. Vertical tur-
bulent diffusion near the surface has been parameterised ac-
cording to Holtslag and Moeng (1991), and in the free tropo-
sphere the formulation of Louis (1979) is applied. The model
transport has been extensively validated using 222Rn, SF6,
and CH4 (forward simulations), and a detailed comparison
with several other models has been performed within the EV-
ERGREEN project (http://www.knmi.nl/evergreen/) (Goede
et al., 2002). As an example we show 222Rn and SF6 simula-
tions and observations from Schauinsland (Fig. 2), illustrat-
ing in particular the reasonable simulation of synoptic varia-
tions. In addition, an intensive SF6 validation using a zoom
grid over North America has recently been performed (Peters
et al., 2004), showing in general good agreement.

Chemical destruction of CH4 by OH radicals is simulated
using pre-calculated OH �elds based on CBM-4 chemistry
(Houweling et al., 1998) and optimized with methyl chloro-
form. For the stratosphere, reactions of CH4 with Cl and
O(1D) radicals are also included, based on the 2-D pho-
tochemical Max-Planck-Institute (MPI) model (Bruehl and
Crutzen, 1993).

The derived mean tropospheric CH4 lifetime1 vs. OH is
9.4 yrs, very close to the Third Assessment Report (TAR)
recommended value of 9.6 years (IPCC, 2001).

1De�ned here as [CH 4]trop/[dCH4/dt]CH4COH
trop , assuming that

the troposphere extends from the surface up to 100 hPa.

2.2 Bottom-up inventories

Bottom-up inventories are used as a priori estimates of emis-
sions. For all anthropogenic sources except rice paddies we
use the International Institute for Applied Systems Analy-
sis (IIASA) inventory for the year 2001, based on the Re-
gional Air Pollution Information and Simulation (RAINS)
model, which has recently been extended to include green-
house gases (Klaassen et al., 2004). This inventory reports
national annual totals and has been spatially disaggregated
on 1��1� using the EDGAR 3.2 database for the year 1995
(Olivier and Berdowski, 2001). No seasonal variation in
emissions is assumed for these sources, except biomass burn-
ing, which has been monthly disaggregated as described by
Houweling et al. (1999). Monthly mean CH4 emissions from
rice paddies were taken from the Goddard Institute for Space
Studies (GISS) data base (Matthews et al., 1991), with their
annual total (79.7 Tg CH4/yr) scaled down to 60 Tg CH4/yr.
Monthly mean natural emissions from wetlands are based on
Walter and Heimann (2000) and Walter et al. (2001a, b) and
represent a multi-annual average over the years 1982�1993.
The original number of 260 Tg/yr from Walter et al. (2001a)
has been downscaled in our study to 175 Tg/yr, as Walter
et al. (2001a) argue that their value is probably overesti-
mated. Houweling et al. (2000) estimated a pre-industrial
wetland source of 130�194 Tg/yr, and it seems likely that
the reduction of CH4 emissions by cultivation and drainage
since preindustrial times may have been approximately com-
pensated by the increase of CH4 emissions induced by the
rise of temperature (Walter et al., 2001a). Emissions from
wild animals and termites, as well as CH4 uptake by soils
are from the GISS data base (Fung et al., 1991). Emissions
from the ocean were provided by Houweling et al. (1999).
The bottom-up estimates per region are compiled in Table 1.
The global and EU-15 annual totals for the different source
categories are summarized in Table 2. Emissions from EU-
15 contribute about �4% of the global total emissions (�5%
of the total anthropogenic emissions). The spatial distribu-
tion of CH4 emissions is shown in Fig. 3. Within the zoom
region over Europe the spatial resolution of the emission in-
ventory and of the TM5 model are identical (1��1�/, outside
Europe, however, the model is run at 6��4�, i.e. summing up
emissions over 24 1��1� grid cells.

2.3 Inversion technique

We use the �synthesis-inversion�/Green’s function approach
(Heimann and Kaminski, 1999; Enting, 2000), describ-
ing the total atmospheric CH4 mixing ratio in space and
time dmodel.x ; t/ as a linear combination of npara model
runs for emissions from different European and global re-
gions and emissions from different months dmodel;i.x ; t/
(base functions), including one background run (explained
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Table 1. Bottom-up emissions per region used as a priori estimates in this study. UNFCCC values (EEA, 2003; 2004) are also listed
for EU-15 countries. Furthermore, the results from the inversion (average and range from scenarios S1�S9, and estimated anthropogenic
contribution) are summarized. Values are given in Tg CH4/yr.

UNFCCC a priori used in this study a posteriori

[EEA, 2003] [EEA, 2004] anthrop. natural total avg S1-S9 range anthr.

EU-15

Germany 2.40 4.04 3.62 0.26 3.88�0.64 4.15 (3.90...4.87) 3.89
Italy 1.73 1.68 2.06 �0.04 2.02�0.40 2.15 (2.10...2.19) 2.19
France 3.08 3.01 2.68 �0.11 2.56�0.42 4.43 (3.86...4.71) 4.54
BENELUX 1.49 1.42 1.31 0.15 1.47�0.23 1.60 (1.35...1.67) 1.45
Austria 0.43 0.36 0.33 �0.01 0.32�0.05 0.30 (0.28...0.30) 0.31
Spain 1.92 1.92 1.91 �0.06 1.84�0.32 2.00 (1.96...2.04) 2.06
Portugal 0.51 0.39 0.39 �0.02 0.37�0.08 0.38 (0.38...0.39) 0.40
United Kingdom 2.20 2.19 3.39 �0.04 3.35�0.82 4.21 (3.91...4.40) 4.25
Ireland 0.60 0.60 0.66 �0.01 0.64�0.12 0.34 (0.26...0.75) 0.36
Greece 0.53 0.53 0.42 �0.01 0.40�0.07 0.40 (0.39...0.40) 0.41
Sweden 0.28 0.28 0.22 0.85 1.08�0.44 0.92 (0.86...0.99)
Finland 0.26 0.26 0.24 2.98 3.23�1.36 0.27 (�0.27...1.30)
Denmark 0.27 0.28 0.34 �0.01 0.34�0.06 0.33 (0.30...0.34) 0.34
Total EU-15 15.69 16.96 17.59 3.92 21.51�1.92 21.47 (21.05...22.03) 17.551

20.472

Other European

Switzerland 0.17 �0.01 0.17�0.03 0.19 (0.18...0.20)
Norway 0.22 0.00 0.22�0.05 0.22 (0.22...0.22)
North East Europe 5.11 0.65 5.76�1.00 4.28 (4.02...4.63)
South East Europe 6.84 �0.09 6.75�1.19 4.77 (4.56...5.04)

Global regions

Ukraine+Belarus+Moldova 6.72 3.51 10.23�1.90 8.75 (8.60...9.00)
Alaska+Canada 2.84 6.51 9.35�3.80 10.87 (9.94...11.69)
USA (without Alaska) 23.68 4.60 28.28�4.27 35.80 (35.01...36.76)
Tropical America 11.87 8.55 20.41�3.33 25.00 (23.30...27.64)
South America 25.51 33.62 59.16�11.75 49.02 (42.72...53.86)
North Africa 19.86 22.53 42.35�8.11 21.07 (15.08...27.70)
South Africa 18.23 18.70 36.96�7.29 48.71 (44.98...52.28)
Near East + Central Asia 19.48 1.66 21.15�4.47 18.71 (18.24...19.24)
Russia 27.87 16.02 43.89�11.36 28.79 (27.14...29.99)
East Asia 57.15 2.72 59.87�9.79 45.33 (43.30...48.73)
India + neighbours 63.96 0.55 64.48�10.73 81.57 (75.21...88.33)
Tropical Asia 31.45 29.06 60.50�11.14 61.75 (54.79...68.22)
Australia + New Zealand 6.78 8.06 14.84�3.67 10.03 (9.24...10.85)
Greenland 0.01 0.19 0.20�0.09 0.15 (0.13...0.19)
Antarctica 0.00 0.00 0.00�0.00 0.00 (0.00...0.00)
Ocean 2.39 17.17 19.56�8.37 19.56 (not optimized)

Total 347.73 177.94 525.65�29.63 496.00 (470.41...521.72)

1 assuming EU-15 natural sources of 3.92 Tg CH4/yr
2 assuming EU-15 natural sources of 1.0 Tg CH4/yr
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Fig. 3. Spatial distribution of CH4 emissions. Upper panel shows the global a priori distribution (from bottom-up inventories), and lower left
panel the European a priori distribution. Lower right panel shows a posteriori distribution for Europe (average for scenarios S1�S7). Anuual
average of total emission per 1��1� grid cell [kg CH4/s grid cell].

below):

dmodel.p ; x ; t/ D
nparaX

iD1

pidmodel;i.x ; t/ (1)

with scaling factors pi (summarized as vector p/.
The European domain has been disaggregated into indi-

vidual countries for all EU-15 countries (except Belgium,
Netherlands, and Luxemburg, which are treated as one region
(BENELUX)), Norway and Switzerland. Eastern Europe is
treated as two separate regions (North East Europe, South

East Europe), and all non-European land masses are sepa-
rated into larger regions (also based on national boundaries,
but in most cases combining several countries). The de�ni-
tion of regions is illustrated in Fig. 4. The spatial distribution
of countries and their fractional contribution to 1��1� grid
boxes is based on Li (1996).

The temporal disaggregation is performed on a monthly
basis, and the individual base functions represent the im-
pact of the emissions from one region and one month. The
photochemical sinks (OH, stratospheric O(1D) and Cl) are
included in the base functions directly (in contrast to other

Atmos. Chem. Phys., 5, 2431� 2460, 2005 www.atmos-chem-phys.org/acp/5/2431/



P. Bergamaschi et al.: Inverse modelling of national and European CH4 emissions 2437

Fig. 4. Global and European regions used for the Green’s functions based inversion.

approaches which separate CH4 sources and sinks; Hein et
al., 1997; Houweling et al., 1999).

This study is analyzing the year 2001. Global CH4 mixing
ratios have been initialised using results of a previous inver-
sion. Furthermore, we introduce 2 spin-up months prior to
year 2001 (in order to allow some adaptation to potential er-
rors of the initialisation) and simulate also January 2002 (to
account for the delayed in�uence of emissions at monitoring
sites). Thus, a total of 2+12+1=15 base functions are cal-
culated for each region. In addition, we calculate one base
function for the in�uence of the model initialization, which
accounts for the further development of the initial state of the
atmosphere (at 1 November 2000). For this base function,
only photochemical sinks are active, but no sources. Conse-
quently, the total number of base functions is npara=(15�33
regions)+1=496. Output of each base function is sampled at

hourly intervals, and for comparison with observations aver-
aged to daily mean values.

For the inversion, we follow the Bayesian approach includ-
ing the a priori knowledge from the bottom-up inventories
with the usual de�nition of the cost function S:

S.p/ D hdmodel.p / � ddata; � �1
d .dmodel.p / � ddata/i

Chp � p0; � �1
p0

.p � p0/i; (2)

where
p is a vector containing all model parameters (i.e. emissions
from each region and month, and scaling of background base
function); dimension npara

p0 is the a priori estimate of p ; dimension npara

ddata is a vector containing the observations (daily mean mix-
ing ratios at monitoring sites); dimension ndata

www.atmos-chem-phys.org/acp/5/2431/ Atmos. Chem. Phys., 5, 2431� 2460, 2005
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Table 2. Global and EU-15 bottom-up emissions per source cate-
gory in Tg CH4/yr.

a priori [Tg CH4/yr]
global EU-15

anthropogenic sources

coal 30.7 1.2
oil and gas 50.9 2.0
enteric fermentation 86.3 6.1
manure 14.2 2.0
rice 59.7 0.1
biomass burning 32.3 0.5
waste 73.6 5.7

natural sources

wetlands 174.5 4.4
wild animals 5.0 0.1
termites 19.2 0.1
ocean 17.0 0.0

total sources 563.4 22.2
soil uptake �37.8 �0.7
total sources + soil 525.7 21.5

dmodel is a vector containing the modelled mixing ratios cor-
responding to the available observations; dimension ndata
�d and �p0 are the covariance matrices of the observational
data (dimension ndata�ndata/ and a priori estimates of the pa-
rameters (dimension npara�npara/, respectively, and
hx; yi denotes the scalar product. Vectors are identi�ed by
Bold Italics, matrices are in Bold Roman.

The minimum of the cost function is calculated according
Tarantola and Valette (1982) as:

p D p0 C
h
GT � � �1

d � G C � �1
p0

i �1
� GT

�� �1
d � [ddata � G � p0] (3)

with

Gij D
@dmodel;i

@p j
(4)

and �1 denoting the inverse matrix and T the transposed ma-
trix. The dimension of Gij is ndata�npara.

The a posteriori covariance is given as:

�p D
h
GT � � �1

d � G C � �1
p0

i �1
: (5)

2.3.1 Parameter covariance matrix

For most bottom-up inventories the uncertainties are not
speci�ed in detail. Furthermore, correlations of emissions
(e.g. of different grid cells or different regions) are usually
not known or not speci�ed, which makes a breakdown (or
aggregation) of uncertainties for different spatial or temporal

scales dif�cult. In the absence of this information we intro-
duce a simple adhoc approach: We generally assume an un-
certainty of 100% per region and per month for each individ-
ual source category (for the categories listed in Table 2). An
exception is enteric fermentation, for which an uncertainty of
50% per region and month is assumed. Furthermore, we as-
sume a correlation rij between emissions of two consecutive
months as follows:

rij D 0:9 �
emin

emax
; (6)

where emin and emax are the minimum and maximum
monthly emissions of the respective region and source cat-
egory. Thus for source categories for which no seasonality
is assumed, the correlation coef�cient for emissions of con-
secutive months is 0.9, while for sources with seasonality the
correlation is smaller. Emissions from different source cate-
gories are assumed to be uncorrelated; i.e. the uncertainty of
total emissions per region and month is calculated as:

� 2 D
nX

iD1

� 2
i (7)

(where �i are the uncertainties per source category).
Note that the relative contribution from different source

categories within individual regions is determined by the a
priori inventory only and not further optimized in the inver-
sion.

Emissions of different regions are assumed to be uncorre-
lated (which is an assumption that is not strictly correct, as
in many bottom-up inventories the same underlying assump-
tions (e.g. emission factors) are used for different countries).
The assumed a priori parameter covariance matrix is shown
in Fig. 8, with non-diagonal elements only within each re-
gion for emissions of different months. Note, however, that
the a posteriori covariance matrix shows signi�cant correla-
tions between different regions (as will be further discussed
in Sect. 3.2).

Using the correlation coef�cients the uncertainty of total
emissions per year can be calculated from the monthly un-
certainties as:

� 2 D
nX

iD1

nX

jD1

rij �i�j (8)

(i; j : sum over all months; applicable both for a priori and a
posteriori uncertainties).

2.3.2 Data covariance matrix

The data covariance matrix �d contains the uncertainties of
observations and their correlations. It plays an important role
in the inversion, giving high weight to observations with low
uncertainty and vice versa.

We generally assume a measurement uncertainty of
1CH4 meas=3 ppb for all data from all sites. However, simi-
lar to an approach described by R¤odenbeck et al. (2003), we

Atmos. Chem. Phys., 5, 2431� 2460, 2005 www.atmos-chem-phys.org/acp/5/2431/
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also include an estimate of the potential model error in the
data covariance matrix. We consider the following contribu-
tions:

1CH4 mod1;i : The standard deviation between observa-
tions and model results of hourly values. This accounts for
potential de�ciencies of the model to simulate the daily cycle
correctly.

1CH4 mod2;i : If not enough hourly observations are avail-
able to characterize the diurnal cycle, the standard deviation
of hourly model results only is taken instead of 1CH4 mod1.

1CH4 mod3;i : To estimate the potential representativeness
error, we calculate the spatial gradient of modelled CH4 mix-
ing ratios at the monitoring sites, using all (horizontally and
vertically) adjacent model grid cells. 1CH4 mod3;i is calcu-
lated as the daily average of the average gradient in all direc-
tions.

The �nal data uncertainty is calculated as:

�
1CH4 data;i

� 2 D
�
1CH4 meas;i

� 2 C
�
max

�
1CH4 mod1=2;i; 1CH4 mod3;i

�� 2 (9)

(index i is used here as data index, i.e. it refers to one
particular daily average).

For most NH stations the calculated model uncertainties
are typically much larger than the measurement uncertainty
1CH4 meas, while high-latitude SH stations are dominated by
1CH4 meas.

Due to different temporal resolution of parameters
(monthly emissions) and observations (daily mean values),
the cost function is strongly biased towards the observations.
The dimension of parameter space is npara=496, while typi-
cal dimensions of the observation space (e.g. scenario S1, see
below) are on the order of ndata�6500. In order to reduce this
bias, we introduce a weighting factor for the observations:

�
1CH4 data;i

� 2 !
1

�i

�
1CH4 data;i

� 2 (10)

Taking into account the different sampling frequency of con-
tinuous measurements (averaged to daily mean values) and
�ask samples (typically one sample per week), we assign
different weighting factors for the two sample types. The
default values chosen are �i FM=1/2 for �ask samples and
�i CM=1/6 for daily averages from continuous measurements.
The rationale of choosing a ratio of 3 for the weighing factors
of the two sampling types is that the timescale for synoptic
variations is typically �3 days and that air masses originat-
ing from the same region(s) contain similar information (i.e.
correlated information for different days of particular event).
The impact of these weighting factors has been investigated
in some sensitivity experiments (see Sect. 3.2.3).

Except for some test experiments (see Sect. 3.2.3), the cor-
relation between observations has been assumed to be zero
(i.e. there are only diagonal terms in the data covariance ma-
trix).

2.4 Observations

Observations were used from various networks or groups.
Measurement sites are compiled in Table 3. Continuous
observations at 5 German sites are from the operational
network of the German Umweltbundesamt (UBA). Further
continuous European observations have been provided by
ECN (at Cabauw (CB4), the Netherlands, which is also
part of the CHIOTTO/CARBOEUROPE-IP network), RAM-
CES/LSCE (at Saclay (SAC), France), the AGAGE net-
work (Mace Head (MHD), Ireland, and further global sites)
(Prinn et al., 2000), and the WDCGG data base (at Kol-
lumerwaard, the Netherlands (KOL) and at Izana, Tenerife
(IZO)) (WMO, 2003). Furthermore, we use weekly CH4
measurements from the NOAA/CMDL global cooperative
air sampling network (Dlugokencky et al., 1994, 2003) and
quasi-continuous measurements from two CMDL observa-
tories at Barrow, Alaska (BRW) and Mauna Loa, Hawaii
(MLO) (Dlugokencky et al., 1995) (CMDL data are available
from: ftp://ftp.cmdl.noaa.gov/ccg/). We generally apply the
NOAA/CMDL CH4 calibration scale. Observations from the
AGAGE network have been converted to the NOAA/CMDL
scale by applying a factor of 0.988 (Prinn et al., 2000), and
for observations at Kollummerwaard (KOL), which are cali-
brated versus a NIST standard, a conversion factor of 0.985
has been applied (WMO, 2003). All other observations are
already reported versus the NOAA/CMDL scale.

2.4.1 Data selection

Usually the full observational records are used except data
which are �agged for technical problems or local contami-
nation. However for a few sites we applied some additional
data selection criteria:

At the two mountain sites Schauinsland (SIL) and
Zugspitze (ZUG) sometimes upslope winds are observed,
in particular during summer daytime. These upslope winds
are normally not reproduced by the model, not even on the
1��1� resolution. Therefore, for these two sites only ob-
servations and model results between 20:00 and 09:00 LT
are used. The impact of this data selection is investigated in
some sensitivity experiments (Sect. 3.2.2).

Furthermore, we apply in some model experiments a data
selection for MHD, based on the �pollution �ag� provided
by AGAGE network.

We generally omit Neuglobsow (NGB) and Trinidad Head
(THC) from the inversion, as NGB is very much dominated
by regional emissions and model results for THC appear
questionable as the corresponding 6��4� grid cells cover
land masses with signi�cant CH 4 emissions and model re-
sults are unlikely to represent such coastal site correctly (Pe-
ters et al., 2004).

In addition to the abovementioned site-speci�c selection
criteria we generally select outliers, identi�ed by a �rst it-
eration of the inversion. All observations which differ from
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Table 3. Atmospheric monitoring sites used in this study. �CM� denotes (quasi) continuous measurements, i.e. with a typical time resolution
of 1 h or better, and �FM� denotes �ask measurements (typical sampling frequency 1/week). The 1CH4 data column gives the average data
uncertainty (according to Eq. 9), evaluated for scenario S1. The last columns specify the sites used in the different inversion scenarios.

ID station name network lat. lon. alt. meas. 1CH4 data S1 S2 S3 S4
[�] [�] [m a.s.l.] type (avg. S1) S5 S7

[ppb] S6
S8
S9

ALT Alert, Nunavut, Canada NOAA/CMDL 82.45 �62.52 210 FM 5.4 x x x x
ZEP Ny-Alesund, Svalbard, Spitsbergen NOAA/CMDL 78.90 11.88 474 FM 6.8 x x x x
SUM Summit, Greenland NOAA/CMDL 72.58 �38.48 3238 FM 5.4 x x x x
BRW Barrow, Alaska, USA NOAA/CMDL 71.32 �156.60 11 CM1 12.2 x x x x
PAL Pallas, Finland NOAA/CMDL 67.97 24.12 560 FM3

STM Ocean station M, Norway NOAA/CMDL 66.00 2.00 7 FM 7.3 x x x x
ICE Heimay, Vestmannaeyjar, Iceland NOAA/CMDL 63.25 �20.15 100 FM 10.6 x x x x
BAL Baltic Sea, Poland NOAA/CMDL 55.50 16.67 7 FM 14.8 x x x x
CBA Cold Bay, Alaska, USA NOAA/CMDL 55.20 �162.72 25 FM 10.8 x x x x
ZGT Zingst, Germany UBA/WDCGG 54.44 12.72 1 CM 32.9 x x x
KOL Kollumerwaard, Netherlands WDCGG 53.33 6.28 0 CM 98.7 x x x
MHD Mace Head, Ireland AGAGE 53.32 �9.85 30 CM1 21.0 x x x x2

NGS Neuglobsow, Germany UBA/WDCGG 53.14 13.03 65 CM
SHM Shemya Island, Alaska, USA NOAA/CMDL 52.72 174.10 40 FM 7.2 x x x x
CB4 Cabauw, Netherlands, 200.0m ECN 51.97 4.93 200 CM 53.4 x x x x
DEU Deusselbach, Germany UBA/WDCGG 49.76 7.05 480 CM 32.7 x x
SAC Saclay, France RAMCES/LSCE 48.75 2.16 200 CM 37.4 x x
SIL Schauinsland, Germany UBA/WDCGG 47.91 7.91 1205 CM 11.5 x x x x
ZUG Zugspitze, Germany UBA/WDCGG 47.42 10.98 2650 CM 9.2 x x x x
HUN Hegyatsal, Hungary NOAA/CMDL 46.95 16.65 344 FM 26.5 x x x x
LEF Park Falls, Wisconsin, USA NOAA/CMDL 45.93 �90.27 868 FM 13.0 x x x x
KZD Sary Taukum, Kazakhstan NOAA/CMDL 44.45 77.57 412 FM 22.3 x x x x
UUM Ulaan Uul, Mongolia NOAA/CMDL 44.45 111.10 914 FM 37.8 x x x x
BSC Black Sea, Constanta, Romania NOAA/CMDL 44.17 28.68 3 FM 41.9 x x x x
KZM Plateu Assy, Kazakhstan NOAA/CMDL 43.25 77.88 2519 FM 15.3 x x x x
THC Trinidad Head, California AGAGE 40.80 �124.16 107 CM
NWR Niwot Ridge, Colorado, USA NOAA/CMDL 40.05 �105.58 3475 FM 8.3 x x x x
UTA Wendover, Utah, USA NOAA/CMDL 39.90 �113.72 1320 FM 13.2 x x x x
PTA Point Arena, California, USA NOAA/CMDL 38.95 �123.73 17 FM 10.9 x x x x
AZR Terceira Island, Azores, Portugal NOAA/CMDL 38.77 �27.38 40 FM 5.4 x x x x
TAP Tae-ahn Peninsula, Republic of Korea NOAA/CMDL 36.73 126.13 20 FM 33.1 x x x x
WLG Mt. Waliguan, Peoples Republic of China NOAA/CMDL 36.29 100.90 3810 FM 17.5 x x x x
BME St. Davis Head, Bermuda, UK NOAA/CMDL 32.37 �64.65 30 FM 11.5 x x x x
BMW Tudor Hill, Bermuda, UK NOAA/CMDL 32.27 �64.88 30 FM 10.8 x x x x
WIS Sede Boker, Negev Desert, Israel NOAA/CMDL 31.13 34.88 400 FM 13.6 x x x x
IZO Izana, Canary Islands, Spain WDCGG 28.30 �16.48 2360 CM1 9.5 x x x x
MID Sand Island, Midway, USA NOAA/CMDL 28.22 �177.37 4 FM 9.8 x x x x
KEY Key Biscayne, Florida, USA NOAA/CMDL 25.67 �80.20 3 FM 48.1 x x x x
ASK Assekrem, Algeria NOAA/CMDL 23.18 5.42 2728 FM 5.7 x x x x
MLO Mauna Loa, Hawai, USA NOAA/CMDL 19.53 �155.58 3397 CM1 9.3 x x x x
KUM Cape Kumukahi, Hawaii, USA NOAA/CMDL 19.52 �154.82 3 FM 8.5 x x x x
GMI Mariana Islands, Guam NOAA/CMDL 13.43 144.78 2 FM 9.4 x x x x
RPB Ragged Point, Barbados AGAGE 13.17 �59.43 45 CM1 8.9 x x x x
CHR Christmas Island, Republic of Kiribati NOAA/CMDL 1.70 �157.17 3 FM 7.9 x x x x
SEY Mahe Island, Seychelles NOAA/CMDL �4.67 55.17 3 FM 14.1 x x x x
ASC Ascension Island, UK NOAA/CMDL �7.92 �14.42 54 FM 6.4 x x x x
SMO Cape Matatula, Tutuila, American Samoa AGAGE �14.23 �170.56 77 CM1 7.6 x x x x
NMB Gobabeb, Namibia NOAA/CMDL �23.57 15.03 408 FM 18.1 x x x x
EIC Easter Island, Chile NOAA/CMDL �27.15 �109.45 50 FM 3.3 x x x x
CGO Cape Grim, Tasmania, Australia AGAGE �40.41 144.41 94 CM1 8.9 x x x x
CRZ Crozet Island, France NOAA/CMDL �46.45 51.85 120 FM 3.3 x x x x
TDF Tierra Del Fuego, La Redonda Isla, Argentinia NOAA/CMDL �54.87 �68.48 20 FM 3.3 x x x x
PSA Palmer Station, Antarctica, USA NOAA/CMDL �64.92 �64.00 10 FM 3.1 x x x x
SYO Syowa Station, Antarctica, Japan NOAA/CMDL �69.00 39.58 11 FM 3.1 x x x x
HBA Halley Station, Antarctica, UK NOAA/CMDL �75.58 �26.50 10 FM 3.0 x x x x
SPO South Pole, Antarctica, USA NOAA/CMDL �89.98 �24.80 2810 FM 3.0 x x x x

1 site for which also NOAA/CMDL �ask measurements are available (but not not used in our analysis)
2 model output at virtual site, shifted �2� W and selected observations only
3 site Pallas: sampling started only end of 2001
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model results more than a certain threshold are rejected and
not used for the second (�nal) inversion:

selection criteria:
�
�CH4 model;i�CH4 obs;i

�
� > �1CH4 data;i (11)

with �=2.

This approach prevents single outliers from introducing a
signi�cant bias to the inversion.

The applied threshold to �=2 leads to a rejection of 12�
14% of data points for the scenarios S1�S9 discussed in
Sect. 3. Relaxing the threshold to �=3 strongly reduces the
percentage of rejected data to �4%, but with an only very
small effect on the a posteriori emission estimates.

3 Results and discussion

3.1 Synoptic variability and regional signal

In the following we present the optimized model results
along with observations for the European and global moni-
toring sites. An apparent advantage of the Green’s function
approach (e.g. compared to 4DVAR techniques) is that it di-
rectly provides the attribution of the atmospheric signal to
the chosen regions. Figure 5 shows the full year 2001 for
Schauinsland (SIL). Figures 6 and 7 show 2 months (Septem-
ber and October 2001) of further European and several global
sites, respectively. Plots for the complete year 2001 (sim-
ilar to Fig. 5) are available for all sites on our ftp server
(ftp://ftp.ei.jrc.it/pub/bergamas/CH4BR/). The �gures high-
light those regions that contribute most to the atmospheric
signal (based on the annual average). We de�ne as �direct
source contribution� of a certain region the CH 4 emitted in
the same month in which the observation has been made plus
the CH4 originating from previous months, weighted with a
decay function and a time constant of 31 days. This proce-
dure avoids that CH4 that was emitted several months ago
and �lost its identity� after being cycled over the hemisphere
is still attributed to a certain region. The �decayed part�
is added to the background (based on the background base
function describing the evolution of the initial state of the at-
mosphere). This total background is displayed in light grey
in all �gures. The contributions of the remaining regions,
which are not among the top 6�10 contributors, are summa-
rized in dark grey (�other�). Hourly observations are shown
as black dots, and daily mean values by the black error bars,
with the small error bar indicating the 1� standard devia-
tion of hourly values around the daily mean value, and the
large error bar indicating the assigned overall �data uncer-
tainty�, including also our estimate of the model uncertainty
(1CH4 data according to Eq. 9). Grey data points are those
which have been rejected by the iterative inversion.

3.1.1 European sites

In general, all European sites are characterized by consider-
able synoptic variability, i.e. variations due to varying origin
of air masses, with typical time scales of a few days. Basing
the inversion on daily mean values (instead of monthly means
as used for most global inverse studies) directly exploits the
information content of these synoptic events in order to de-
rive the emissions from various regions or countries.

A very favourable monitoring site for this purpose is
Schauinsland (SIL), located in the Black Forest (South West
Germany) at an altitude of 1205 m (Fig. 5). During night-
time, the site is usually above the boundary layer and thus
dominated by the large-scale in�uence of Western European
CH4 sources. Some in�uence of upslope winds during day-
time (in particular in summer) from nearby regional sources
(mainly from the Rhine valley) has been eliminated in the
analysis by selecting only night-time values for the inver-
sion (see also Sects. 2.4.1 and 3.2.2). The strongest di-
rect source signal is from France (13.6 ppb), followed by
Germany (8.4 ppb). Further signi�cant European contribu-
tions originate from UK (4.5 ppb), BENELUX (2.4 ppb), and
Switzerland (2.1 ppb). However, long range transport also
plays an important role, particularly from North America
(USA (6.8 ppb) and Canada + Alaska (3.3 ppb)), but also
from Russia (3.9 ppb) and East Asia (3.4 ppb). As expected,
the in�uence of these more distant regions is much less vari-
able than that of European regions. The seasonal CH4 cy-
cle appears at this site (as at most other sites with signi�-
cant direct source in�uence) mainly in the background, with
typical background values of �1800 ppb during winter and
�1750 ppb during summer. The annual average of the total
direct source contribution is 65 ppb, however, during indi-
vidual synoptic events, CH4 elevations of 150�200 ppb can
be reached.

Other European sites are shown in Fig. 6, ordered from
North to South. The character of these sites is very dif-
ferent, ranging from sites with very strong total direct
source contributions of >100 ppb (Kollumerwaard (KOL),
Cabauw (CB4), Deusselbach (DEU), Saclay (SAC), Hegy-
atsal (HUN), and Black Sea (BSC)) to continental back-
ground sites (Zugspitze (ZUG), total direct source contri-
bution 41.7 ppb) and several Atlantic background sites with
typical total direct source contributions of 30�40 ppb (Ocean
Station M (STM), Heimay (ICE), Terceira Islands (AZR),
and Izana (IZO)).

All European sites show a considerable synoptic scale
variability and concomitant change of region of in�uence.
In addition, short-term variations of the background are con-
siderable (on the order of 20�30 ppb), particularly visible
at sites with small direct source contributions. This con-
�rms the importance of coupling European simulations with
a global model.

Some of the European sites (and the majority of global
sites) employ only �ask sampling, with typical sampling
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Fig. 5. Monitoring site Schauinsland: Observed and modelled CH4 mixing ratios for 2001. Colors highlight in�uence from different regions
or countries (see legend and description in Sect. 3.1).
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Fig. 6. Observed and modelled CH4 at European sites for September and October 2001.
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Fig. 6. Continued.
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Fig. 6. Continued.

intervals of 1 sample/week. For sites with strong regional
source contributions (e.g. HUN and BSC), the �ask observa-
tions provide a fragmentary picture only. Nevertheless, also
these observations are useful for further constraining the in-
version (as will be shown in Sect. 3.2.2 and Table 6).

3.1.2 Global sites

A selected set of global sites is shown in Fig. 7 (for the
complete set, see the �gures available on our ftp server). In
general, most global sites have a weaker total �direct source
contribution� than the European continental sites, and hence
more remote character. In the NH many global sites are in
the range of �30�70 ppb. The total direct source contribu-
tion decreases further at the tropical sites (10�30 ppb) and in
the extra-tropical SH. All sites south of 45� S exhibit a to-
tal direct source contribution of <10 ppb, and the minimum

is reached at SPO (3.1 ppb). The �gure illustrates the con-
sistency of modelled CH4 mixing ratios with measurements
throughout the globe, including the high latitude SH back-
ground sites. Although this study does not primarily focus on
the global inversion, consistent global CH4 �elds are impor-
tant as signi�cant long range transport is seen at all European
sites.

Several remote marine sites are signi�cantly in�uenced by
variations of the background rather than direct source in�u-
ence (in particular in the tropics (e.g. Mauna Loa (MLO),
Cape Kumukahi (KUM), Ragged Point (RPB)), where the
average NS gradient of CH4 mixing ratios is large).

Illustrative is the comparison of the two �adjacent� sites,
MLO and KUM. Separated by less than 100 km, but very dif-
ferent in their altitude (3397 m vs. 3 m a.s.l.), they show very
different regional contributions. For example, the average
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Fig. 7. Observed and modeled CH4 at some global sites for September and October 2001.
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Fig. 7. Continued.
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Fig. 7. Continued.

contribution from USA is 9.1 ppb at KUM, but only 2.4 ppb
at MLO, although the total direct source contribution is com-
parable at both sites (MLO: 25.6 ppb, KUM 31.6 ppb).

At Cape Grim (CGO), events with signi�cantly elevated
CH4 mixing rations are observed, which are usually not (or
not well) reproduced by the model. Many of these events,
however, are rejected by the iterative inversion procedure (ac-
cording Eq. 11).

In general, the measurements at all European and most
global sites are reproduced quite well, including the 3-D spa-
tial gradient, the seasonal cycles and the short-term synoptic
variability.

3.2 A posteriori inventories and sensitivity experiments

A posteriori emissions are compiled for various scenarios in
Tables 4 and 5 and summarized in Table 1. The base scenario

is denoted S1, while scenarios S2�S4 use slightly different
sets of sites; in scenarios S5�S7 different weighting factors
for the observations were applied, and in scenarios S8�S9
the in�uence of the OH sink is investigated. First we discuss
some features which are apparent in all scenarios, while the
in�uence of parameters which have been varied in the indi-
vidual scenarios are discussed in the subsequent sections.

For the European regions, the strongest constraints are
on emissions from Germany, France, BENELUX, UK, and
Ireland due to the set of available observations, which is
strongly biased towards Western European countries. Emis-
sions from several of these countries are higher than a priori
values, especially France, where the a posteriori emission in-
crease is +73% (average of scenarios S1�S9), while smaller
increases are derived for Germany (+7%), UK (+26%), and
BENELUX (+9%). The a posteriori total for all EU-15 coun-
tries, however, is virtually identical to the a priori value,
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Table 4. Overview of various inversion scenarios. Scenarios S1�S4 use different sets of sites. In scenarios S5�S7 the weighting factors
�i FM and �i CM for the observations are varied, while in scenarios S8 and S9 the in�uence of the OH sink has been investigated (scaling of
global OH �eld with �OH/. ndata denotes the dimension of the observational space (i.e. number of observations), and ndata eff is the �effective

dimension�, i.e. weighted with the �i FM and �i CM of the individual observations. Chi-square, de�ned as �2 D 1
n

nP

iD1

[CH4 model;i�CH4 obs;i]2

1CH2
4 data;i

,

is given for a priori and a posteriori (1st and 2nd iteration) model simulations.

S1 S2 S3 S4 S5 S6 S7 S8 S9
sites all as S1 except as S1 except as S1 but as S1 as S1 as S3 as S1 as S1

DEU, SAC ZGT, KOL, MHD�2� W
DEU, SAC and sel. obs.

�i FM 1/2 1/2 1/2 1/2 1/4 1/6 1/6 1/2 1/2
�i CM 1/6 1/6 1/6 1/6 1/12 1/18 1/18 1/6 1/6
�OH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.05
npara 496 496 496 496 496 496 496 496 496
ndata 6494 5992 5264 6396 6468 6455 5230 6501 6485
ndata eff 1702.3 1619.3 1496 1684.3 845.5 561.7 493.9 1703.8 1700.5
�2 (a priori) 3.62 3.67 3.70 3.72 3.62 3.62 3.70 5.03 2.20
�2 (a posteriori, 1st iteration) 1.96 1.96 1.98 2.05 2.01 2.04 2.07 1.95 1.98
�2 (a posteriori, 2nd iteration) 0.76 0.77 0.77 0.77 0.78 0.79 0.80 0.76 0.77

Table 5. A posteriori emissions from scenarios S1�S9. Emissions are given in Tg CH 4/yr (�1� ).

a priori S1 S2 S3 S4 S5 S6 S7 S8 S9

EU-15

Germany 3.88�0.96 3.96�0.27 4.87�0.32 4.52�0.42 3.90�0.27 3.92�0.36 3.94�0.41 4.32�0.59 3.94�0.27 3.96�0.27
Italy 2.02�0.59 2.17�0.42 2.15�0.43 2.16�0.43 2.13�0.43 2.13�0.48 2.10�0.51 2.14�0.51 2.16�0.42 2.19�0.43
France 2.56�0.63 4.58�0.25 4.62�0.34 4.71�0.35 4.48�0.25 4.32�0.31 4.13�0.35 3.86�0.46 4.57�0.25 4.60�0.25
BENELUX 1.47�0.34 1.66�0.16 1.60�0.17 1.35�0.19 1.66�0.16 1.67�0.20 1.66�0.23 1.47�0.25 1.66�0.16 1.66�0.16
Austria 0.32�0.08 0.30�0.07 0.29�0.07 0.28�0.07 0.30�0.07 0.30�0.07 0.30�0.07 0.30�0.07 0.30�0.07 0.30�0.07
Spain 1.84�0.49 2.03�0.43 2.04�0.44 2.00�0.44 1.99�0.43 1.98�0.45 1.96�0.46 1.97�0.46 2.00�0.43 2.03�0.43
Portugal 0.37�0.11 0.39�0.11 0.39�0.11 0.38�0.11 0.38�0.11 0.38�0.11 0.38�0.11 0.38�0.11 0.39�0.11 0.39�0.11
UK 3.35�1.21 4.39�0.41 4.21�0.44 3.97�0.46 4.00�0.43 4.33�0.54 4.27�0.62 3.91�0.68 4.38�0.41 4.40�0.41
Ireland 0.64�0.17 0.26�0.06 0.27�0.06 0.28�0.06 0.75�0.15 0.31�0.08 0.34�0.09 0.35�0.09 0.26�0.06 0.26�0.06
Greece 0.40�0.11 0.39�0.11 0.39�0.11 0.39�0.11 0.39�0.11 0.40�0.11 0.40�0.11 0.40�0.11 0.39�0.11 0.39�0.11
Sweden 1.08�0.46 0.91�0.37 0.89�0.38 0.97�0.38 0.86�0.37 0.92�0.40 0.97�0.42 0.99�0.42 0.89�0.37 0.92�0.37
Finland 3.23�1.40 �0.10�0.80 �0.27�0.79 �0.21�0.81 �0.12�0.80 0.68�0.95 1.26�1.04 1.30�1.05 0.00�0.80 �0.14�0.80
Denmark 0.34�0.09 0.34�0.07 0.33�0.07 0.30�0.08 0.34�0.07 0.34�0.08 0.33�0.08 0.32�0.09 0.34�0.07 0.34�0.07
Total EU-15 21.51�2.40 21.28�1.02 21.77�1.04 21.11�1.07 21.05�1.02 21.69�1.24 22.03�1.37 21.71�1.45 21.28�1.02 21.31�1.02

Other European

Switzerland 0.17�0.05 0.19�0.05 0.19�0.05 0.20�0.05 0.20�0.05 0.19�0.05 0.18�0.05 0.19�0.05 0.19�0.05 0.20�0.05
Norway 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07 0.22�0.07
North East Europe 5.76�1.49 4.15�0.56 4.02�0.57 4.24�0.63 4.16�0.56 4.44�0.71 4.57�0.81 4.63�0.87 4.17�0.56 4.17�0.56
South East Europe 6.75�1.78 4.65�0.77 4.59�0.77 4.56�0.77 4.79�0.75 4.91�0.95 5.04�1.07 4.99�1.07 4.83�0.75 4.60�0.77

Global regions

Ukraine + Belarus + Moldova 10.23�2.59 8.77�1.25 8.72�1.26 9.00�1.28 8.75�1.25 8.60�1.50 8.63�1.64 8.78�1.66 8.69�1.25 8.79�1.25
Alaska + Canada 9.35�4.13 11.26�0.94 10.71�0.96 10.62�0.96 11.69�0.92 10.61�1.25 10.45�1.48 9.94�1.48 11.11�0.94 11.41�0.94
USA 28.28�6.25 35.59�1.82 35.04�1.82 35.14�1.82 36.76�1.82 36.20�2.41 36.20�2.82 35.85�2.82 35.01�1.82 36.39�1.82
Tropical America 20.41�4.67 25.76�3.23 25.67�3.23 25.61�3.23 25.41�3.23 24.02�3.68 23.30�3.90 23.33�3.90 24.26�3.22 27.64�3.23
South America 59.16�14.69 48.12�5.23 48.07�5.23 48.05�5.23 48.20�5.23 50.28�6.14 50.98�6.69 50.91�6.69 42.72�5.23 53.86�5.22
North Africa 42.35�10.16 18.57�3.27 18.72�3.27 18.83�3.27 17.78�3.26 24.82�4.23 27.35�4.76 27.70�4.77 15.08�3.21 20.81�3.27
South Africa 36.96�9.30 50.25�4.66 50.24�4.66 50.19�4.66 50.48�4.66 46.53�5.41 44.98�5.83 45.00�5.83 48.42�4.66 52.28�4.66
Near East + Central Asia 21.15�6.58 19.07�2.39 18.89�2.40 18.68�2.40 19.24�2.40 18.24�3.12 18.31�3.57 18.28�3.57 18.66�2.39 18.97�2.40
Russia 43.89�15.07 29.30�2.09 29.96�2.09 29.96�2.11 28.59�2.07 28.25�2.70 27.14�3.13 27.68�3.13 28.29�2.08 29.99�2.09
East Asia 59.87�13.78 43.96�3.19 44.00�3.19 44.15�3.19 43.89�3.19 46.61�4.25 48.51�5.00 48.73�5.01 43.30�3.19 44.80�3.19
India + neighb. 64.48�14.63 84.11�6.33 84.38�6.33 84.70�6.33 83.58�6.33 78.00�7.69 75.21�8.45 75.30�8.44 80.50�6.33 88.33�6.34
Tropical Asia 60.50�16.24 61.43�6.70 61.52�6.70 61.49�6.70 61.83�6.70 62.13�7.98 62.24�8.75 62.09�8.75 54.79�6.70 68.22�6.70
Australia + NZ 14.84�4.33 9.76�2.66 9.75�2.66 9.74�2.66 9.74�2.66 10.29�3.09 10.84�3.33 10.85�3.33 9.24�2.63 10.09�2.65
Greenland 0.20�0.10 0.13�0.07 0.13�0.07 0.14�0.07 0.15�0.07 0.15�0.08 0.19�0.09 0.19�0.08 0.13�0.07 0.13�0.07

Total 525.65�38.19 496.09�3.76 496.10�3.76 496.14�3.76 496.01�3.76 495.71�4.79 495.93�5.49 495.92�5.49 470.41�3.76 521.72�3.77
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but with substantially reduced uncertainty (from 2.4 to 1.0�
1.4 Tg CH4/yr). The a posteriori increase of the abovemen-
tioned countries is mainly balanced by a strong decrease of
CH4 emissions from Finland, for which in scenarios S1�S4
values close to zero are derived (nominally even negative
values, but these are not signi�cantly different from zero or
the pure anthropogenic part of the CH4 emissions (0.24 Tg
CH4/yr as derived from the bottom-up inventory; Table 1)).
This result suggests that emissions from the wetlands in Fin-
land are much smaller than predicted by the a priori inventory
(3.0 Tg CH4/yr).

As the direct signal from Finland at the observational sites
available in this study is relatively weak (and �ask sampling
at Pallas started only at the end of 2001), this result has to
be interpreted with some caution. In order to further inves-
tigate the impact of Finnish emissions we have performed
forward simulations for year 2002 and compared them with
observations at Pallas (Fig. 9). This exercise clearly demon-
strates that the emissions based on the Walter et al. (2001a)
inventory lead to much higher CH4 mixing ratios in summer
than observed. In contrast, forward simulations based on the
a posteriori inventory of year 2001 (from scenario S1) yield
CH4 mixing ratios very close to observations for year 2002.
An additional model simulation, based on the a priori inven-
tory for year 2001, but with emissions of the Pallas 3��2�

grid cell switched off, shows that the in�uence of local emis-
sions is relatively small, i.e. that the discrepancy between
simulations and observations mainly arises from the large
scale in�uence of the Finnish wetlands (from the Walter et
al. (2001a) inventory).

Furthermore, all inversion scenarios indicate somewhat
smaller emissions for Sweden, which is also strongly in�u-
enced by natural wetlands.

On the global scale the most prominent features, compared
to a priori values, are smaller emissions for North Africa,
Russia, East Asia, and higher emissions for USA, South
Africa, and India+neighbouring countries.

All scenarios lead to signi�cant reductions of �2 from a
priori values of 3.62�3.72 to 1.96�2.07 in the �rst iteration,
and 0.76�0.80 in the second iteration (Table 4). This strong
�nal reduction of �2 is mainly due to the rejection of out-
liers (while a posteriori emissions derived in both iterations
usually do not differ very much).

3.2.1 In�uence of different sets of sites

Compared to the base scenario S1, we omitted some Euro-
pean sites with very strong regional in�uence in scenarios
S2 (without Deusselbach (DEU) and Saclay (SAC)) and S3
(without Zingst (ZGT), Kollumerwaard (KOL), DEU, and
SAC) (see also Table 3). The most evident effect is an
increase in German emissions, as, in particular, inclusion
of DEU results in signi�cantly smaller a posteriori German
emissions (see Sect. 3.2.2, and Table 6). As already men-
tioned, however, this leads to a redistribution of calculated

emissions among the European countries, while the EU-15
total remains virtually unchanged.

A particularly critical site appears to be Mace Head
(MHD), as the corresponding 1��1� grid largely covers land
masses with signi�cant CH 4 emissions. Although the a pos-
teriori CH4 mixing ratios agree quite favourably with the ob-
servations, situations with westerly winds from the Atlantic
may be biased (with model results affected by Irish emis-
sions, but not the observations). Thus the very low CH4
emissions derived for Ireland in scenarios S1�S3 are to some
extent due to this effect. The 222Rn experiments showed that
much better agreement with observations can be achieved if
the model is sampled at a virtual site, shifted by 2� to the
west. Tentatively we also applied this shift to the CH4 inver-
sion while excluding observations with strong regional in�u-
ence (denoted by �P� �ag in the AGAGE data set), because
the shifted model site is unlikely to reproduce regional pollu-
tion events correctly. The corresponding inversion scenario
S4 shows � compared to S1�S3 � much higher CH 4 emis-
sions for Ireland that are close to the a priori value. It is dif-
�cult to judge which type of sampling is more appropriate,
since both approaches clearly imply some systematic biases
which are dif�cult to quantify. Consequently, the exact attri-
bution of the Mace Head observations to emissions in Ireland
should be interpreted with care.

3.2.2 In�uence of individual European sites

In order to further investigate the impact of individual sites
we performed inversions using single European sites only.
The results are compiled in Table 6 and further illustrate
the different character of the different sites. Sites which are
strongly in�uenced by regional emissions like Zingst (ZGT),
Neuglobsow (NGB) and Deusselbach (DEU) lead to distinct
reductions of calculated a posteriori uncertainties and fre-
quently to signi�cant shifts of the a posteriori �uxes. Clearly,
the impact of these sites has to be viewed quite critically
since their in�uence on derived emissions from a whole re-
gion might be too strong. This so-called aggregation error
has been observed in global inversions, when big regions are
used (Kaminski et al., 2001).

Saclay (SAC), despite its semi-urban character and prox-
imity to Paris, has only a moderate impact on French a poste-
riori emissions (increase of emissions by 14%, reduction of
uncertainty by 26%). Most other single sites, however, also
lead to a small increase of computed emissions from France.
Obviously, this effect is augmented in the inversion with the
(more or less) complete set of sites in scenarios S1�S4.

Also, all single sites indicate reduced emissions from Fin-
land, typically in the order of 1�20%. This effect is enhanced
in the full inversion (scenarios S1�S9) leading to net emis-
sions from Finland close to zero.

Further investigation of the base functions from Finland
show the very strong signals during summer. E.g. for emis-
sions of July and August at the sites Zingst (ZGT) or Baltic
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Table 6. European a posteriori emissions using single European sites only (units are in Tg CH4/yr). Large shifts in emissions and signi�cant
uncertainty reductions are highlighted by the colors (see legend below).
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Table 6. European a posteriori emissions using single European
sites only (units are in Tg CH4 /yr). Large shifts in emissions and
signi�cant uncertainty reductions are highlighted by the colors (see
legend below).
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sea (BAL) (which are the stations closest to the Finnish wet-
lands) signals of up to 40�60 ppb for single days (daily av-
erage) are simulated. Even at Schauinsland (SIL) daily aver-
age signals of up to 3.7 ppb are calculated. Obviously these
strong signals are not consistent with the observations, lead-
ing the inversion to drastically reduce the contribution from
the Finnish summer base functions (for comparison, the in-
�uence of winter base functions from Finland is typically be-
low 1 ppb at BAL and ZGT).

For most other countries, however, the analysis from the
single site inversion is more ambiguous; e.g. for Germany
or BENELUX, both increased and decreased emissions were
found (re�ected in the full inversion by only small shifts of a
posteriori emissions).

It is interesting to note that the �ask sampling sites in East-
ern Europe (Baltic Sea (BAL), Hegyatsal (HUN)) put signif-
icant constraints on emissions from Germany and the UK.

We also used the single site experiments to further check
the impact of data selection procedures applied at a few sites
(see Sect. 2.4).

For Schauinsland (SIL) the use of night-time data only in-
deed leads to slightly smaller derived CH4 emissions from
Germany. In the non-selected case the observed upslope
winds during summer daytime (which are not reproduced in
the model) need to be compensated in the inversion by ar-
ti�cially higher German emission. This effect, however, is
relatively small (�7% difference of deduced German emis-
sions), and even much smaller for Zugspitze (ZUG) (differ-
ence �0.5%).

As already observed in the full inversion, the effect of
shifting the site Mace Head (MHD) and selecting �non-
polluted� data only, is considerable (difference of derived
Irish emission of 78% (0.31 Tg CH4/yr)).

3.2.3 In�uence of weighting factor for observations

As described in Sect. 2.3, a weighting factor is applied to
reduce the strong bias of the inversion towards observation
space. Using the default values of �i FM=1/2 for �ask sam-
ples and �i CM=1/6 for daily averages of continuous measure-
ments, the inversion is still dominated by the observations
(�effective� dimension of observational space in scenario
S1: 1702 (see Table 4) vs. dimension of parameter space
(npara): 496). In scenarios S5 and S6 we further decrease
the weighting of observations to �i FM=1/4, �i CM=1/12 (S5)
and �i FM=1/6, �i CM=1/18 (S5), bringing the effective di-
mension of the observational space closer to the dimension
of the parameter space. As expected, this leads to smaller re-
ductions of calculated a posteriori uncertainties and, in gen-
eral, to smaller shifts of a posteriori emissions compared to
a priori values. It is interesting to note, however, that the
latter not always increase or decrease monotonously towards
the a priori values with decreasing weighting factor. This is
obviously due to the very complex structure of the cost func-
tion. With decreasing weight of observations, the a posteriori

emissions from Finland increase slightly (compared to values
close to zero in scenarios S1�S4). Even in scenario S6, how-
ever, the emissions from Finland are only 39% of the a priori
estimate, which is a clear indication that the bottom-up esti-
mate (which was dominated by estimated 3 Tg CH4/yr from
wetlands) for Finland is likely too high (see also Sects. 3.2,
3.2.2., and 3.3.2.).

Evidently the best choice of the weighting factors for the
observations is not precisely de�ned and choosing them in-
troduces a subjective component. We also tested the effect
of including correlations in the data covariance matrix for
observations of subsequent days. However, this leads to very
small changes of a posteriori results only (results not shown).
In numerical weather forecasting it has been observed that
the use of positive observation error correlations reduces the
weight given to the observations, and at the same time gives
more relative importance to differences between observed
values (Bouttier and Courtier, 1999). In our analysis, these
two effects are balancing each other to some extent.

A �nal scenario, S7, uses the low weighting factors for
observations and the reduced set of sites from scenario S3.
Scenario S7, which can be considered as the most conserva-
tive scenario (putting relatively small weight on the observa-
tions, and omitting sites with large regional contributions),
con�rms the major principal features discussed for the other
scenarios.

The lower weighting of observations leads to very small
increases of �2 only, i.e. the �t to observations deteriorates
only slightly (Table 4).

3.2.4 In�uence of OH sink

In order to investigate the potential in�uence of the global
OH sink we have generated an additional base function, in
which the OH sink is simulated as negative CH4 source (sim-
ilar to the approach used by Hein et al. (1997), and Houwel-
ing et al. (1999)). Note that in the regular source functions
used in our study the OH sink is already included. The new
additional OH sink base function is added to these regular
base functions (as additional term in Eq. 1). In this way
we investigate the in�uence of �5% (scenario S8) and +5%
(scenario S9) deviations in the global OH �eld (assuming,
however, exactly the same spatio-temporal OH distribution).
The resulting inversions show only a negligible in�uence on
the results for the European countries. The change of ap-
proximately �/+5% in the total global CH4 source strength
(which is required in order to balance the �/+5% differ-
ence in the sink), is achieved mainly by those global re-
gions, which cover the tropical areas (where the OH sink
is largest). The results for the European countries show a
remarkable stability with a maximum deviation between sce-
nario S8 and S9 of 0.14 Tg CH4/yr for Finland, even smaller
deviations for the other European countries and a deviation
of 0.03 Tg CH4/yr for the EU-15 total (Table 5). This demon-
strates that the emissions derived for European countries are
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Fig. 8. Parameter covariance matrices. Left: a priori; right: a posteriori. For each region the emission of 2+12+1=15 months is shown (as
illustrated in the zoomed view for a priori emissions from Germany).

strongly determined by the signals related to synoptic varia-
tions (which carry information from recent emissions which
have not been in�uenced signi�cantly by the OH sink).

3.2.5 A posteriori correlation of emissions

While the a priori emissions of different regions are assumed
to be uncorrelated, the a posteriori emissions exhibit clear
anti-correlations between different regions (Fig. 8). For ex-
ample, the a posteriori emissions from Germany are sig-
ni�cantly anti-correlated with the emissions from France,
BENELUX, UK, and North East Europe. The �gure shows
that the anti-correlations in general extend over a relatively
short temporal period (typically �1�2 months); e.g. the
emissions from Germany of one particular month are anticor-
related with the emission from the mentioned countries in the
same months, or the preceding or following 1�2 months. Fur-
ther prominent features are the anti-correlations of Ireland
with UK and of Spain with Italy and France. This behav-
ior is consistent with the abovementioned observation that,
despite some differences for emissions from individual Euro-
pean countries in scenarios S1�S9, the EU-15 total emissions
are relatively constant in all scenarios.

Furthermore, there are strong anti-correlations among the
non-European global regions, For example, of tropical Asia
with �India+neighboring countries� or of South Africa with
South America and North Africa. In general, however, there
are only weak anti-correlations between European and global

regions, except for regions in the transition region from
middle-west Europe to East Europe and Russia (including
a weak anti-correlation between Finland and Russia). Also
there are some weak anti-correlations between emissions
from North America (USA, and Alaska+Canada) and some
European countries.

3.2.6 Potential systematic errors

In the following we discuss the most important potential sys-
tematic errors which could affect the results of our study:

(1) In general, the Green’s function approach is based on
prede�ned relatively large regions, and may suffer from the
aggregation error (Kaminski et al., 2001). The Green’s func-
tion approach allows us to increase or decrease only the total
emissions of the individual regions, but not to change the spa-
tial emission distribution within the regions. The aggregation
error is potentially most serious when including observations
of strongly regional character (potentially leading to a shift
in emissions of a whole larger region, although the in�uence
area of these measurements might be much smaller). In fact
scenarios S1�S4 show slightly different results (in particular
for Germany and Ireland), however EU-15 total emissions
are not affected signi�cantly. Inverse approaches based on
an adjoint model (Houweling et al., 1999; Kaminski et al.,
1999a, b) or full 4DVAR data assimilation systems (Bout-
tier and Courtier, 1999; Engelen, 2004; Meirink et al., 2004)
will allow a much higher degree of freedom in the parameter
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Fig. 9. Forward simulation for Pallas (PAL), Finland (year 2002) using the bottom-up inventory compiled in Table 1 (dark blue), and the a
posteriori emissions from scenario S1 (red). Furthermore, simulations using the bottom-up inventory, but with emissions of the Pallas model
grid cell switched off, are shown (light blue).

space (i.e. optimization of emissions from individual model
grid cells), but will require, in practice, further assumptions
about spatial correlations between emissions of different grid
cells (making the inverse system stiffer, and probably similar
to Green’s function systems with relatively small regions).

(2) The representativeness error describes discrepancies in
the behavior of a model grid cell (or interpolated point within
that grid cell) with the real observational point, e.g. due to lo-
cal meteorology which is not resolved in the model or strong
emission gradients within a grid cell, as is frequently found at
the land-sea border (such as for coastal sites like MHD). We
addressed this potential error by data selection procedures
for some sites (SIL and ZUG) and the general use of the
3-D model gradient as proxy for the representativeness er-
ror (Eq. 9). For MHD, in particular, the analysis remained
ambiguous. Unfortunately, for many sites only limited infor-
mation is available for further analysis (such as meteorology
and measurements of other tracers, including 222Rn).

(3) Systematic errors in model transport have a direct im-
pact on the inversion results, and the inversion tends to com-
pensate for these errors by erroneous adaptation of emis-
sions. The TM5 model was intensively validated and com-
pared with other models within the EVERGREEN projects,
and the main transport features (such as vertical mixing
or interhemispheric transport) are well within the range of
other standard models. However, the TM5 model may have
some tendency to underestimate vertical exchange, and it has
recently been observed that enhancing the vertical mixing
within the model boundary layer may further improve agree-
ment with SF6 observations (Peters et al., 2004). Since most
CH4 monitoring sites in Europe are in the boundary layer,
however, enhanced vertical mixing in the model would most

likely imply somewhat higher European CH4 emissions re-
sulting from the inversion.

(4) Some biases may be introduced by gaps in the observa-
tional records. In this study we did not apply further screen-
ing of observations but note that for several sites gaps exist
within the analysis period, which may have some impact on
the derived seasonal cycles of emissions. The requirement
of contiguous observations, however, will be in particular
important for multi year trend analyses (R¤odenbeck et al.,
2003).

(5) Furthermore, very different temporal resolution
(monthly emissions vs. daily mean values of observations)
and spatial scales (global vs. European zoom) may introduce
some biases. While we tried to compensate for the differ-
ent temporal scales by introducing the weighting factors �i
(equation (10)), no attempts have been made to correct for
the different spatial scales. E.g. the assumption of a constant
relative uncertainty per source category and region, indepen-
dent of the size of the region and neglect of correlations be-
tween regions is equivalent to assuming a lower overall a pri-
ori uncertainty for the European total. In order to investigate
a potential effect of the relatively small European/national
regions on the estimate for the EU-15 total we performed an
additional inversion, where the uncertainties of all European
base functions were doubled (except Finland, where we kept
the original uncertainty in order to avoid negative a posteri-
ori emissions), but otherwise identical to scenario S1. The
resulting a posteriori EU-15 total is 21.39�1.19 Tg CH4/yr,
i.e. very close to the value for scenario S1 (21.28�1.02 Tg
CH4/yr). This demonstrates that even relaxing the a priori
uncertainties for the European countries, the EU-15 total es-
timates remain very stable.
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Fig. 10. Comparison with other inverse modelling studies and UNFCCC values. UNFCCC estimates (black solid curve) are augmented by
our bottom-up estimate of net natural sources (including soil sink), displayed by the black dash-dotted line. The grey-shaded area indicates
an assumed 30% uncertainty of the total of UNFCCC and natural emissions. Colored symbols represent the various top-down estimates,
according to the legend below.

3.3 Comparison with other studies

3.3.1 Comparison of national and European estimates with
UNFCCC values

Average a posteriori emissions and their ranges from scenar-
ios S1�S9 are compiled in Table 1 (together with both a pri-
ori and UNFCCC emissions). For comparison of a posteri-
ori emissions with UNFCCC values it is important to keep in
mind that inverse modelling provides estimates of total emis-
sions, i.e. anthropogenic and natural emissions (including
soil sink), while UNFCCC covers the anthropogenic sources
only. For most EU-15 countries except Sweden and Fin-
land, however, natural sources contribute only a small frac-
tion of total emissions. The anthropogenic part of the a pri-
ori bottom-up inventory used in our study differs from UN-
FCCC values by up to 30�50% for several European coun-
tries (see Table 1), including the 3 largest EU-15 CH4 emit-

ters Germany, France, and UK. All inversion scenarios pre-
sented here (S1�S9) are increasing the CH 4 emissions of
these 3 countries compared to our a priori estimate. As-
suming that this increase is due to anthropogenic emissions
only (i.e. subtracting the small a priori natural sources/sinks
from the a posteriori total emissions), this would imply dis-
tinctly higher anthropogenic CH4 emission compared to UN-
FCCC values (EEA, 2003) (Germany: 3.9 Tg CH4/yr (+62%
compared to EEA (2003)), France: 4.5 Tg CH4/yr (+47%),
and UK: 4.2 Tg CH4/yr (+93%), based on average values
for scenarios S1�S9). Recently, however, Germany revised
its CH4 inventory, resulting in an increase of reported CH4
emissions by �70% for the whole time series 1990�2001
(EEA, 2004). For year 2001 this update amounts to an in-
crease of 1.64 Tg CH4/yr (+68.5%) compared to the CH4
emission reported in EEA (2003) (Table 1). A major reason
for the German update of CH4 emissions are updated values
for CH4 emissions from manure management, which have
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increased from 0.21 to 1.31 Tg CH4/yr (UBA, 2004). This
update of the German inventory leads to a very close agree-
ment with the inverse modelling based values (Table 1). We
note, however, that there are still some discrepancies regard-
ing the emissions per source category compared to our a pri-
ori emission inventory for Germany. While our bottom-up in-
ventory assumes relatively low CH4 emissions from manure
management (0.26 Tg CH4/yr) it suggests much higher emis-
sions in particular for land�ll sites (1.1 Tg CH 4/yr, compared
to 0.50 Tg CH4/yr (EEA, 2003) and 0.62 Tg CH4/yr (EEA,
2004). In the framework of the annual reporting of national
GHG emissions to UNFCCC it is good practice to recalcu-
late historic emissions in order to account for improvements
or changes of methodologies. Beside Germany, also some
other EU member states have performed recalculations (e.g.
Portugal �24%), but with an overall relatively small effect
on absolute total CH4 emissions. The comparison of inverse
modelling results with UNFCCC values is also illustrated in
Fig. 10 for Germany, UK, France, and BENELUX.

The EU-15 totals derived from the inversion are relatively
close to the UNFCCC values. The a priori total of 21.5 Tg
CH4/yr does not change signi�cantly in the inversion (S1�
S9 average: 21.5 Tg CH4/yr). Assuming total natural CH4
sources for the EU-15 of 3.9 Tg CH4/yr (from our a priori
inventory) this would imply an EU-15 total of anthropogenic
CH4 sources of 17.5 Tg CH4/yr, compared to UNFCCC val-
ues of 15.7 Tg CH4/yr (EEA, 2003) and 17.0 Tg CH4/yr
(EEA, 2004). However, our results indicate much smaller
CH4 emissions from Finland, and hence a smaller fraction
of natural sources for the EU-15 total emissions. Assuming
natural EU-15 emissions of 1 Tg CH4/yr only (and 21.5 Tg
CH4/yr for the total emissions) would imply 20.5 Tg CH4/yr
for the anthropogenic EU-15 emissions, i.e. 30%/21% higher
compared to EEA (2003) and EEA (2004), respectively.

3.3.2 Comparison of Finnish estimates with independent
bottom-up studies

Minkkinen et al. (2002) estimated the present-day CH4 emis-
sions from Finnish peatlands to 0.6 Tg CH4/yr, based on de-
tailed statistical data for 10 different peatland types. Thus,
their estimate is consistent with our inverse modelling de-
rived values (total emissions for Finland �0.27... 1.30 Tg
CH4/yr) taking into account a contribution of 0.24�0.26 Tg
CH4/yr form anthropogenic sources. The main reason for
the very high value for Finnish wetlands in the Walter et
al. (2001a) inventory (�3 Tg/yr) seems the underlying wet-
land distribution (Matthews and Fung, 1987). However, re-
cent vegetation maps, such as Corine land cover database
(EEA, 2000) and the Global Land Cover 2000 database
(Bartholom·e and Belward, 2005) indicate much smaller wet-
land areas for Finland.

3.3.3 Comparison of national and European estimates with
other top-down studies

Figure 10 also shows top-down estimates of other studies
over the period 1994 to 2001. The studies of Ryall et
al. (2001) and Manning et al. (2003, 2004) are based on
NAME, a Langrangian particle dispersion model (LPDM),
and observations from Mace Head only. Vermeulen et
al. (1999) use the Lagrangian back trajectory model COMET,
and alternatively observations of Cabauw only (1993�1997),
or a set of 4 European sites (Cabauw, Petten (NL), Heidel-
berg (D), London (UK), 1996). Roemer et al. (2000) use
the LOTOS model, an Eulerian 3-D model on the Euro-
pean domain with initial and boundary conditions taken from
the global TM3 model, and observations of 4 Dutch sites
(Arnhem, Delft, Kollumerwaard, Cabauw) and Mace Head
(1994). The studies based on NAME and COMET do not use
an a priori emission inventory. However, they used very long
integrations periods (1�6 years) and the assumption that over
this period emissions per grid cell or source area are constant.

Considering all studies together, the majority of top-down
estimates is reasonably close (�30�50%) to the UNFCCC
bottom-up estimates (corrected with our estimate of natural
sources and sinks) for the 4 displayed regions (Germany, UK,
France, and BENELUX). There are, however also remark-
able discrepancies. In particular striking is the fact that in
all studies except that of Manning (2004), the sum of all 4
regions (for the study of Vermeulen et al. (1999) only the 3
regions Germany, UK, and BENELUX are available) is dis-
tinctly higher than the corresponding sum of EEA (2003) es-
timates. As we had seen in our study (Sect. 3.2.5, and Fig. 8)
the a posteriori emissions show clear negative correlations,
leading typically to relatively robust results for sums of adja-
cent (coupled) regions. Therefore, the observation of higher
sums for the 3�4 regions in the above studies is consistent
with the higher emissions from Germany, UK, and France
derived from our study compared to EEA (2003). With the
revision of the German inventory (EEA, 2004), however, the
sum of these regions agrees much better for these above stud-
ies.

In contrast, the study of Manning (2004) shows slightly
smaller sums for these 4 regions (compared to EEA (2003)),
with increasing discrepancy if compared to EEA (2004). Ap-
parent also in Manning (2004), however, is the coupling of
these regions (i.e. considerable year-to-year variations for in-
dividual countries, but relatively constant sums for all 4 re-
gions).

Model-independent top-down estimates can also be pro-
vided using 222Rn measurements. Applying this tech-
nique, Levin et al. (1999) derive a mean CH4 emission of
0.24�0.50 g CH4 km�2 s�1 for a catchment area with ra-
dius of �150 km around Heidelberg for 1995�1997. For a
similar catchment area we obtain a mean CH4 emission of
0.36�0.24 g CH4 km�2 s�1 (scenario S1). We note how-
ever, that this comparison is problematic because the 222Rn
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derived value may be biased towards dominant wind direc-
tions (and emissions show considerable variability on small
scales, e.g. between 1��1� grid boxes). Furthermore, the ap-
plied synthesis inversion does not optimize the spatial emis-
sion distribution within the prede�ned regions.

4 Conclusions

The presented analysis provides a consistent picture of
the European and global 3-D distribution of atmospheric
methane. For most sites an overall good agreement with ob-
servations is achieved, including the simulation of synoptic
events arising from the short-term (�1�5 days) variability of
meteorological situations.

The atmospheric CH4 signal has been attributed directly
to recent emissions of different European and global regions,
on top of a global background (which is also evolving dy-
namically in space and time).

In particular quasi-continuous observations close to source
regions provide signi�cant constraints on the emissions.
Largely driven by such high-frequency observations at sev-
eral Western European sites, the inversion suggests higher
emissions for Germany (+62%), France (+47%), and UK
(+93%) in 2001 compared to UNFCCC values (EEA, 2003),
while results for BENELUX are virtually identical with UN-
FCCC. The recent revision of the German CH4 inventory
(EEA, 2004), however, leads to a very close agreement with
our top-down estimate for Germany.

The question of whether derived higher emissions are
really signi�cantly different from UNFCCC values comes
down to an exact quanti�cation of uncertainties, which is
very dif�cult, both for the bottom-up and the top-down es-
timates. Only some EU-15 countries specify uncertainties of
their CH4 estimates, ranging from 1.8% (Sweden) to 48.3%
(Austria) (Gugele et al., 2003). No uncertainty estimates are
available for the major source countries France and Germany.
However, the recent revision of the German CH4 inventory
by +�70% shows that bottom-up CH4 inventories may still
have considerable uncertainties.

Our inversion suggests signi�cantly lower emissions for
Finland, for which the bottom-up inventory had predicted
high emissions from wetlands (�3 Tg CH4/yr). This �nd-
ing has been further supported by forward simulations and
comparison with observations at Pallas for year 2002. Fur-
thermore, this is consistent with the recent independent esti-
mate of CH4 emissions from Finnish peatlands of only 0.6 Tg
CH4/yr by Minkkinen et al. (2002).

Signi�cant anti-correlations are apparent between differ-
ent European regions. Thus despite some remaining uncer-
tainty about the exact distribution among countries, the top-
down estimate for total EU-15 emissions appears relatively
robust. Furthermore, the derived EU-15 emissions (21.5 Tg
CH4/yr total emissions) are very close to the UNFCCC value
for the year 2001 (15.7 Tg CH4/yr (EEA, 2003); 17.0 Tg

CH4/yr (EEA, 2004)), if the natural net emissions are around
3.9 Tg CH4/yr, as assumed in our a priori inventory. How-
ever, if the fraction of natural emissions is smaller, as our
results suggest, our top-down based anthropogenic emission
estimate for EU-15 would be 30%/21% higher compared to
EEA (2003) and EEA (2004), respectively.

The potential discrepancies between bottom-up and top-
down estimates further emphasize the need for independent
veri�cation. In a strict sense, however, our top-down ap-
proach is not completely independent, as it is using bottom-
up inventories as a priori constraints (hence in�uencing both
the model bases functions (emission distribution within one
region) and the cost function). Although some other top-
down studies based on Lagrangian models avoid the use of
a priori inventories, it is noted that the alternative assump-
tions required (as constant emissions per grid cell or source
area over longer integration times) constitute another form
of a priori constraint (in these studies implemented as hard
constraint; i.e. they cannot be modi�ed by the inverse sys-
tem). In general the introduction of some a priori constraints
is always required due to the underdetermined nature of the
overall inverse problem.

Concerning potential implications regarding the targets set
by the Kyoto protocol, it is noted that the reduction targets
are generally de�ned relative to the base year 1990, and not
in terms of absolute emissions. Consequently, higher abso-
lute emissions of individual countries would not constitute
a violation of Kyoto obligations, but only if emissions rela-
tive to year 1990 exceed the targets. It is expected that in-
verse modelling may provide in the future estimates of emis-
sion trends with a much smaller uncertainty compared to es-
timates of absolute emissions as many potential systematic
errors remain the same for subsequent years (Dentener et
al., 2003b). Nevertheless it still needs to be demonstrated,
whether inverse modelling estimates will become accurate
enough for veri�cation of the (relatively small) reduction tar-
gets.

Our analysis included a discussion of potential systematic
errors. In particular, we showed several sensitivity experi-
ments illustrating that a posteriori results are dependent on
the exact set of sites used, the data selection procedures and
the choice of weighting factors for observations. Regarding
the scaling of the OH sink the inversion results for Europe
turned out to be very robust.

All the scenarios shown here con�rm the major conclu-
sions of this study (including scenario S7, which can be con-
sidered as most conservative in the sense that observations
are weighted weakly and European sites, with strong regional
in�uence, are not used).

Inverse techniques are a very powerful system analysis
tool, allowing to directly link atmospheric observations to
emissions. Progress is expected from the further develop-
ment of inversion techniques including sophisticated data as-
similation methods. Furthermore, ensemble inversions ap-
plying different models will be particularly useful, in order

www.atmos-chem-phys.org/acp/5/2431/ Atmos. Chem. Phys., 5, 2431� 2460, 2005



2458 P. Bergamaschi et al.: Inverse modelling of national and European CH4 emissions

to increase the con�dence in top-down emission estimates.
Additional measurements such as 222Rn and meteorology at
all sites would be helpful in order to better assess the ability
of the model to simulate the individual sites.

For an operational emission veri�cation system, however,
it is particularly important that atmospheric observations are
further expanded, especially quasi-continuous high-precision
in-situ measurements at well selected sites (Bergamaschi et
al., 2004).

Atmospheric CH4 can now also be measured from
satellite-based sensors such as SCIAMACHY on ENVISAT
(Buchwitz et al., 2005; Frankenberg et al., 2005), provid-
ing a valuable complement to the still rather sparse in-situ
measurement network. It is expected that these global ob-
servations will provide strong additional constraints in future
inverse modelling studies.
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