A Performance Analysis Study of Multipath Routing in a Hybrid Network with Mobile Users

Andrei Iu. Bejan*, Richard J. Gibbens*, Yeon-sup Lim†, Don Towsley†

*Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB23 8SP, UK.
†Department of Computer Science, University of Massachusetts, Amherst MA 01003 USA.

Emails: andrei.bejan@cl.cam.ac.uk, richard.gibbens@cl.cam.ac.uk, ylim@cs.umass.edu, towsley@cs.umass.edu

Abstract—Mobile communication platforms of individual agents and ground vehicles, ships and aircrafts of both civil and military services often operate in highly dynamic conditions with constantly changing infrastructure and access to communication resources. Efficient techniques for rapid and yet stable communication of such fleets with their control centres and between cooperating vehicles within the fleet is a challenging but important area of study with the potential to facilitate the analysis and design of efficient and robust communication systems. Multipath extensions of data transmission protocols aim to take advantage of path diversity to achieve efficient and robust bandwidth allocation while maintaining stability. Such multipath resource pooling extensions of routing and congestion control intrinsically implement decentralisation with implicit resource sharing. In this paper, we build on the recent theoretical work on fluid model approximations of multipath TCP and study their application to the scenarios in which a convoy with two communication nodes (representing the convoy’s head and tail) establishes channels with a set of radio/WiFi towers and a satellite relaying information to a remote destination; these channels have time-varying capacities which depend on the position and dynamics of the convoy. The paper studies the performance of a multipath TCP controller and demonstrates how path diversity can be implicitly utilised to spread flows across available paths. Furthermore, we study the patterns of sub-flows governed by dynamic control according to the motion of the convoy and investigate the trade-offs between resource utilisation and the speed of response by the sub-flows.

I. INTRODUCTION

Public and military services often operate in dynamic environments which offer constantly changing infrastructure and access to communication resources. In particular, mobile communication platforms of ground vehicles (including taxi, emergency and public transport fleets), ships and aircrafts, experience fluctuating or disrupting radio links, bandwidths and connectivity. Efficient techniques for rapid and yet stable communication of such fleets with their control centres and between cooperating vehicles within the fleet is a challenging but important area of study.

Communication based on single end-to-end paths could easily expose data transmission, and, in particular continuous data streaming to the risk of instability and disruption. Multipath extensions of data transmission protocols aim to take advantage of path diversity to achieve efficient bandwidth allocation while maintaining stability and connectivity. Such multipath resource pooling extensions of data routing and congestion control implement decentralisation with implicit resource sharing and, at the same time, may advantageously implement coordinated control where the rates over available paths are determined as a function of all or some of the available paths [7]. Mobile units may use hybrid networks with potential access to a rich set of technologies and paths (e.g. 3G, 4G, 802.11, satellite). Hence, there is both a necessity and opportunity for robust multipath data transport in such mobile networks.

Practical implementation aspects of congestion control in multipath transport protocols were considered in [14], [16], [21]. Opportunistic mobility with Multipath TCP (MPTCP) for usage of small devices in indoor environments was studied via simulation and indoor WiFi and 3G experiments in [15], where it has been shown that MPTCP gives better throughput, achieves smoother handoffs, and can also be used to lower energy consumption. Also, the feasibility of using MPTCP for mobile/WiFi handover in the current Internet was explored experimentally over real WiFi/3G networks in [11].

Design and stability of multipath end-to-end congestion and rate/routing control algorithms can be studied and conveniently formulated at the scale of flow rates. In recent years researchers have developed a framework that allows congestion control algorithms to be interpreted as distributed mechanisms solving a global optimisation problem [5], [12], [13], [17], [18]. The framework is based on fluid-flow models, and the form of the optimisation problem makes explicit the equilibrium resource allocation policy which can often be restated in terms of a fairness criterion.

In this paper, we build on the recent theoretical work on fluid model approximations of multipath TCP [2], [4], [6], [20] as well as the simulation experiments presented in [9] and further numerical investigations [1]. We study the performance of a scalable multipath TCP controller used in scenarios with the mobility of users. Specifically, we consider the application of fluid models to a setting in which a convoy with two communication nodes (representing a convoy’s head and tail) establishes channels with a set of radio/WiFi towers together with a satellite relaying information to a remote destination—these channels have capacities which vary according to the time-dependent position and dynamics of the convoy.

This paper is organised as follows. Section II contains a brief formal analytical description of a fluid model approximation of multipath TCP. This formulation includes a description of the network resources, sources of flow, the available routes...
and an algorithm for flow rates control. We then proceed with the description of a convoy scenario with time-varying resource capacities and whose dynamics is described in terms of the aforementioned fluid model controller. Section III presents numerical simulation experiments in which the convoy follows a trajectory with non-constant speed and we explore the behaviour of the resulting dynamic network with time-varying channel bandwidths. Section IV contains further discussion and conclusions.

II. MODEL DESCRIPTION

A. Fluid model approximation of multipath TCP

We describe a communication network and a routing extension to a TCP algorithm which optimally splits the flows between each source-destination pair and can be implemented at the communication sources. This algorithm is fully decentralised in the sense that there exists a sufficient condition for the local stability of each of the routes which depends on the round-trip times of that route, but not on the round-trip times of other routes. Another feature of this scheme is that the control which a source has over its available route flow rates is treated similarly to link congestion feedback.

1) Network description: We assume that the network consists of a collection of sources S and collection of resources J. Each source $s \in S$ identifies a unique source-destination pair which is also associated with a set of routes R. Each such route $r \in R$ is a set of resources, that is $r \subseteq J$. If a source s transmits along a route r, then we write $r \in s$. Similarly, if a route r uses a resource $j \in J$, we write $j \in r$. Furthermore, the notation $s(r)$ means the unique source identified with the route r.

For each route r there is an associated flow rate $x_r(t) \geq 0$ which represents a dynamic fluid approximation to the rate at which the source $s(r)$ is sending packets along the route r at time t.

Let T_{rj} be the propagation delay from source $s(r)$ to resource j, that is the length of time it takes for a packet to travel from $s(r)$ to j along route r, and let T_{jr} be the propagation delay from resource j to source $s(r)$, that is the length of time it takes for congestion control feedback to reach $s(r)$ from j along r. (It is assumed that a packet must reach its destination before an acknowledgment containing congestion feedback is returned to its source.) The round trip time for route r is then given by $T_r = T_{rj} + T_{jr}$ for all $j \in r$.

Finally, we use the notation $a = [b]_c^+$ defined for $c \geq 0$ to mean $a = b$ if $c > 0$ and $a = \max(0, b)$ if $c = 0$.

2) Rate control algorithm: We use the above description and consider the routing extension to TCP given in [4] briefly summarising its primal version here. (See [6] for further discussion of scalable TCP and [2] for further background on primal multipath algorithms.) In this fluid-flow model of joint routing and rate control the flow rates, $x_r(t)$, vary according to the following differential equations:

\[
\dot{x}_r(t) = \frac{x_r(t - T_r)}{T_r} \left[\pi(1 - \lambda_r(t)) - b_r y_s(r)(t) \lambda_r(t) \right]_{x_r(t)},
\]

where

\[
\lambda_r(t) = 1 - \prod_{j \in r} (1 - \mu_j(t - T_{jr})),
\]

\[
y_s(t) = \sum_{r \in s} x_r(t - T_r),
\]

and

\[
\mu_j(t) = p_j \left(\sum_{r \in J} x_r(t - T_{rj}) \right).
\]

In the above formulation π, b_r and functions $\lambda_r(\cdot)$ ($r \in R$), $\mu_j(\cdot)$, and $p_j(\cdot)$ ($j \in J$) have the following interpretations. Each resource j has a capacity $c_j > 0$ and exhibits congestion by dropping or marking packets via a penalty function given by

\[
p_j(z_j) = \left(\frac{z_j}{c_j} \right)^{\beta_j}
\]

for some constant $\beta_j > 0$ (also known as the resource responsiveness). Thus, $\mu_j(t)$ is the resource j’s dropping/marking rate at time t and $\lambda_r(t)$ is the route r’s proportion of the acknowledgements that indicate congestion. The quantity π is a proportionality factor of the amount by which the sending rate is increased (on a receipt of a positive acknowledgement), and b_r is a route-specific proportionality factor of the amount by which the sending rate is decreased (on a receipt of a negative acknowledgement through a timeout and so indicating congestion).

Note that equations (1)-(4) with r spanning the whole set of routes R define a set of coupled first-order non-linear differential equations with discrete time delays. Hence, in order to obtain a particular flow dynamics $x_r(t)$, $r \in R$, in a network topology with at least one shared resource one needs to solve the entire system.

3) Local stability condition: A sufficient condition for local stability of the above (primal) algorithm with the penalty function as in (5) is that [4]

\[
\pi(1 + \max_{j \in J} \beta_j) < \frac{\pi}{2}.
\]

A general form of the sufficient stability condition for arbitrary cost functions p_j is also derived in [4] and is stated in terms of the utility function used for formulating an associated optimisation problem. The choice of the utility function may correspond to α-fairness [5], [10], [18] (e.g. maximum throughput, proportionally fair, or max-min fair allocation scheme). The equilibrium points of the controller described above in equation (6) solve a corresponding optimisation problem to achieve proportionally fair allocation where $\alpha = 1$.

B. Communication network under convoy scenario

1) General description and network topology: Consider a group of vehicles moving in a convoy along a certain path at a possibly variable speed. We shall assume for the purpose of illustration that this fleet moves in an environment in which the only communication channels that can be established to the outside of the fleet are those with a satellite and three
radio base stations (see Figure 1). Henceforth, we shall use the term ‘WiFi’ to refer to these base stations and communication channels they provide in an abstract sense of radio communication rather than any specific standard they might use (e.g. IEEE 802.11), as this is not central to our paper. Furthermore, we shall assume that the satellite channel can only be used by a single vehicle situated in the middle or any other part of the fleet (this channel’s parameters will remain constant throughout each of our experiments), whereas WiFi channels are only accessible by the fleet’s head and tail. We assume that individual vehicles in this group can instantaneously communicate with each other. The whole fleet is considered as a single communication source streaming data to its destination (e.g. a control centre) via available WiFi and satellite channels.

2) Formulation in terms of the fluid model description: As the convoy fleet moves, its head and tail change their positions and this results in time-varying WiFi communication channel capacities. Next, we provide a formal description of this scenario in terms of the model presented in Section II-A.

Let the position of the convoy’s centre at time t be described (in the plane) by $S(t) = (X(t), Y(t))$, where $X(t)$ and $Y(t)$ are some smooth functions used here to describe the convoy’s trajectory. We model the movement of the convoy’s head and tail as follows: at time t the convoy’s head is located at $S_H(t) = S(t + \tau_H(t))$ and its tail is located at $S_T(t) = S(t + \tau_T(t))$, where the functions $\tau_H(t)$ and $\tau_T(t)$ are such that

$$L/2 = \int_{t - \tau_T(t)}^{t + \tau_H(t)} \sqrt{[\dot{X}(\tau)]^2 + [\dot{Y}(\tau)]^2} \, d\tau,$$

and where L is the convoy’s length (see Figure 2). For example, if the parametrisation $S(t)$ is such that $|\dot{S}(t)|$ does not depend on t, that is the convoy is moving with a constant speed $v = |\dot{S}(t)|$, then, trivially, $\tau_H = \tau_T = L/2v$.

In most of our experiments the communication network (S, R, J) consists of a single source s_1 representing the convoy, seven resources (six WiFi channels and a single satellite available), and seven routes in total each using a separate resource, as shown in Figure 3 (solid graphics). In a further experiment this model is extended by adding a competitor s_2 who shares the satellite channel, as shown in the same figure with dashed lines (this model is studied in Section III-F).

We assume that the WiFi towers (base stations) are positioned at locations $B_1 = (-200, -400)$, $B_2 = (-300, 400)$, $B_3 = (-100, -200)$ in the plane. As the convoy fleet moves, the actual capacities of the WiFi channels r_1, r_2, r_3, r_5, r_6, r_7 change as follows:

$$c_{j_k}(t) = \rho(d(S_H(t), B_{k}))C_{j_k}, \quad k = 1, 2, 3,$$

and

$$c_{j_k}(t) = \rho(d(S_T(t), B_{k}))C_{j_k}, \quad k = 5, 6, 7,$$

where $\rho(d)$ is a decay function measuring the actual channel capacity as a function of distance between a WiFi station and a communicating node, $d(\cdot, \cdot)$ stands for the Euclidean distance between two points, and C_{j_k} is the nominal capacity of the channel/resource j_k. The decay function $\rho(d)$, which we refer to as a capacity factor, is assumed to be a non-negative non-increasing function, such that $\rho(0) = 1$. In practical system
deployments channel capacities may vary with and depend on many factors including the terrain and obstacles present; however, in this paper we do not aim to model accurately power attenuation and channel communication schemes (see a discussion on this in e.g. [19])—instead, we make an idealised and yet simple and flexible choice which allows us to take into account dependence of the radio channel’s maximal throughput on distance between the tower and mobile agent. We use the straightforward logistic function to represent the capacity factor in our multipath communication model with mobile users as follows:

\[
\rho(d) = \frac{1 - (1 + e^{-(d-d_0)})^{-1}}{1 - (1 + e^{d_0})^{-1}}, \quad \alpha > 0, d_0 > 0.
\] (11)

Figure 4 shows two examples of how this decay function can be used to model the dependency of the capacity factor on distance. The upper plots in this figure depict an example of the logistic decay with the \(\alpha = 0.007\) and \(d_0 = 500\text{m}\) (right) and a grey scale heatmap plot (left) showing the aggregate capacity field in the plane with three WiFi base stations located as indicated by coloured cross markers. Similarly, the lower panel of Figure 4 shows an example of the logistic decay with the rate \(\alpha = 0.07\) and displacement parameter \(d_0 = 500\text{m}\), and the corresponding aggregate capacity field. Notably, the logistic functional form allows one to model step-like or threshold decays, as shown in the latter example (lower panel of Figure 4). We use the logistic decay, the locations of the WiFi base stations, and the ‘clover’-like trajectory from the upper left plot of Figure 4 in our further experiments in Section III.

In the next section we shall use the fluid approximation model from Section II-A1 for rate control in network topologies with time-varying channel capacities based on the above description. We use the iterative forward Euler method for solving the system of coupled differential equations (1) with time increment \(\Delta t = 10^{-3}\text{s}\). (Note that \(x_r(t)\) in (1) remains zero if the flow along route \(r\) stalls, even though there may be a chance for it to revive as channel capacities change. In such cases we imitate a probing strategy by setting \(x_r(t - T_r)\) to a small positive constant of \(10^{-1}\text{s}\).)

III. SIMULATION EXPERIMENTS

In this section we illustrate our fluid model to describe the behaviour of the primal form of the routing and congestion control algorithm discussed earlier in Section II.

The model parameters are given in Table I. The primal algorithm parameters were as follows: \(\pi = 0.025\), \(b_i = 0.875\) for each router \(r\). The resource responsiveness parameters \(\beta_j\) were chosen to be 15 and 16 for the six WiFi channels and satellite, respectively. (Note that this choice of parameters ensures local stability of the controller, as discussed in Section II-A3.) The nominal capacities \(C_j\) of the WiFi and satellite channels were all equal to \(C = 20\) (e.g. 20 Mbps). Hererafter, we do not make any reference to a particular choice of physical units for nominal and actual capacities since all our results are scalable in terms of flow rates.

![Image of Figure 4](image)

Fig. 4. Top right: Capacity factor as a function of distance using the logistic decay \((\alpha = 0.007, d_0 = 500\text{m})\). Top left: The aggregate capacity field in the plane with three WiFi base stations located as indicated by cross markers. We use the ‘clover’ curve depicted in this figure to model a part of the trajectory of a moving convoy fleet in our experiments in Section III. Bottom right: Capacity factor as a function of distance using the logistic decay \((\alpha = 0.07, d_0 = 500\text{m})\). (Note the sharper threshold-like shape of the decay.) Bottom left: The aggregate capacity field in the plane with three WiFi base stations located as indicated by coloured cross markers.

<table>
<thead>
<tr>
<th>(j)</th>
<th>(r)</th>
<th>(T_{rj})</th>
<th>(T_{rr})</th>
<th>(T_{rr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j_1)</td>
<td>(r_1)</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>(j_2)</td>
<td>(r_2)</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(j_3)</td>
<td>(r_3)</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(j_4)</td>
<td>(r_4)</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>(j_5)</td>
<td>(r_5)</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>(j_6)</td>
<td>(r_6)</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(j_7)</td>
<td>(r_7)</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

A. Trajectory of motion and network resources

Consider the trajectory shown in Figure 5 of the central point of a convoy of length 200 metres (notice that the units of distance in Figures 4 and 5 are in correspondence and one unit of distance corresponds to one metre. Also shown are the fixed locations of three WiFi base stations labelled B1, B2 and B3. In our experiments the convoy, including its head, tail and middle point, follows the curve at a moderately variable speed ranging from approximately 8 m/s to 25 m/s (see Section II-B2 and Appendix for the precise details) passing the points \(t_0, t_2, \ldots, t_{17}\) labelled by the instant the convoy passes that location. The time step from time \(t_i\)
throughput.

B2 satellite channel is taken to be of constant capacity (equivalently, the capacity factor for a channel connects the convoy to the remote destination via a channel station will vary. then following the arc to the right hand side of the plane. As the convoy makes two complete revolutions of the clover-shaped curve before moving away from the vicinity of the base stations along the circular arc towards the right hand side, and the entire trajectory (along the solid line) is completed in just under 9 minutes. The dashed lower arc of the circle is used in further experiments described in Section III-G.

Fig. 5. This figure shows the trajectory of the moving convoy in a 2-D plane. The locations of the middle of the convoy at equal time steps of 30 seconds are labelled \(t_1, t_2, \ldots, t_{17} \). The locations of three fixed base stations are shown by the coloured points labelled B1, B2 and B3 (blue, red and green, respectively). Note that the convoy makes two revolutions of the clover-shaped curve before moving away from the vicinity of the base stations along the circular arc towards the right hand side, and the entire trajectory (along the solid line) is completed in just under 9 minutes. The dashed lower arc of the circle is used in further experiments described in Section III-G.

to \(t_{i+1} \) represents 30 seconds. The convoy’s head and tail positions move with respect to its middle point as discussed in Section II-B2 and shown in Figure 2. The convoy makes two complete revolutions of the clover shaped curve before then following the arc to the right hand side of the plane. As the convoy moves along the curve its distance to each base station will vary.

Additionally, a satellite channel may be available which connects the convoy to the remote destination via a channel of constant capacity (equivalently, the capacity factor for a satellite channel is taken to be \(\rho(d) = 1 \) for all \(d \geq 0 \)).

B. Mobility without path diversity

In our first experiment we consider how the available throughput varied if the convoy had access via its head to just the single base station B1 while moving along the trajectory of Figure 5.

Figure 6 shows that the throughput is highly sensitive to the location of the convoy according to the time-varying distance between the head of the convoy and base station B1. Around times \(t_2 \) and \(t_8 \) the head of the convoy is closest to B1 and the throughputs adapt to take advantage of the available capacity at locations near to B1. In contrast, at around times \(t_4, t_6 \) and \(t_{10} \) the head of the convoy is distant from B1 and the flow is correspondingly low at or just after those epochs.

We can imagine that the head of the convoy could switch between base stations and thereby handover access via B1 to access via B2 or B3 according to whichever base station allowed the greatest throughput. Such a handover process would need to be explicitly coordinated and the handover itself would need to be finely judged to avoid the overhead of flipping between base stations offering very similar throughputs. In the next experiment we consider how the benefits of handover could be achieved without explicit coordination by means of MPTCP exploiting multiple paths with their diverse and time-varying properties.

C. Mobility with path diversity

In the second experiment we suppose that the head of the convoy can now use MPTCP to connect with the three base stations B1, B2 and B3. The primal algorithm will seek to allocate flow across the three routes and will update those flows according to the time-varying available channel capacities.

The upper panel of Figure 7 shows how the available capacity, \(\rho(d) C_j \), varies over time for the channels to the three base stations. The bandwidth available to B2 is broadly out of sync with the bandwidth available to base stations B1 and B3 and the flows shown in the lower panel reflect this and allow the convoy to experience a smoother total flow except when it moves away from all three stations between times \(t_6 \) and \(t_7 \). This can also be seen in Figure 8 which shows the net flow together with individual flows via each base station. Here MPTCP allows the bandwidth to the three base stations to be aggregated. In the case of a hard handover strategy the head of the convoy would be connected to just one base station at a time.

Despite achieving a high degree of exploiting available bandwidth through connection along diverse paths the net bandwidth drops to zero once the convoy leaves the vicinity of the group of base stations after time \(t_{13} \). In the next experiment we remedy this by use of the satellite channel that provides global coverage.

D. Mobility with additional path diversity

In the third experiment we have enhanced the convoy further by allowing the tail of the convoy to connect to the three base stations. The head and tail of the convoy are physically displaced being \(L = 200 \) metres apart (with respect to the path followed) and so can, with implicit coordination, take advantage of the available bandwidth to base stations afforded by different parts of the convoy.
The long-run throughput of the satellite channel is readily determined from the stationary solution, \(x_r^* \), say, of the differential equations (1) where \(\dot{x}_r(t) = 0 \) for \(r = 1, 2, \ldots, 7 \). With no throughput on the WiFi channels in the long-run we have that \(x_r^* = 0 \) for \(r \neq 4 \) and the long-run satellite throughput, \(x_4^* \), solves

\[
\dot{x}_4(t) = 0 = \frac{x_4^*}{T_4} [\pi(1 - \lambda_4^*) - b_4 x_4^* \lambda_4^*] x_4^+.
\]

where we have used that \(y_{4i}(t) \) becomes \(x_r^* \) in the long-run and where by equation (5)

\[
\lambda_4^* = p_{43} \left(x_4^* \right) = \left(x_4^*/C_4 \right)^{\beta_4}.
\]

Thus we may solve for \(x_4^* \) from

\[
\bar{a}(1 - \lambda_4^*) - b_4 x_4^* \lambda_4^* = 0
\]

and hence we obtain the fixed-point equation

\[
x_4^* = \frac{\bar{a}}{b_4} \frac{1 - \lambda_4^*}{\lambda_4^*}.
\]

This yields the equilibrium satellite channel throughput, \(x_4^* = 13.6 \) units (68% utilisation), which is in agreement with the numerical results of Figure 9. Some of our further experiments will also discuss how the utilisation of a channel could be improved (Sections III-F, III-G).
E. Rates of convergence in static scenario

The experiments discussed so far have involved a moving convoy where the effects of the motion of the convoy and speed of convergence of the rate control algorithm are confounded. We now present a simple experiment where the convoy is static and investigate the convergence of just the rate control algorithm.

We suppose that the convoy is stationary at the location shown in Figure 11. Both the head and tail are close to base stations B1 and B3 and relatively far from base station B2. At this location the available capacities c_{jk} are approximately given by $[16.97, 8.30, 19.59, 20, 18.99, 4.77, 18.56]$ units (see equations (9) and (10)).

Figure 12 shows the throughputs over time as the algorithm first increases and then levels off at the long-run throughputs within 5 to 10 seconds. Figure 13 shows how the total throughput is achieved according to the WiFi and satellite channels. Satellite is slower to converge than the WiFi associated with base station B3 but is faster to converge than the WiFi corresponding to communication via B1 due to the different round trip times (see Figure 3 and Table I).

F. Sharing a channel

All experiments considered so far assumed that the communication channels used by the fleet were dedicated ones, that is, the fleet did not have to share or compete for any of the available resources. However, it is not uncommon for transmission channels/resources to be shared; one such example is Multiplexed Channel Systems Demand Assignment Multiple Access (MCPC/DAMA) or “bandwidth on demand” systems [3].

In our next experiment we assume that the fleet shares the satellite channel with a “competitor”. The experimental set-up is the same as in Sections III-B–III-E extended by adding a second communication source node s_2 to the system topology (Figure 3) which has access to the same satellite channel ($j = 4$). The system and controller’s parameter values remain unchanged except for the capacity of this resource—because the controller implements the proportional fairness paradigm, we have scaled the satellite’s channel capacity to $C_4 = 70$ units, a level at which the competitor’s flow becomes comparable to the aggregate throughput for the fleet.

Figure 14 shows the throughputs over time in this experiment. As the satellite channel is shared by just two sources, the
fleet and competitor, their throughputs on this channel mirror each other. The fleet’s satellite channel throughput appears much more responsive to changes in the aggregate WiFi flow than in our previous experiments — a feature which might be preferable from the fleet’s point of view when, say, the satellite link is much more expensive to use than WiFi. This can also be seen in Figure 15 which shows the total WiFi, and fleet and competitor satellite throughputs. When there is no access to WiFi, the fleet and competitor share (a part of) the satellite resource equally and the fleet’s throughput via this resource achieves its maximum (only slightly exceeding the dedicated satellite channel’s capacity from previous experiments). This suggests that one way of achieving a better responsiveness of the throughputs on selected dedicated channels in multipath routing is by using virtual (higher than actual) channel capacities and additional (virtual) workload within the framework of MPTCP; of course, this can only be possible if the resource (e.g. a router) reveals to its end-hosts some internal network information, including the channel’s maximally achievable throughput, which can be done, for example, using packet marking.

G. Utilisation and delay times

Our final experiment explores the effects of (i) improving utilisation by tuning controller’s parameters, and (ii) higher round-trip times in environments with dynamically changing capacities.

In virtue of the discussion from Section III-D and equation (15) the channels’ utilisation can be improved by increasing the responsiveness β_j of these resources (this decreases penalisation in the corresponding optimisation problem) and necessarily decreasing \bar{a} in order to ensure stability. This, however, as well as high round-trip times, may contribute to a slower reaction to changing bandwidths.

The experiment is based on our main experimental set-up described in Section III-D. The trajectory which the convoy follows was extended to a full circular path after it leaves the clover curve having made two complete revolutions along it. All resource responsiveness values β_j were doubled, and \bar{a} was halved; all one-way and round-trip times were taken tenfold higher than those given in Table I, and the ones which correspond to the base station B_3 were further doubled.

Figure 16 shows the WiFi channel capacities and all throughputs (lower panel) in an experiment described in Section III-G. This experiment is an extension of the one considered in Sections III-B-III-F with high resource responsiveness values and round-trip times. The trajectory of the fleet is also extended by a full circular path, as depicted in Figure 5 (both solid and dashed lines).

IV. Conclusions

This paper was motivated by the possibility of providing robust communication for a mobile convoy of vehicles through the exploitation of path diversity in a hybrid network. The
primal algorithm for a fluid approximation to proportionally-fair MPTCP model has been used to investigate the behaviour and patterns of sub-flows between a moving convoy and a remote destination via a hybrid network of WiFi base stations and a satellite channel.

The paper demonstrates how path diversity can be implicitly utilised to spread flow across available paths in both dedicated and shared channel systems. The pattern of observed sub-flows can be seen to be under dynamic control according to the motion of the convoy relative to the fixed base stations. The paper also discusses the issue of resource utilisation in such scenarios and highlights solutions for its improvement.

The work in this paper is influenced by theoretical discussions of rate control and routing algorithms operating at the fluid level and by recent demonstrations of the capabilities of MPTCP through packet level simulations. Our work is first in using fluid model approximation to explore some of the capabilities of MPTCP in dynamically changing settings and it describes the features and advantages of this approach that emerge implicitly without the overhead of explicit coordination. As the theory, practical implementations and standardisation of MPTCP controllers are still under development [8], [21], much further work remains to develop this approach as well as to capture the benefits in deployed protocols and study their behaviour under mobility scenarios.

ACKNOWLEDGMENT

This research was sponsored by the US Army Research Laboratory and the UK Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the US Army Research Laboratory and the UK Ministry of Defence and was accomplished well as to capture the benefits in deployed protocols and study their behaviour under mobility scenarios.

REFERENCES

APPENDIX

FURTHER DETAILS ON CONVOY’S DYNAMICS

The parametrisation $\mathbf{X}(t) = (X(t), Y(t))$ of the “clover”-like trajectory used in our experiments is as follows:

$$X(t) = R \cos(3\gamma t) \cos(\gamma t)$$

$$Y(t) = R \cos(3\gamma t) \sin(\gamma t).$$

Since the length of the arc on this curve between points t_1 and t_2 is

$$l_{[t_1, t_2]} = R\gamma \int_{t_1}^{t_2} \sqrt{1 + 8 \sin^2(3\gamma t)} \, dt,$$ \hspace{1cm} (16)

where the integrand ranges within the interval $[1,3]$, then, measuring time in seconds and in order to ensure the maximum speed of 25 m/s, given the choice of $R = 500$ metres, the parameter γ was set to

$$\gamma = \frac{25m}{3 \times 500m \times 1s} = 0.05/3 \text{ s}^{-1}. \hspace{1cm} (17)$$

This choice of R and γ ensures the speed to range from approximately 8.5 m/s (such slow-downs occur at the far ends of the clover’s petals) to 25 m/s (this maximal speed is achieved at the origin, see Figure 5) and gives a maximal acceleration of 0.84 m/s2. The convoy’s speed is constant when it moves along the circle and is 8.5 m/s.