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A large body of experimental evidence indicates that during an acute myocardial infarction (AMI), tissue
injury occurring after reperfusion represents a significant amount of the whole, irreversible damage. It
is now recognized that mitochondrial permeability transition pore opening plays a crucial role in this
specific component of myocardial infarction. Ischaemic postconditioning and cyclosporine A (CsA)
have been shown to dramatically reduce infarct size in many animal species. Recent proof-
of-concept clinical trials support the idea that lethal myocardial reperfusion injury is also of significant
importance in patients with ongoing AMI, and that targeting mitochondrial permeability transition by
either percutaneous coronary intervention postconditioning or CsA can reduce infarct size and
improve the recovery of contractile function after reperfusion. Large-scale trials are ongoing to
address whether these new treatments may improve clinical outcome in reperfused AMI patients.
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1. Myocardial lethal reperfusion injury

Coronary heart disease is the leading cause of death in
western countries. Myocardial infarction is a disabling
disease, with infarct size being a major determinant of mor-
tality after this common acute coronary event.1–3 The limit-
ation of infarct size has therefore been an important target
for therapeutic strategies to improve patient outcomes.
Currently, the most effective way to limit infarct size is to
reperfuse the jeopardized myocardium as soon as possible
with the use of coronary angioplasty or thrombolysis and
to prevent re-occlusion of the coronary artery with an effi-
cient antiplatelet and antithrombotic therapy. The develop-
ment of thrombolysis and coronary angioplasty has clearly
improved the prognosis of patients with acute myocardial
infarction (AMI). Numerous studies have demonstrated that
reperfusion limits infarct size and improves functional
recovery.1–3

Despite these beneficial effects, Jennings et al. first
suggested that reperfusion might also cause some functional
as well as structural damages to the heart.4 Braunwald and
Kloner termed reperfusion ‘a double-edged sword’ since it
caused myocardial stunning, ventricular arrhythmias, and
no-reflow.5–10

Besides these functional alterations, it has been shown
that reperfusion caused irreversible damage to the pre-
viously ischaemic myocardium.11 There has been much
debate as to whether reperfusion would simply accelerate
cell death or truly kill cardiomyocytes that would otherwise
have survived (in the absence of the deleterious effects of
reperfusion). Although several investigations during the
past decades reported that pharmacological interventions
at reperfusion might attenuate cardiomyocyte cell death,
the concept of lethal reperfusion injury faced some skepti-
cism mainly due to contradictory results, inconsistent
data, and failure to reproduce these data in in vivo
models and in all animal species.12–15

The description of postconditioning by Vinten-Johansen’s
group, together with numerous other studies using pharma-
cological agents that reduced infarct size when given at
reperfusion, established the existence of lethal reperfusion
injury.16,17 These authors first reported that brief episodes
of ischaemia performed just at the onset of reperfusion fol-
lowing a prolonged ischaemic insult dramatically reduced
infarct size. This observation has been confirmed in
several experimental preparations and animal species.18–21

These well-designed, controlled studies performed in inde-
pendent laboratories have demonstrated the existence of
lethal reperfusion injury, a complex process in which cellular
necrosis and apoptosis were both involved.22,23* Corresponding author. Tel: þ33 4 78 77 70 74; fax: þ33 4 78 77 71 75.
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1.1 Mitochondrial permeability transition in lethal
reperfusion injury

Lethal reperfusion injury of the myocardium is a complex
phenomenon that encompasses several aetiologies. Most of
the detrimental effects of reperfusion are triggered within
the first minutes following the re-opening of the occluded
coronary artery.24 However, most of the cellular disturb-
ances that occur at the time of reperfusion are determined
or critically dependent on ischaemia-induced abnormalities.
During ischaemia, the increase of anaerobic glycolysis
results in a progressive accumulation of protons and lactic
acid, eventually inhibiting glycolytic flux and synthesis of
ATP. The cardiomyocyte attempts to correct acidosis via
the Naþ/Hþ exchanger and will consequently load with
Naþ. This Naþ excess cannot be extruded from the cytosol
because of the Naþ/Kþ-ATPase failure due to the lack of
ATP. Secondary activation of the Naþ/Ca2þ exchanger, in
its reverse mode, will help pump Naþ out of the cell, but
induces cytosolic accumulation of Ca2þ. Prolonged ischae-
mia induces progressive failure of the ionic homeostasis,
which ultimately causes accumulation of intracellular Naþ

and Ca2þ, ATP decline, and development of ischaemic
contracture.

In the first minutes of reperfusion, the rapid correction
of acidosis via the Naþ/Hþ exchanger, the Na/HCO3
symporter, and the washout of lactate will cause secondary
activation of the Naþ/Ca2þ exchanger in the reverse mode
and aggravate cytosolic Ca2þ accumulation. The abrupt
re-exposure of the ischaemia-inhibited mitochondrial respir-
atory chain to oxygen will generate a membrane potential to
drive ATP synthesis, but then lead to rapid matrix Ca2þ over-
load and massive production of oxygen-derived free rad-
icals. These two factors are the major triggers of the
opening of the mitochondrial permeability transition pore
(mPTP).25,26

Under normal physiological conditions, the mitochondrial
inner membrane is impermeable to almost all metabolites
and ions, and the mPTP is in a closed conformation.
Under stress conditions, the mPTP opens and allows the
equilibration of molecules ,1500 da. The osmotic force of
matrix proteins results in matrix swelling, leading to
further rupture of the mitochondrial outer membrane
and release in the cytosol of pro-apoptotic factors like
cytochrome c. In addition, the disruption of mitochondrial
membrane potential also results in the ATP synthase to
behave as an ATPase and accelerates energy depletion
secondary to the ischaemic insult.27–30 In the isolated
heart model, Di Lisa et al. demonstrated that the
cytosolic release of NADþ, a surrogate marker of mPTP
opening, occurs at the time of reperfusion following a
prolonged ischaemic insult.31 Griffiths et al. used the
[3H]2-deoxyglucose entrapment technique to investigate
the kinetics of in situ mPTP opening and demonstrated
that mPTP opening does not happen during ischaemia, but
occurs within the first 5 min of reflow following ischaemia
in the isolated rat heart.32 Importantly, the time course of
mPTP opening appeared to match the rapid correction of
pH that occurs at reperfusion (Figure 1A). Recent in vivo
studies support this concept by showing that postcondition-
ing mediates its cardioprotective effects via prolonged tran-
sient acidosis during the early reperfusion phase33–35

(Figure 1B).

1.2 Inhibition of cyclophilin D as a target to
attenuate lethal reperfusion injury

Additional evidence for a major role of the mPTP in lethal
reperfusion injury recently came from the use of transgenic
mice lacking cyclophilin D (cypD).36,37 CypD, which is recog-
nized as a key molecular component of the mPTP, is a mito-
chondrial member of the family of peptidyl–prolyl cis–trans
isomerases. Although still debated, it has been reported
that, in the presence of high matrix Ca2þ concentration,
cypD may modify the conformation of the ANT, so that it
no longer functions as a nucleotide transporter, but rather
as a channel component for the mPTP.38,39 The molecular
structure of the mPTP remains poorly known and might
involve, besides cyclophilinD, various proteins including
VDAC or ANT. Unfortunately, their precise role is still
elusive and no pharmacological agent targeting these pro-
teins is currently available for clinical trials.40,41 Cyclospor-
ine A (CsA) is considered to inhibit mPTP opening by
preventing the binding of cypD to the ANT.38 In vivo,
cypD-deficient mice have been shown to develop smaller

Figure 1 Mitochondrial permeability transition pore (mPTP) opens at reper-
fusion as pH normalizes. (A) Opening of mitochondrial permeability transition
pore was assessed using the [3H]2-deoxyglucose entrapment technique. Isolated
rat hearts underwent 30 min of global ischaemia and 30 min of reperfusion.
Transition pore opening occurred within the first 5 min of reflow, following
rapid recovery of pH (from reference 30). (B) Infarct size reduction by ischaemic
postconditioning or acidic reperfusion was correlated to the time to recovery of
pH after reperfusion (figure based on data from reference 35).
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infarcts following a prolonged coronary artery occlusion
followed by reperfusion.36,37 Recently, Lim et al. reported
that cypD-deficient mice cannot be postconditioned,
further suggesting that lethal reperfusion injury is mediated
by mPTP opening.42 These results strongly support that the
mPTP opening, triggered by mitochondrial Ca2þ overload
and overproduction of reactive oxygen species, plays a
central role in lethal reperfusion injury.

The importance of the mPTP in the ischaemia–
reperfusion-induced necrotic death of various organs includ-
ing the heart, brain, and liver was initially recognized through
the use of mPTP inhibitors such as CsA and sanglifehrin A
(SfA).43–45 Hausenloy et al. first reported that CsA or SfA,
given at the time of reperfusion, limited infarct size in the
isolated rat heart.46 Argaud et al. demonstrated that the
specific mPTP inhibitor NIM811, a cyclosporine derivative,
both increased the resistance of mPTP to Ca2þ overload and
limited infarct size when given at the time of reflow.47,48

Interestingly, Argaud et al. reported that mitochondria iso-
lated from the risk region of postconditioned hearts displayed
an enhanced resistance of the mPTP to Ca2þ overload.49 This
pattern of inhibition of mPTP opening by postconditioning
was very similar to that observed in hearts treated with the
mPTP inhibitor NIM811 at the onset of reperfusion, as well
as that of preconditioned rabbits. These studies suggest
that ischaemic postconditioning may attenuate lethal reper-
fusion injury via the inhibition of mPTP opening.

2. Translation to patients

Unlike preconditioning, ischaemic postconditioning immedi-
ately appeared to clinicians as an unmet opportunity to deter-
mine whether lethal reperfusion injury existed in the human
heart, and whether it could represent a new therapeutic
target. Between 2004 and 2007, we performed three small-
size phase II clinical trials aimed at demonstrating that: (i)
ischaemic postconditioning could reduce infarct size and
improve myocardial functional recovery several months after
percutaneous coronary intervention (PCI), and (ii) pharmaco-
logical inhibition of mPTP opening by the commercially avail-
able mPTP inhibitor CsA could represent a pharmacological
alternative to ischaemic postconditioning in AMI patients.

We demonstrated that PCI postconditioning was able to
reduce infarct size by 30–40%, and that this protection
was persistent over time and resulted in a significant
improvement of contractile function at 1 year after infarc-
tion.51,52 More recently, we reported that CsA significantly
attenuated infarct size measured by cardiac enzyme
release during the first 3 days of reperfusion and by mag-
netic resonance imaging (MRI) at day five after reflow.53

Several issues had to be addressed in order to reach these
goals, including: (i) the safety and feasibility of these two
types of interventions, (ii) the choice of an appropriate
‘human model’, and (iii) the choice of an adequate exper-
imental design. We will briefly review here how we designed
these small-size proof-of-concept trials.

2.1 Safety and feasibility of ischaemic
postconditioning and cyclosporine A

Ischaemic postconditioning in AMI patients consisted of four
cycles of 1 min inflation/1 min deflation of the angioplasty
balloon in order to create repeated bouts of ischaemia and

reperfusion just after re-opening of the culprit coronary
artery. Repetition of balloon inflations and deflations is per-
formed on a daily basis in all PCIs performed for stable cor-
onary artery lesions; in this regard, our experimental
protocol did not add anything to the conventional PCI prac-
tice. The angioplasty balloon was inflated at low (2–4 atm)
pressure, immediately upstream of the coronary stent, in
order to avoid any damaging stress on the vessel wall or to
the stent, and limit potential mobilization of remaining
micro-thrombi. As a matter of fact, we did not notice any
clinical complication or any evidence of coronary artery dis-
section, stent damage, or thrombosis in the limited number
of patients who underwent PCI postconditioning. These find-
ings are in agreement with Darling et al., who reported that
AMI patients who underwent four or more balloon inflations–
deflations developed smaller infarcts than patients who
received less than four of these brief cycles of ischaemia–
reperfusion.54 Experimental reports indicate that the
amount of infarct size reduction by postconditioning may
depend on the number, duration, and timing of the algor-
ithm of brief cycles of ischaemia and reperfusion.55 We did
not have the opportunity to test whether different types
of algorithm would be more efficient in clinical practice;
further studies are required to address this issue.

CsA has been used for many years as an immuno-
suppressive agent, a property related to its binding to the
cytosolic calcium-activated protein phosphatase cyclophilin
A. Long-term use of cyclosporine has several potentially det-
rimental effects, including renal and hepatic toxicity and
increased susceptibility to infections and cancers. Following
acute administration, anaphylactic reactions have been
reported, as well as acute hypertension. In cardiac trans-
plant patients, CsA may be used intravenously in order to
prevent or treat acute graft rejection, with a daily dose
up to 5 mg/kg. In our study, we used the commercially avail-
able form of CsA, Sandimmunw (Novartis). We chose the
dose of 2.5 mg/kg because we had observed in in vivo
animal models that this dose of CsA was able to reduce
infarct size and did not cause any significant haemodynamic
effect. Indeed, we did not observe any detectable clinical,
haemodynamic, or biological sign of toxicity of CsA. In our
clinical trial, CsA was administered as a bolus in an antecu-
bital vein, within 10 min before re-opening of the occluded
coronary artery. Measurement of blood concentration of CsA
revealed that circulating levels were above values rec-
ommended in transplanted patients as soon as 1 min after
reflow and for at least 3 h after reperfusion.53

2.2 A human model to study interventions aimed
at reducing lethal reperfusion injury

The primary objective of our proof-of-concept studies was
to determine whether postconditioning or CsA administered
at the time of reperfusion was able to limit infarct size. In
order to demonstrate that a given therapeutic intervention
reduces infarct size, one must be able: (i) to measure
infarct size, (ii) to control the determinants of infarct
size, and (iii) to control the conditions of reperfusion.

2.3 Measuring infarct size in acute myocardial
infarction patients

Several techniques have been used to measure infarct size
in clinical trials, including cardiac enzymes release,
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single photon emission computed tomography (SPECT)
imaging, or more recently MRI.56 We used the area under
the curve of creatine kinase (CK) release over the first 3
days of reperfusion as the primary endpoint. Cardiac
enzyme release has been well validated as a marker of
infarct size.57–59 In our second PCI postconditioning study,
SPECT imaging at 6 months after AMI confirmed persistent
infarct size reduction as measured acutely by CK
release.52,60 In the CsA study, MRI performed at day 5 after
AMI in a subset of patients was in good agreement with CK
release for the assessment of infarct size.53,61–66 It is inter-
esting to notice that the amount of myocardial salvage
observed in the two PCI postconditioning studies was very
similar to that seen in the CsA study, i.e. comprised
between 30 and 40% of the total infarct size measured in
the control group. Furthermore, this infarct size reduction
was comparable to that seen in most animal studies
(Figure 2). This suggests that reperfusion injury kills a sub-
stantial amount of myocardial tissue, and therefore likely
represents a clinically relevant therapeutic target.17,51

Although MRI is emerging as a leading technique to
measure the size of irreversible tissue damage, questions
remain as to the best timing of imaging with respect to
reperfusion. Mostly, it has been demonstrated that the
area of hyper-enhancement after gadolinium injection
(which delineates the area of infarction) can shrink by
nearly 30% between day 5 and month 5 after AMI. This is
likely due both to a diminution of oedema within the reper-
fused territory and to the remodelling of the infarcted
myocardium.

2.4 Controlling the determinants of infarct size

The assessment of co-factors that determine infarct size is a
major point. As clearly established in animal models by
Reimer et al., the final infarct size following a prolonged
ischaemia–reperfusion is predicted by: (i) the duration of
ischaemia, (ii) the size of the area at risk, and (iii) the
amount of collateral circulation to the risk region during
the ischaemic period.67 It is of paramount importance to
measure all three factors in clinical infarct size reduction
studies.

Although not always reliable, the duration of ischaemia is
usually estimated by the time elapsed between the onset of
chest pain and the opening of the culprit coronary artery by
coronary angioplasty. It is widely accepted (mainly based on
early thrombolysis, rather than PCI studies) that the amount
of tissue salvage decreases and the prognosis worsens as the
duration of ischaemia increases. Guidelines recommend that
emergency reperfusion in STEMI patients should be per-
formed when ischaemia time is ,12 h. Of note, the
impact of the duration of ischaemia on the amount of
lethal reperfusion injury is poorly understood. Although it
is intuitively accepted that the amount of irreversible myo-
cardial damage due to reperfusion injury is proportional to
the severity of ischaemia, the constant persistance of this
relationship over the 12 h therapeutic range remains to be
determined. In fact, Maninveldt et al. found in the rat
model that ischaemic postconditioning was effective when
ischaemia lasted .45 min, but was detrimental (i.e.
increased infarct size) when coronary occlusion was of
short duration.68 As for clinical practice, one may question
whether PCI postconditioning or CsA is truly of interest

when reperfusion occurs in ,2 h, where infarct size would
anyway be limited. On the other hand, these interventions
might be of major interest when ischaemia lasts .6 h,
where lethal reperfusion injury may well be more deleter-
ious than expected, and where any additional myocardial
salvage may be of important prognostic value. Further
assessment of the amount of salvage according to time to
revascularization in larger cohorts of postconditioned or
CsA-treated patients is required to address this issue.

Evaluation of the amount of collateral flow to the ischae-
mic region is unfortunately very difficult in the human

Figure 2 Amount of tissue salvage by ischaemic postconditioning or cyclos-
porine in different animal species and man. (A) Infarct size reduction by
ischaemic postconditioning and cyclosporine in the mouse heart (figure
based on data adapted from references 51–53). (B) Infarct size reduction
by percutaneous coronary intervention postconditioning in the human
heart. Infarct size had been measured by the area under the curve of creatine
kinase (CK) release and 201Thallium single photon emission computed tom-
ography (figure based on data adapted from reference 52). (C) Infarct size
reduction by cyclosporine in the human heart. Infarct size had been measured
by the area under the curve of creatine kinase release and magnetic reson-
ance imaging (figure based on data adapted from reference 53).
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myocardium, especially in emergency situations. In theory,
the best technique to measure myocardial blood is PET
scan, which is impossible to apply in emergency settings.
Other techniques, including contrast echocardiography,
SPECT, or MRI are feasible yet difficult to apply in such clini-
cal settings, because of limited access to nuclear medicine
facilities, and mostly because they might delay the PCI pro-
cedure. To attenuate this limitation, we decided in our PCI
postconditioning and CsA proof-of-concept trials to
exclude patients with overt collateral circulation at the
admission coronary artery angiography: overall, this sub-
population with native collaterals to the area at risk aver-
aged 15.2% of all included patients. It is well
demonstrated that these patients develop small infarcts
and would likely get little, if any, benefit from a further
intervention. In fact, analysis of our database in which
these patients with collateral circulation were entered and
had CK release measurements revealed that they displayed
a 55% reduction of infarct size when compared with con-
trols, i.e. much more than either postconditioning or CsA
treatment would have afforded. This is in agreement with
infarct size studies performed in the dog model which has
collateral circulation. The plots of infarct size vs. regional
myocardial blood flow clearly show that hearts with more
than �15% of the myocardial blood flow in the remote non-
ischaemic territory during a prolonged ischaemia develop
small infarcts; infarct size in these hearts with collateral cir-
culation is half that seen in postconditioned hearts without
collateral circulation.17

The determination of the size of the area at risk is a major
issue. In animal models that have little collateral circulation
(e.g. pig, rabbit, rat, mouse), area at risk variations
can predict 70–90% of the final infarct size.67 In AMI
patients, the more appropriate technique is probably
sestamibi-SPECT.56 It allows a delayed (,6 h) imaging with
respect to the time of injection, which in this case could
be performed before PCI revascularization. It however
requires that nuclear medicine imaging could be performed
on a 24 h basis, which unfortunately is not possible in most
PCI centres. We used LV angiography to measure the area
of abnormal contraction, a surrogate for the area at risk,
as described by Feidl et al.69 We found that there was a
good correlation between infarct size (as measured by CK
release) and the area of abnormal contraction, very
similar to the relationship reported in animal models
(Figure 3). New imaging modalities of MRI, including
T2-weighted sequences, have been reported as able to
assess the area at risk in experimental preparations.70 Deli-
neation of the area at risk by T2-weighted MRI is based on
the increased amount of water in the myocardium at risk
due to tissue oedema after reperfusion. Although this tech-
nique may be useful in several situations, it has a major
limitation when applied to infarct size reduction studies.
In fact, most infarct size reduction treatments, and particu-
larly ischaemic postconditioning, have been shown to reduce
oedema in the reperfused myocardium.17 Therefore, any
imaging technique measuring oedema would underestimate
the area at risk in the treated group (but not in the control
group) and could artificially increase the infarct size/risk
region ratio; this might lead to missing a protective effect.
Assessment of the size of the area at risk brings us important
information. First, it enhances the sensitivity for the group
comparison so that sample size can be significantly reduced.

Secondly, it demonstrates that the patients who benefit the
most from the therapeutic intervention are those who
display the larger area at risk (Figure 3). In the mean time,

Figure 3 Area at risk as a major determinant of infarct size in various
species, including man. (A and B) Area of necrosis (triphenyltetrazolium
chloride staining negative region) (as percentage of left ventricular weight)
is correlated to area at risk (as percentage of left ventricular weight) in
mouse (A) and rabbit (B) hearts. Figure based on data adapted from Gomez
et al.50, and from reference 49. (C) Area under the curve of creatine
kinase release (a surrogate for infarct size) is correlated to the abnormally
contracting segments (ACS, percentage of left ventricular endocardial cir-
cumference), a surrogate for the area at risk on left ventricular angiogram
(figure based on data adapted from reference 51).
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it shows that patients with small area at risk get little benefit
from the therapeutic intervention aimed at attenuating lethal
reperfusion injury, be it postconditioning or CsA. This infor-
mation is of crucial importance when designing large-scale
trials aimed at investigating the ability of any therapeutic
interventions supposed to limit infarct size.

2.5 Controlling the conditions of reperfusion

The assessment of the efficacy of any intervention aimed at
reducing lethal reperfusion injury requires to control the
conditions of reperfusion as strictly as possible. Postcondi-
tioning and CsA have been shown to attenuate lethal reper-
fusion injury in conditions where: (i) the coronary artery was
fully occluded before reperfusion, (ii) treatment was
applied no later than the first minute of reperfusion.

Most recent large-scale morbidity–mortality clinical trials
performed in STEMI patients revascularized by PCI included
patients with TIMI flow grade at admission ranging from 0
to 3. In contrast, we included only patients with a fully
occluded culprit coronary artery at admission (TIMI flow
grade 0–1). TIMI 0–1 patients are those with the higher
risk of developing a large infarct, i.e. more prone to
benefit from postconditioning or CsA. Experimental studies
have demonstrated that the therapeutic window for lethal
reperfusion injury is restricted to the first minutes of reper-
fusion. STEMI patients with a TIMI flow grade .1 at the
initial coronary angiography have indeed had a spon-
taneously reperfusion before admission; in this case, the
therapeutic intervention will necessarily come after the
therapeutic window for intervention has closed. However,
whether this therapeutic window is as narrow in the
human heart as in studied animal species is still unknown.
As suggested by recent preliminary experimental studies,
it is possible that even delayed interventions may provide
some infarct size reduction.71

We used the direct stenting technique in our three
studies. It has been clearly demonstrated the low-flow, low-
pressure, or staged reperfusion can postcondition the
heart.72–75 Facing a fully occluded coronary artery, after
letting the guide wire cross the lesion, most PCI cardiologists
would perform a pre-dilatation in order to envision the
aspect of the stenosis as well as the distal coronary artery
bed. Some might repeat balloon inflations before finally
stenting the culprit lesion: this repetition of balloon
inflations and deflations may well trigger postconditioning.
Doing so in the control group would have limited our
ability to demonstrate the potential benefit of postcondi-
tioning or CsA. In contrast, direct stenting immediately
after passing the guide wire through the lesion, which
often allows a minor reflow and visualization of the stenosis,
more closely mimics the type of reperfusion used in exper-
imental models.

The choice of the specific postconditioning algorithm with
5 min episodes of ischaemia–reperfusion was arbitrary,
based on our experience in the rabbit heart.48,49 We took
great care to perform the first balloon inflation ,1 min
after direct stenting, since preclinical evidence suggested
that postconditioning protection was lost when the initial
brief ischaemia was delayed after reflow.20

3. Conclusion: from proof-of-concept
to clinical application

Phase II clinical trials, especially when including a limited
number of patients, are not sufficient for clinical appli-
cation. One may consider that ischaemic postconditioning
by PCI and CsA administered at the onset of reperfusion
are safe and can reduce infarct size in STEMI patients.
Limited data suggest that PCI postconditioning, by reducing
infarct size, improves the recovery of contractile function at
1 year post-infarction. However, a widespread use of these
cardioprotective therapies requires the demonstration that
their application to a large number of patients improves clini-
cal outcomes. Obviously, one might expect that infarct size
reduction should improve survival and prevent the develop-
ment of heart failure. In this regard, we are currently
putting together a large-scale, multicentre, controlled, ran-
domized trial to determine whether cyclosporine might
improve clinical outcome in STEMI patients.
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