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Abstract: Bioavailability and chemical stability are important characteristics of drug products that
are strongly affected by the solid-state structure of the active pharmaceutical ingredient (API). In
pharmaceutical development and quality control activities, solid-state NMR (ssNMR) has proved
to be an excellent tool for the detection and accurate quantification of undesired solid-state forms.
To obtain correct quantitative outcomes, the resulting spectrum of an analytical sample should be
deconvoluted into the individual spectra of the pure components. However, the ssNMR deconvolu-
tion is particularly challenging due to the following: the relatively large line widths that may lead
to severe peak overlap, multiple spinning sidebands as a result of applying Magic Angle Spinning
(MAS), and highly irregular peak shapes commonly observed in mixture spectra. To address these
challenges, we created a tailored and automated deconvolution approach of ssNMR mixture spectra
that involves a linear combination modelling (LCM) of previously acquired reference spectra of pure
solid-state components. For optimal model performance, the template and mixture spectra should
be acquired under the same conditions and experimental settings. In addition to the parameters
controlling the contributions of the components in the mixture, the proposed model includes terms for
spectral processing such as phase correction and horizontal shifting that are all jointly estimated via a
non-linear, constrained optimisation algorithm. Finally, our novel procedure has been implemented
in a fully functional and user-friendly R Shiny webtool (hence no local R installation required) that
offers interactive data visualisations, manual adjustments to the automated deconvolution results,
and the traceability and reproducibility of analyses.

Keywords: solid-state NMR; deconvolution; quantification; pharmaceutical development; quality
control; software; R Shiny; non-linear optimisation

1. Introduction

During the Chemistry, Manufacturing, and Controls (CMC) activities of drug develop-
ment, pharmaceutical scientists aim to establish optimal manufacturing processes and drug
formulations, resulting in a safe, stable, and effective product. Bioavailability and chemical
stability are important characteristics to ensure the required therapeutic levels and patient
safety. Both characteristics are strongly influenced by the solid-state structure of the active
pharmaceutical ingredient (API) and, occasionally, also of other constituents of the drug
product [1,2]. Therefore, detection and accurate quantification of undesired solid-state
forms is essential for pharmaceutical development and quality control. Solid-state NMR
(ssNMR) is an excellent tool for this purpose since the shape and position of the ssNMR
signal are very sensitive to the solid-state structure. Furthermore, the intensity of a specific
ssNMR signal has a linear correlation with the concentration of the corresponding solid
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form. For these reasons, ssNMR spectra of solid–solid mixtures usually can be accurately
approximated by linear combinations of the spectra of the individual components, provided
that the ssNMR spectra of the individual components and the mixtures are collected at the
same conditions and the same experimental settings. The proportions of these linear com-
binations have a linear correlation with the proportions of the corresponding solid forms in
the mixture. This is exemplified in Figure 1. Thus, to determine the accurate proportions of
the individual solid forms from the ssNMR spectrum of a solid–solid mixture, the mixture
spectrum first needs to be accurately deconvoluted into the separate spectra of the pure
components. In this deconvolution process the reference spectra of the amorphous and
crystalline state are used as a template. In the remainder of this manuscript, we term the
reference spectra of the individual components as “template spectra”.
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Figure 1. The mixture ssNMR spectrum (in blue) of a compound of interest contains contributions
of crystalline (red) and amorphous (green) solid-state forms. The proportions of the two solid-state
forms present in the physical mixture can be determined by deconvolution of the mixture spectrum
into the two separate pure-component spectra. Only spectrum real parts are shown.

A wide range of methods has been developed for NMR signal deconvolution, primar-
ily in the context of metabolite analysis of the human brain in vivo spectra. Methods such
as AMARES [3], QUEST [4], AQSES [5], all three available in the jMRUI software suite [6],
or TARQUIN [7] perform the modelling of experimental signals in the time domain, while
other approaches such as LCModel [8], the method described in [9], GANNET [10], and
Osprey [11] operate in the frequency domain. Generally, most of these modelling routines
seek to explain an experimental signal with a function (for instance, linear combination) of
baseline and experimental or simulated template signals of the pure components that are
further modified to account for NMR-specific artefacts, including phase errors, chemical-
shift discrepancies, and line-shape distortions. Fitting a mixture of Gaussian or other
distribution functions to only selected peaks in a spectrum is another possibility in quan-
titative NMR spectroscopy [10,12]. Exploiting prior knowledge concerning the signal’s
characteristics is a common way to aid the non-linear model optimisation towards the cor-
rect solution. The previously mentioned methods differ regarding what type of information
can be used and how easy it can be incorporated into the modelling process. The prior
knowledge typically pertains to the individual signal’s properties such as baseline, peak
shape (Gaussian, Lorentzian, or Voigt), and intensity ratios within a peak multiplet, but
also the discrepancies between analytical and template signals.

For several reasons, the methods mentioned above are not well suited to efficiently
tackle QC requirements in API manufacturing applications and the general challenges of
solid-state NMR data analysis. Firstly, in ssNMR we often seek to quantify different forms
of the same compound, which, in combination with the relatively large line widths of the
ssNMR signals, gives a high risk of severe overlap in the mixture spectrum. Secondly,
the undesired solid-state form, generally the form that needs to be quantified, is usually
present at low concentrations. Thirdly, Magic Angle Spinning (MAS) is often employed in
ssNMR to enhance spectral resolution. This technique causes the splitting of the original
signal into multiple spinning sidebands with varying intensity locations; all the sidebands
should be considered by a quantification method. Furthermore, highly irregular peak
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shapes, typically observed in ssNMR, often preclude accurate parsimonious capturing.
The last remark regarding the data characteristics occurring in quality control of APIs is
usually a limited number of solid-state forms expected in the final drug product, allowing
for building a very targeted, specific, and sensitive deconvolution procedure.

To address these issues and data characteristics elaborated above, we created a ded-
icated ssNMR mixture spectra deconvolution approach, implemented in R Shiny, that
exploits a specific type of prior information available in the context of solid-state poly-
morph analysis of APIs. The prior knowledge is given by a priori acquired experimental
ssNMR data of pure, unmixed samples of solid-state forms of the compound of interest.
A linear combination modelling (LCM) of the template spectra is then carried out with
a non-linear, constrained optimisation routine such that the sum of squared deviations
between the observed and model signals is minimised. For optimal model performance,
the template and mixture spectra should be acquired under the same conditions and ex-
perimental settings. A full description of the modelling effort and design choices will be
published in a separate and more fundamental research article. In this manuscript, we
mainly want to draw the readers’ attention to the existence of a fully functional R Shiny
app (https://valkenborg-lab.shinyapps.io/ssNMRdeconvolution/, version 1.0.0, accessed
on 9 September 2022) for the deconvolution of ssNMR mixture spectra. The function of
the app is demonstrated with a limited data set. A validation study with a larger set of
experimental data is ongoing.

2. Materials and Methods
2.1. Algorithm

To explain the rationale for constructing our proposed fitting procedure, we first
present Figure 2 which shows an example—used throughout the entire manuscript and
described more in the Results section—of a solid-state ssNMR measurement of a spiked
sample that contains 3% and 97% of crystalline and amorphous solid-state forms of an API,
respectively. In that figure, the previously discussed features can instantly be noticed, such
as multiple sidebands, broad peaks due to large amorphous material content, and—most
strikingly—large phase error.
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Figure 2. The ssNMR mixture spectrum of a spiked sample of amorphous material containing 3%
of a crystalline solid-state form. Among other factors mentioned in the Introduction, the multiple
sidebands, broad peaks due to the dominant amorphous component, and processing artifacts such as
considerable phase error necessitate a tailored deconvolution approach.

Phase correction of such broad peaks is challenging for both computers and expert
spectroscopists. Manual phase correction by an NMR spectroscopist involves significant
time cost and between-spectroscopist variation—an unwanted characteristic of any QC
method in the pharmaceutical industry. Therefore, we assume that only the template
spectra are manually and carefully phased and then kept fixed within a given quantification
project. On the other hand, the analytical mixture spectra are automatically phase corrected
by our model. The model also should account for minor errors in chemical shift that
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may occur while referencing spectra and result in horizontal misalignment between the
analysed spectra.

Let (xmix,n, ymix,n),
(

x f orm1,n, y f orm1,n

)
,
(

x f orm2,n, y f orm2,n

)
, n = 1, . . . , N be the data

of the mixture spectrum and the template spectra representing the prior knowledge, respec-
tively. Within this notation, xn and yn are the n-th values of chemical shift and intensity
(complex number); “form1” and “form2” are the generic terms that correspond to two
template spectra (the crystalline and amorphous solid-state forms in this particular appli-
cation). To account for small differences in the chemical shift between the three spectra,
linear interpolation is performed before modelling to assure that the three spectra are at
the same ppm scale. The ppm scale of “form2” is used as a reference for this interpolation
step. Now, phase and chemical shift errors, together with the proportions of two solid-state
forms in the mixture sample, are included in the model that aims at minimising one of two
possible loss functions applied to the model residuals in the frequency domain. The two
possibilities are quadratic (L2 norm) or least absolute deviation (L1 norm). We chose the
quadratic loss function as the default, and it is given by ∑N

n=1 e2
n (Residual Sum of Squares,

RSS). The residuals are defined as follows:

en = ∆mix(Re(exp(iϕ(n))× ymix,n))− α1∆ f orm1

(
Re

(
y f orm1,n

))
− α2Re

(
y f orm2,n

)
(1)

where Re() denotes the real part of the spectrum and α1, α2 are the mixing coefficients
subject to constraints: α1 + α2 = 1 and 0 ≤ α1, α2 ≤ 1. The linear interpolation operator is
denoted by ∆() and used to move spectra horizontally. Note that while given three spectra
at a time, it is sufficient to fix the location of one spectrum and allow the other two to be
shifted. Next, the ϕ(n) factor is responsible for phase correction and is defined as follows:

ϕ(n) = (ϕ0 −
ϕ1

N
n∗) +

ϕ1

N
n, n = 1, . . . , N (2)

In the equation above, ϕ1 is the first-order phase correction (PH1) coefficient, and ϕ0
is the term contributing to the zero-order phase correction (PH0). Moreover, n denotes the
index of points in the spectrum, while n∗ is the index of the pivot point (the point where
the first-order phase correction is zero). Due to the inclusion of the pivot point, only the
entire term in parentheses in Equation (2) can be interpreted as zero-order phase correction.
The RSS is minimised using Sbplx re-implementation of the Subplex algorithm [13], which
is a variation of Nelder–Mead’s simplex algorithm. To reiterate, the proposed model is
an example of an LCM approach tailored to a specific ssNMR use case (API solid-state
form analysis). In this application, the amorphous component in the mixture spectrum is
characterised by considerably broad peaks; this property hampers phase correction, which
is crucial for accurate deconvolution, hence the decision to jointly optimise the selected
processing parameters and the mixing proportions. Additional information on the model
implementation in R can be found in Supplementary Materials.

2.2. R Shiny Application

The described deconvolution algorithm has been implemented in a web-based Shiny
application available at https://valkenborg-lab.shinyapps.io/ssNMRdeconvolution/ (ver-
sion 1.0.0, accessed on 9 September 2022), and thus the user can upload the spectral data and
interact directly with the app without local R installation. In this section, only main features
of the app are discussed; however, a detailed user manual can be found in Supplementary
Materials. Figure 3 shows a screenshot of the app’s Graphical User Interface (GUI).

https://valkenborg-lab.shinyapps.io/ssNMRdeconvolution/
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Figure 3. An expanded view of Graphical User Interface. A brief tutorial on how to use the app can
be found in Supplementary Materials.

The GUI consists of several numerical and text input fields through which the user
provides values affecting spectral processing and deconvolution, action buttons that assist
in data loading and trigger certain actions such as model fitting or results downloading,
and an interactive graph showing the mixture and template spectra together with the fitted
spectrum and the residual line. Note that the graph is a truly dynamic and fully functional
visualisation interface that allows a user to interact with different uploaded ssNMR spectra.
The right-hand side of the figure displays a legend and zoom functionality. By clicking on
the legend, a user can turn on/off certain spectra or results of the fitting procedure. On the
left-hand side, several functionalities including model fitting are located, and those will be
further explained in the user manual available in Supplementary Materials.

The typical session starts with loading spectral data in the form of either a JCAMP-DX
file or two CSV files. Do consult Supplementary Materials to learn how to prepare the
input data. Furthermore, three distinct ways of working with the app have been envisioned
and implemented:

• “no optimisation, apply the fixed processing values”: No optimisation is performed; the
manually specified values in the input fields corresponding to ∆mix, ∆ f orm1, ϕ0, ϕ1, α2
(note that α1 = 1− α2) are directly applied to process (according to Equation (1)) and
visualise the spectra.
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• “optimise only proportion”: The same workflow as above, except that now the α2
parameter is estimated, offering a compromise between fully manual and fully auto-
mated processing and deconvolution.

• “optimise proportion and other processing parameters”: This entails the fully auto-
mated optimisation of the five model parameters.

The loss function minimised by the optimisation algorithm app can be switched by
the user from quadratic deviation (L2, default choice) to the least absolute deviation (L1).

Note that it is possible to run the same estimation form multiple times and/or switch
from one to another. This flexibility grants greater control over the deconvolution process
because the user can, for instance, run the fully automated optimisation, assess the model
fit, and then manually adjust the obtained solution via the input fields to try to improve the
fit. Every user’s action is recorded in a downloadable CSV file, allowing to pause and restart
the analysis at a different occasion, thereby promoting traceability and reproducibility.

3. Results

To develop and test our ssNMR deconvolution approach based on LCM, we used
in-house-prepared tablets mimicking as closely as possible the intended commercial phar-
maceutical product. These tablets contain 0%, 3%, 10%, 20%, and 100% crystalline Apa-
lutamide in otherwise amorphous solid dispersion Apalutamide, granulate Zytiga, and
external phase excipients. The total weight percent of Apalutamide in all tablets is 6%. Details
on sample preparation and NMR acquisition are provided in Supplementary Materials.

We analysed one spectrum of a 3%-crystalline tablet to demonstrate our novel Shiny
app. To make the data more challenging for the developed deconvolution method, the
manual zero-order phase correction described in the Supplementary Materials was deliber-
ately reverted. Figure 4 presents the analytical spectrum and two templates, where it can
be immediately noticed that the mixture spectrum contains a large phase error and perhaps
a slight horizontal misalignment between the three signals.

Metabolites 2022, 12, 1248 7 of 9 
 

 

 
Figure 4. The before-deconvolution visualisation of the 3%-crystalline mixture spectrum (in blue) 
together with the 100% pure amorphous (“form1”, the black line) and 100% pure crystalline 
(“form2”, the green line) templates. The discussed processing and deconvolution challenges are 
now clearly visible: severe peak overlap, large phase error of the mixture, and broad peaks of the 
amorphous component. Only spectrum real parts are shown. The x-axis range was limited to −5 and 
−120 ppm for better visibility. 

 
Figure 5. A satisfactory model fit obtained with the automated “proportion and processing param-
eters” mode. The true proportion of the crystalline spectrum (“form2 reference”, the green line) in 
the mixture (the blue line) spectrum is 3%, whereas the model estimate points at 2.84%, yielding a 
−5.5 relative error (in percentage points). The bottom panel is a zoomed view on the residual line 
alone that confirms the good quality of the found solution. Only spectrum real parts are shown. The 
x-axis range was limited to −5 and −120 ppm for better visibility. 

Figure 4. The before-deconvolution visualisation of the 3%-crystalline mixture spectrum (in blue)
together with the 100% pure amorphous (“form1”, the black line) and 100% pure crystalline (“form2”,
the green line) templates. The discussed processing and deconvolution challenges are now clearly
visible: severe peak overlap, large phase error of the mixture, and broad peaks of the amorphous
component. Only spectrum real parts are shown. The x-axis range was limited to −5 and −120 ppm
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Running the “proportion and processing parameters” estimation mode resulted in
an estimate of the crystalline proportion equal to 2.84% (and thus the relative error of
−5.5 percentage point) and a good model fit as judged by a small and randomly fluctuating
residual line (Figure 5). The phase error was successfully removed from the mixture
spectrum since the peaks are noticeably more symmetrical and take positive values. In
this case, the obtained results did not necessitate manual adjustments nor further model
re-estimation using various GUI features.
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4. Discussion

To bridge the gap between general-purpose quantitation software for in vivo NMR
spectroscopy and ssNMR analysis of APIs, we created a linear combination modelling
method for spectral deconvolution allowing the efficient use of information regarding
signal properties represented by previously acquired experimental template spectra. This
choice has substantially limited the number of otherwise needed parameters to model the
erratic, wide peak shapes and spinning sidebands in ssNMR spectra. Such a reduction in
the parameter space is especially appreciated in non-linear optimisation problems. Overall,
we demonstrated that the method works well on one ssNMR spectrum of a synthesised
drug tablet. A validation study involving a larger set of experimental spectra will be
forthcoming. While this application note focusses on pharmaceutical APIs, the described
method is obviously also suitable for mixtures of solid forms of other pure compounds. For
instance, the solid form constitution of excipients and its stability can be analysed in the
raw materials or even in the finished drug product. Moreover, the flexible design of the R
Shiny application, with several options for manual results adjustments, should alleviate the
burden associated with transitioning from a proprietary software. As in many non-linear
models, our approach might also be sensitive to the parameter starting values. However,
we supply sensible values for the horizontal shift coefficients (zeros, as it is expected that the
input spectra should be provided already reasonably well aligned), the “form2” proportion
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(zero, as we assume that the “form2” represents the unwanted and less abundant solid-state
form), and the zero-order phase, which can be automatically initialised based on a method
that maximises the positiveness of the real part of the spectrum [14]. Thus, only the first-
order phase correction term is left out and could be varied to see its impact on the model
fit. Nevertheless, the validity of starting values and the resulting parameter estimates
and how these could be improved can be inferred by looking at the residual, fitted, and
individual spectral lines on the interactive graph. Even though using experimental template
spectra allowed for specifying a parsimonious model, differences in handling analytical
and reference samples that cause discrepancies in the corresponding spectra may affect the
quality of the final solution. Further research will be devoted to providing the standard
errors of the model parameters because, at this moment, the uncertainty around the mixing
proportions can only be assessed based on a calibration study. We will also attempt to
expand the proposed methodology to accommodate for the multiple template scenarios
where more than one crystalline or amorphous solid-state form is to be quantified.
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