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Abstract: Protein-ligand docking is an essential part of computer-aided drug design, and it identifies
the binding patterns of proteins and ligands by computer simulation. Though Lamarckian genetic
algorithm (LGA) has demonstrated excellent performance in terms of protein-ligand docking problems,
it can not memorize the history information that it has accessed, rendering it effort-consuming to
discover some promising solutions. This article illustrates a novel optimization algorithm (HIGA),
which is based on LGA for solving the protein-ligand docking problems with an aim to overcome the
drawback mentioned above. A running history information guided model, which includes CE crossover,
ED mutation, and BSP tree, is applied in the method. The novel algorithm is more efficient to find the
lowest energy of protein-ligand docking. We evaluate the performance of HIGA in comparison with
GA, LGA, EDGA, CEPGA, SODOCK, and ABC, the results of which indicate that HIGA outperforms
other search algorithms.
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1. Introduction

Drug molecular design, as a new drug research method and means, has achieved a lot of theoretical
and practical research findings [1–4]. Protein-ligand docking is a typical method for structure-based
drug discovery and design, the aim of which is to find the best ligand conformation of a ligand
against a protein receptor target with the lowest energy [5–9]. The progress of X-ray diffraction
technology of biological macromolecules provides us with more important structures of proteins
and ligands. These structures can be used as targets for bioactive substances to control diseases in
animals and plants, and they allow for people to understand the biological mechanisms of active
substances simply [10–12]. The rapid development of computer technology has promoted the further
development of molecular drug design effectively and significantly reduced the cost of drug research.
For the docking process, the ligands are placed at the active site of the receptors, then the position and
orientation of the ligands are adjusted by some binding and complementary principles, and then the
optimal binding modes are obtained finally.

A search algorithm and a scoring function are the basic tools of a docking method for solving the
two goals above. The scoring function is used to evaluate the binding conformation of ligands and
receptors that were predicted by computer simulation [13–17]. In the docking process, it is necessary
to obtain the binding affinity accurately as the basis for optimization. The scoring function not only
provides a fast method for evaluating the binding affinity, but it also assists a docking in efficiently
exploring the binding space of a ligand [18,19]. The score function can be directly used as the fitness
function of optimization algorithms.

The search algorithm aims to identify the optimal binding mode between ligands and receptors,
including the location of small ligands relative to proteins and conformational changes in molecules [20,21].
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The best result of searching is the docked conformation with the lowest energy. The space search
in molecular docking is the NP-hard problem, so it is impossible to traverse all of the search space.
Heuristic algorithms have a lot of successful applications for protein-ligand docking problems [22–24].
For example, simulated annealing (SA) [25], genetic algorithm (GA) [26–28], Lamarckian genetic
algorithm (LGA) [29], SODOCK [30–32], and artificial bee colony (ABC) [33]. However, the existing
algorithms do not make a reasonable use of the history information, which results in the insufficient
quality of the solutions that they obtain. Therefore, an efficient optimization algorithm that can find
lower docking energy and RMSD is desirable.

The LGA is proven to be efficient, but it does not take advantage of the history information that is
accumulated during the optimization procedure, resulting in it being hard to discover some promising
solutions. As a result, we report an LGA-based novel genetic algorithm that enhances the performance
of protein-ligand docking by utilizing the running history information in this article. The proposed
algorithm can be abbreviated as HIGA, which stands for running history information guided genetic
algorithm. Running history information refers to the information that retained during the running
process of the algorithm, has a guiding role for the subsequent iterations. Running history information
includes elite individuals, individuals with the historical optimal solution and suboptimal solution,
and the location of individuals.

The three critical strengths of HIGA are as follows. (1) CE crossover is proposed to optimize
crossover operation of the algorithm [34]. CE crossover uses history information to retain individuals
with good genes, and these individuals make the subsequent population better; (2) ED muation
is proposed to guide the evolutionary direction according to running historical information [35];
(3) Binary space partitioning (BSP) tree is employed to maintain the diversity of the individuals
in a population [36]. The BSP tree can memorize all of the evaluated solutions so as to avoid
solution re-evaluation.

The environment and the scoring function of AutoDock 4.2.6 are adopted as the experimental
platform in the article [37–39]. AutoDock, as an open source academic software, which can embed
the improved algorithm conveniently. AutoDock first uses the amino acid residues around the active
site of the receptor to form a box. Then, it uses different types of atoms as the probe to scan, calculate
the grid energy, and to search for the ligand in the range of the box. At last, it scores according to the
different conformation, orientation, and position of the ligand. In order to demonstrate the power
HIGA, we perform the experiement on a set of protein-ligand structures from PDBbind 2016 [40].
The performance of GA, LGA, EDGA, CEPGA, SODOCK, ABC, and HIGA is compared on these
datasets. The experimental results show that our method has improved power in the aspects obtained
energy and RMSD, convergence performance, data distribution, and hypothesis test.

2. Results and Discussion

2.1. Data Preparation and Parameter Setting

The docking power of seven algorithms is compared, and they are GA, LGA, EDGA, CEPGA,
SODOCK, ABC, and HIGA. For the compared algorithms, the number of iterations is 27,000,
the number of energy evaluations is 1.5 × 106, the number of individuals is 50, and the other parameters
are the default. The algorithms are terminated by reaching the number of iterations or the number of
energy evaluations. We randomly choose a hundred X-ray crystallographic complexes (PDB) from
PDBbind 2016 to make up Dataset 1, and then we choose sixteen complexes that have a different
number of rotatable bonds in ligands from the hundred complexes to constitute Dataset 2. Before
docking, we preprocess the downloaded proteins and ligands. The steps of protein processing are
removing water molecules, adding charges, assigning hydrogens, and solvation. The procedures
for treating ligands are adding charges, assigning hydrogens, detecting root, and choosing torsions.
The molecular structures of the sixteen ligands in Dataset 2 are showed in Figure 1, and the sixteen
complexes are briefly described below.
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Figure 1. The molecular structures of ligands. 

(1) 3ptb β-trypsin/ben (benzamidine) 
β-Trypsin, isolated from the pancreas of pigs, sheep, as well as cattle, is used as a protease. 
Benzamidine, an inhibitor, is generally utilized in suppressing proteolysis of proteins. 

(2) 1aha α-momorcharin/ade (adenine) 
α-Momorcharin originates from seeds of Momordica charantia, while adenine is a biological 
component of organism. 

(3) 3hvt HIV-1 reverse transcriptase/nvp 
HIV-1 reverse transcriptase (RT), a phosphate enzyme, is involved in synthesis of cDNA. Nvp is 
a strong, non-nucleoside RT suppressor. 

(4) 1phg cytochrome P450-cam/hem (protoporphyrin IX) 
Cytochrome P450-cam, participating in metabolism of exogenous, as well as endogenous 
substances, is a superfamily of heme-thiolate proteins. Protoporphyrin IX, a purple brown 
crystalline powder, can dissolve in methanol, while is not soluble in ether, chloroform, acetone, 
or water. 

(5) 2mcp McPC-603/pc (phosphocholine)  
McPC-603, a myeloma protein from mouse that binds to phosphocholine, interacts with 
phosphatidylcholine synthesis in tissues. 

(6) 1stp streptavidin/btn (biotin) 
Streptavidin, a protein obtained from streptomyces, harbors a similar biological features with 
affinity. Biotin, a member of B vitamins, plays a critical role in normal metabolism of proteins as 
well as fats. 

(7) 6rnt ribonuclease T1/ca (calcium ion) 
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(1) 3ptb β-trypsin/ben (benzamidine)
β-Trypsin, isolated from the pancreas of pigs, sheep, as well as cattle, is used as a protease.
Benzamidine, an inhibitor, is generally utilized in suppressing proteolysis of proteins.

(2) 1aha α-momorcharin/ade (adenine)
α-Momorcharin originates from seeds of Momordica charantia, while adenine is a biological
component of organism.

(3) 3hvt HIV-1 reverse transcriptase/nvp
HIV-1 reverse transcriptase (RT), a phosphate enzyme, is involved in synthesis of cDNA. Nvp is a
strong, non-nucleoside RT suppressor.

(4) 1phg cytochrome P450-cam/hem (protoporphyrin IX)
Cytochrome P450-cam, participating in metabolism of exogenous, as well as endogenous
substances, is a superfamily of heme-thiolate proteins. Protoporphyrin IX, a purple brown
crystalline powder, can dissolve in methanol, while is not soluble in ether, chloroform, acetone,
or water.

(5) 2mcp McPC-603/pc (phosphocholine)
McPC-603, a myeloma protein from mouse that binds to phosphocholine, interacts with
phosphatidylcholine synthesis in tissues.
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(6) 1stp streptavidin/btn (biotin)
Streptavidin, a protein obtained from streptomyces, harbors a similar biological features with
affinity. Biotin, a member of B vitamins, plays a critical role in normal metabolism of proteins as
well as fats.

(7) 6rnt ribonuclease T1/ca (calcium ion)
Ribonuclease T1, an endonuclease, is able to discard the non-hybridized RNA area in DNA-RNA
hybrid. Calcium ion plays a vital role in human physiological functions.

(8) 4dfr dihydrofolate reductase/mtx (methotrexate)
Dihydrofolate reductase, has universally been utilized as a therapeutic target in anti-tumor
therapy, as well as other aspects. Methotrexate, a drug with potent immunosuppressive effect,
is capable of inhibiting proliferation as well as division of immune cells.

(9) 1ett thrombin/4qq
Thrombin is a formless, white to gray, freeze-dried powder, and 4qq is regarded as a non-polymer
suppressor.

(10) 1hri human rhinovirus/s57
Human rhinovirus causes the majority of human common cold. s57 is a member of imidazole.

(11) 1hvr protease/xk2
Protease, an enzyme widely found in animals as well as plants, is capable of catalyzing protein
catabolism. xk2, a small molecule inhibitor, is able to decrease or even prohibit chemical reaction rate.

(12) 4hmg hemagglutinin/sia (sialic acid)
Hemagglutinin is the cause of coagulation of erythrocytes. Sialic acids, generated at terminal
sugars, are members of acidic monosaccharides.

(13) 1cdg cyclodextrin glycosyl transferase/mal (maltose)
Cyclodextrin glycosyltransferase, a bacterial enzyme, is able to produce cyclodextrins. Maltose,
made of starch, as well as malt, is widely utilized as nutrient as well as culture medium.

(14) 1htf HIV-1 protease/g26
HIV-1 protease is capable of separating newly-generated polyproteins into individual peptides.
g26, a non-polymer suppressor, is an amide with easily oxidizable and highly reactive perssad.

(15) 1glq glutathione S-transferase/gtb (S-(P-nitrobenzyl)Glutathione)
Glutathione S-transferase, a series of enzymes, is associated with hepatic detoxification process.
S-(P-nitrobenzyl) Glutathione is a critical synthesis of glutathione precursor.

(16) 1tmn thermolysin/nas (2-naphthalenesulfonic acid)
Thermolysin, a biological component, is featured by a more rapid hydrolysis of hydrophobic
amino acids. 2-naphthalenesulfonic acid, white powder or crystal, can dissolve in water but not
in alcohol, which is widely adopted in organic synthesis.

2.2. Comparison of Energy and RMSD

The primary objective of our experiment is to find the lowest energy. The values of the lowest
energy, calculated by the semi-empirical free energy force field [15], is the most important criterion to
evaluate the performance of the compared algorithms. Root-mean-square positional deviation (RMSD)
is also the commonly used standard to evaluate the molecular docking results. RMSD compares
the optimal docking structure with the experimentally measured actual structure. If the RMSD is
smaller than a given threshold 2.0 Å after docking, then the docking can be considered successful.
Each algorithm runs one time in Dataset 1. The success of the docking is recorded, Average RMSD (all
cases) and Average RMSD (RMSD < 2 Å) are calculated (Table 1). For the number of success cases and
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the Average RMSD, HIGA is obviously superior to other algorithms. Each algorithm runs twenty times
in Dataset 2, the lowest energy and RMSD are recorded, and the results are showed in Table 2. For the
lowest energy of the sixteen complexes, HIGA finds the twelve lowest values, EDGA finds the two
lowest values, CEPGA and SODOCK find the one lowest value respectively, and GA, LGA, ABC do
not find any of the lowest values. Although HIGA does not find the lowest energy in 1aha, 1ett, 4hmg,
and 1htf, the energy values found are still promising. For example, the energy −16.15 kcal mol−1

found by HIGA is close the lowest energy −16.23 kcal mol−1 found by EDGA in 1aha; the energy
−21.17 kcal mol−1 found by HIGA is close the lowest energy −21.79 kcal mol−1 found by SODOCK
in 1htf. The number of the lowest RMSD that is found by HIGA, GA, LGA, EDGA, CEPGA, ABC
SODOCK is 7, 2, 1, 2, 1, 1 and 2, respectively. HIGA has no absolute advantage in finding the lowest
RMSD, but it is better than the other algorithms. In conclusion, the best search method is HIGA with
regard to its average performance.

Table 1. Results of success case and average root-mean-square positional deviation (RMSD).

Algorithm Success Case Average RMSD (All Cases) Average RMSD (RMSD < 2 Å)

HIGA 90 1.81 1.32
GA 58 3.12 1.80

LGA 68 2.55 1.69
EDGA 77 2.21 1.62

CEPGA 81 2.13 1.59
SODOCK 73 2.88 1.79

ABC 62 3.25 1.83

2.3. Cluster Analysis of Docked Conformations

After twenty times docking of each complex in Dataset 2, twenty docked conformations are
obtained. These conformations exhaustively compared to one another to determine similarities,
and they are clustered if they are similar enough. The range of the formed clusters is 0 to 20. The clusters
are ranked in order of increasing energy, by the lowest energy in each cluster. Rank 1 is the lowest
energy cluster, it refers to how often the structure with the lowest energy is found. The concentration
of the clusters and the docked structures in rank 1 can reflect the stability of the algorithm. The cluster
analysis is performed in Dataset 2, and the results are shown in Table 3. The mean of the number
of clusters found is lowest for HIGA (3.72), followed by CEPGA (4.04), EDGA (4.24), LGA (4.58),
SODOCK (10.30), ABC (6.52), and finally GA (13.04). The mean of the number of docked structures in
rank 1 is 17.04 for HIGA, 16.20 for CEPGA, 15.92 for EDGA, 15.72 for LGA, 11.82 for SODOCK, 8.70
for ABC, and 8.00 for GA. Hence, the most reliable search method is HIGA.

2.4. Convergence Analysis

Convergence means that the convergence curve of the objective solution tends to be stable after
several iterations. The convergence diagrams of seven different algorithms for solving different test
cases of Dataset 2 are shown in Figure 2. The number of iterations is 3000, 6000, 9000, 12,000, 15,000,
18,000, 21,000, 24,000 and 27,000, respectively, and these values are used as the horizontal axis of the
convergence diagrams. The energy of each algorithm under different iteration times is calculated as
the vertical axis. At the early stage of each algorithm, the energy value decreases as the number of
iterations increases. But, in the later stage, the energy values of some algorithms tend to be fixed.
This phenomenon, which is caused by the decrease of population diversity and the loss of evolutionary
capacity, is called premature convergence. For example, LGA, EDGA, and SODOCK are prematurely
convergent after iterating 15,000 times in 2mcp; GA and ABC are prematurely convergent after iterating
18,000 times in 2mcp; LGA, EDGA, SODOCK, and ABC are prematurely convergent after iterating
21,000 times in 6rnt. From these graphs, it can be concluded that HIGA is superior to other algorithms
regarding preventing premature and solution quality.
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Table 2. The lowest energy and RMSD results.

HIGA GA LGA EDGA CEPGA SODOCK ABC

PDB Ligand Torsions Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD Energy RMSD

3ptb ben 0 −12.22 1.95 −10.31 1.66 −11.53 1.92 −12.18 1.95 −11.72 1.90 −11.57 2.00 −10.95 1.97
1aha ade 1 −16.15 0.90 −15.26 1.20 −16.10 0.45 −16.23 0.38 −15.32 0.89 −14.95 1.44 −13.95 1.85
3hvt nvp 2 −18.19 0.45 −15.78 0.40 −17.22 0.33 −17.52 0.53 −17.90 0.30 −16.78 0.58 −15.95 0.68
1phg hem 3 −9.58 0.60 −7.48 1.25 −8.56 0.80 −9.51 0.70 −9.32 0.64 −9.15 1.34 −7.95 1.67
2mcp pc 4 −9.35 1.15 −7.76 1.46 −8.22 1.33 −9.25 1.23 −9.10 1.20 −7.72 1.42 −7.85 1.64
1stp btn 5 −13.90 0.85 −11.30 1.84 −13.37 1.65 −13.67 1.25 −13.57 0.90 −13.52 1.00 −13.20 1.58
6rnt ca 6 −9.62 0.50 −8.78 0.65 −9.13 0.70 −9.23 0.85 −9.32 0.58 −9.12 1.95 −8.95 1.45
4dfr mtx 7 −12.82 1.56 −10.13 0.90 −11.44 1.23 −12.74 1.59 −12.12 1.90 −11.74 1.67 −10.21 1.97
1ett 4qq 8 −13.94 1.40 −11.42 1.62 −13.89 1.38 −12.79 1.20 −14.21 1.29 −12.08 1.54 −12.75 1.65
1hri s57 9 −11.02 1.18 −9.67 1.80 −10.21 1.87 −10.33 1.37 −10.89 1.38 −10.31 1.68 −10.13 1.67
1hvr xk2 10 −31.50 0.80 −22.35 1.08 −30.85 0.62 −28.10 0.75 −31.06 0.64 −29.29 0.68 −28.65 0.85
4hmg sia 11 −10.21 1.65 −8.50 1.68 −10.09 1.70 −10.43 1.58 −10.32 1.89 −10.08 1.36 −9.95 1.60
1cdg mal 12 −8.90 1.65 −7.32 1.69 −8.22 1.94 −8.11 1.54 −8.73 1.48 −8.45 1.80 −7.13 1.12
1htf g26 13 −21.17 1.20 −19.26 1.58 −20.69 1.33 −20.89 1.30 −21.48 1.27 −21.79 1.42 −19.80 1.80
1glq gtb 14 −9.65 1.25 −8.73 1.27 −9.27 1.87 −9.37 1.60 −9.46 1.38 −8.83 1.90 −9.23 1.58
1tmn nas 15 −10.71 0.95 −9.68 1.11 −10.11 1.20 −10.07 1.45 −10.29 0.85 −10.62 1.95 −9.58 0.65
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Table 3. Results of the rate of clusters and the rate in rank 1.

Algorithm HIGA GA LGA EDGA CEPGA SODOCK ABC

Number of clusters 3.72 14.00 4.58 4.24 4.04 10.30 13.04
Number in rank 1 17.04 8.00 15.72 15.92 16.20 11.82 8.70
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2.5. Data Distribution Analysis

The data distribution can reflect the concentration of the data and the stability of the algorithm.
We calculate the minimum, the first quartile, the median, the third quartile, and the maximum of
the energy values of each PDB, and then we use the five statistical quantities to draw the box plots
(Figure 3). The median, which is not affected by the extreme data, is suitable as a centralized trend
value. It is evident that the median energy of HIGA is lower than that of the other algorithms. The first
quartile is the upper boundary of the box, the third quartile is the lower boundary of the box, and the
data distribution is concentrated or dispersed and can be determined by observing the box. It can be
seen that the data distribution of HIGA is the most concentrated. The points outside the maximum
and minimum are the outliers, and the outliers have an undesirable consequence of data distribution.
For example, the outlier of GA in 1glq; the outlier of LGA in 3hvt; the outlier of EDGA in 1stp;
the outlier of SODOCK in 1cdg; the outlier of ABC in 4hmg. HIGA and CEPGA have no outliers. It can
be concluded that HIGA is a stable method for protein-ligand docking.

2.6. Execution Time Analysis

The execution time of the seven compared algorithms for solving different complexes of Dataset 2
are shown in Table 4. The time is recorded by how many seconds per run. There a direct relation
between the execution time and the problem complexity. In addition to a few complexes, the execution
time of the algorithms increases as the number of rotatable bonds increases. As seen from the table,
the execution time of GA is the fastest, followed by LGA, EDGA, CEPGA, HIGA, ABC, and SODOCK.
The best performance algorithm HIGA in previous experiments does not play an advantage in the
time performance. However, the execution time of HIGA is not greatly increased when compared to
the fastest algorithm GA. This can demonstrate that HIGA does not raise the performance at the cost
of increasing the execution time.

Table 4. Results of execution time.

PDB Torsions HIGA GA LGA EDGA CEPGA SODOCK ABC

3ptb 0 1.79 1.56 1.74 1.77 1.75 1.89 1.90
1aha 1 1.91 1.62 1.80 1.83 1.90 1.95 2.08
3hvt 2 1.97 1.75 1.93 1.95 1.96 1.94 2.13
1phg 3 2.75 2.21 2.55 2.61 2.70 2.23 2.65
2mcp 4 2.72 2.35 2.62 2.70 2.68 2.51 2.69
1stp 5 3.79 3.01 3.53 3.77 3.59 3.84 3.81
6rnt 6 3.84 3.12 3.14 3.70 3.54 4.27 3.64
4dfr 7 5.47 4.98 5.18 5.33 5.45 4.99 6.06
1ett 8 8.44 7.83 8.17 8.28 8.37 8.29 7.97
1hri 9 10.49 10.15 10.37 10.39 10.41 12.34 11.06
1hvr 10 12.53 12.07 12.13 12.28 12.51 14.86 11.92
4hmg 11 13.90 13.21 13.84 13.95 13.89 16.09 13.60
1cdg 12 12.71 12.38 12.59 12.61 12.66 15.92 13.06
1htf 13 13.01 12.49 12.78 12.99 12.84 16.26 13.18
1glq 14 15.87 14.95 15.50 15.77 15.85 20.12 17.22

Average 7.41 6.91 7.19 7.33 7.34 8.5 7.53

2.7. Comparison Based on the Hypothesis Test

We use the hypothesis test to determine the difference between each algorithm in Table 5. Five of
the best values obtained by each algorithm for every PDB are taken, and the critical value of hypothesis
test is set to 0.05. When comparing algorithm A to algorithm B, we can conclude the algorithm A is
significantly different from the algorithm B if the p-value is less than 0.05. The significant difference
demonstrates that the algorithm A is superior to the algorithm B. As seen from the table, HIGA, EDGA,
and CEPGA are better than GA, LGA, SODOCK, and ABC in most of the PDBs. Furthermore, HIGA is
better than EDGA and CEPGA according to the p-value. We can make a conclusion from the statistical
analysis that HIGA is significantly better than the other algorithms.
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Table 5. Results of hypothesis test.

PDB HIGA GA LGA EDGA CEPGA SODOCK ABC

3ptb

HIGA - 0.004 0.010 0.044 0.035 0.012 0.008
GA 0.996 - 0.992 0.995 0.994 0.993 0.688

LGA 0.990 0.008 - 0.986 0.982 0.563 0.425
EDGA 0.956 0.005 0.014 - 0.340 0.017 0.010

CEPGA 0.965 0.006 0.018 0.660 - 0.028 0.011
SODOCK 0.988 0.007 0.437 0.983 0.972 - 0.306

ABC 0.992 0.312 0.575 0.990 0.989 0.694 -

1aha

HIGA - 0.029 0.062 0.524 0.044 0.024 0.017
GA 0.971 - 0.964 0.988 0.905 0.342 0.260

LGA 0.938 0.036 - 0.981 0.460 0.030 0.024
EDGA 0.476 0.012 0.019 - 0.017 0.010 0.005

CEPGA 0.956 0.095 0.540 0.983 - 0.038 0.027
SODOCK 0.976 0.658 0.970 0.990 0.962 - 0.470

ABC 0.983 0.740 0.976 0.995 0.973 0.530 -

3hvt

HIGA - 0.005 0.017 0.020 0.023 0.012 0.008
GA 0.995 - 0.795 0.974 0.993 0.788 0.537

LGA 0.983 0.205 - 0.878 0.965 0.324 0.208
EDGA 0.980 0.026 0.122 - 0.515 0.103 0.033

CEPGA 0.977 0.007 0.035 0.485 - 0.029 0.011
SODOCK 0.988 0.212 0.676 0.897 0.971 - 0.215

ABC 0.992 0.463 0.792 0.967 0.989 0.785 -

1phg

HIGA - 0.006 0.015 0.242 0.046 0.023 0.010
GA 0.994 - 0.682 0.991 0.983 0.968 0.545

LGA 0.985 0.318 - 0.976 0.962 0.620 0.422
EDGA 0.758 0.009 0.024 - 0.440 0.038 0.015

CEPGA 0.954 0.017 0.038 0.560 - 0.045 0.028
SODOCK 0.977 0.032 0.380 0.962 0.955 - 0.240

ABC 0.990 0.455 0.578 0.985 0.972 0.760 -

2mcp

HIGA - 0.002 0.008 0.036 0.015 0.001 0.004
GA 0.998 - 0.792 0.994 0.992 0.492 0.610

LGA 0.992 0.208 - 0.988 0.987 0.092 0.224
EDGA 0.964 0.006 0.012 - 0.442 0.005 0.011

CEPGA 0.985 0.008 0.013 0.558 - 0.007 0.012
SODOCK 0.999 0.508 0.908 0.995 0.993 - 0.640

ABC 0.996 0.390 0.776 0.989 0.988 0.360 -

1stp

HIGA - 0.001 0.006 0.048 0.033 0.014 0.003
GA 0.999 - 0.791 0.964 0.952 0.892 0.587

LGA 0.994 0.209 - 0.942 0.887 0.624 0.450
EDGA 0.952 0.036 0.058 - 0.414 0.082 0.043

CEPGA 0.967 0.048 0.113 0.586 - 0.208 0.062
SODOCK 0.986 0.108 0.376 0.918 0.792 - 0.215

ABC 0.997 0.413 0.550 0.957 0.938 0.785 -

6rnt

HIGA - 0.005 0.020 0.022 0.038 0.015 0.007
GA 0.995 - 0.942 0.965 0.985 0.695 0.588

LGA 0.980 0.058 - 0.792 0.888 0.368 0.127
EDGA 0.978 0.035 0.208 - 0.504 0.059 0.040

CEPGA 0.962 0.015 0.112 0.496 - 0.047 0.025
SODOCK 0.985 0.305 0.632 0.941 0.953 - 0.404

ABC 0.993 0.412 0.873 0.960 0.975 0.596 -

4dfr

HIGA - 0.002 0.006 0.035 0.032 0.021 0.003
GA 0.998 - 0.961 0.993 0.985 0.972 0.587

LGA 0.994 0.039 - 0.966 0.950 0.624 0.450
EDGA 0.965 0.007 0.034 - 0.490 0.042 0.013

CEPGA 0.968 0.015 0.050 0.510 - 0.060 0.016
SODOCK 0.979 0.028 0.376 0.958 0.940 - 0.215

ABC 0.997 0.413 0.550 0.987 0.984 0.785 -
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Table 5. Cont.

PDB HIGA GA LGA EDGA CEPGA SODOCK ABC

1ett

HIGA - 0.008 0.082 0.060 0.515 0.044 0.057
GA 0.992 - 0.986 0.925 0.998 0.562 0.637

LGA 0.918 0.014 - 0.482 0.932 0.073 0.151
EDGA 0.940 0.075 0.518 - 0.950 0.077 0.205

CEPGA 0.485 0.002 0.068 0.050 - 0.040 0.045
SODOCK 0.956 0.432 0.927 0.923 0.960 - 0.520

ABC 0.943 0.363 0.849 0.795 0.955 0.480 -

1hri

HIGA - 0.001 0.018 0.025 0.041 0.021 0.004
GA 0.999 - 0.976 0.997 0.998 0.982 0.635

LGA 0.982 0.024 - 0.862 0.890 0.723 0.117
EDGA 0.975 0.003 0.138 - 0.504 0.140 0.015

CEPGA 0.959 0.002 0.110 0.406 - 0.130 0.010
SODOCK 0.979 0.018 0.277 0.860 0.870 - 0.020

ABC 0.996 0.365 0.883 0.985 0.990 0.980 -

1hvr

HIGA - 0.002 0.030 0.012 0.045 0.021 0.014
GA 0.998 - 0.995 0.562 0.996 0.942 0.665

LGA 0.970 0.005 - 0.026 0.957 0.177 0.044
EDGA 0.988 0.438 0.974 - 0.982 0.711 0.609

CEPGA 0.955 0.004 0.043 0.018 - 0.035 0.024
SODOCK 0.979 0.058 0.823 0.289 0.965 - 0.368

ABC 0.986 0.335 0.956 0.391 0.976 0.632 -

4hmg

HIGA - 0.022 0.072 0.522 0.514 0.054 0.032
GA 0.978 - 0.972 0.995 0.985 0.928 0.900

LGA 0.928 0.028 - 0.980 0.945 0.417 0.214
EDGA 0.478 0.005 0.020 - 0.487 0.017 0.010

CEPGA 0.486 0.015 0.045 0.513 - 0.042 0.026
SODOCK 0.946 0.072 0.583 0.983 0.958 - 0.240

ABC 0.968 0.100 0.786 0.990 0.974 0.760 -

1cdg

HIGA - 0.003 0.021 0.014 0.037 0.032 0.001
GA 0.997 - 0.883 0.784 0.995 0.985 0.408

LGA 0.979 0.117 - 0.483 0.952 0.763 0.105
EDGA 0.986 0.216 0.517 - 0.983 0.844 0.125

CEPGA 0.963 0.005 0.048 0.017 - 0.059 0.003
SODOCK 0.968 0.015 0.237 0.156 0.941 - 0.012

ABC 0.999 0.592 0.895 0.875 0.997 0.988 -

1htf

HIGA - 0.015 0.243 0.480 0.544 0.624 0.030
GA 0.985 - 0.973 0.974 0.985 0.987 0.637

LGA 0.753 0.027 - 0.652 0.759 0.883 0.251
EDGA 0.520 0.016 0.348 - 0.618 0.640 0.235

CEPGA 0.456 0.015 0.241 0.382 - 0.538 0.028
SODOCK 0.376 0.013 0.127 0.360 0.462 - 0.017

ABC 0.970 0.363 0.749 0.765 0.972 0.983 -

1glq

HIGA - 0.001 0.012 0.018 0.022 0.002 0.005
GA 0.999 - 0.982 0.991 0.995 0.695 0.788

LGA 0.988 0.018 - 0.955 0.965 0.163 0.227
EDGA 0.982 0.009 0.045 - 0.510 0.039 0.042

CEPGA 0.978 0.005 0.035 0.490 - 0.027 0.031
SODOCK 0.998 0.305 0.837 0.961 0.973 - 0.704

ABC 0.995 0.212 0.773 0.958 0.969 0.296 -

1tmn

HIGA - 0.004 0.023 0.012 0.028 0.043 0.002
GA 0.996 - 0.783 0.692 0.965 0.983 0.408

LGA 0.977 0.217 - 0.283 0.716 0.746 0.105
EDGA 0.988 0.308 0.717 - 0.810 0.975 0.125

CEPGA 0.972 0.035 0.284 0.190 - 0.644 0.028
SODOCK 0.953 0.017 0.256 0.025 0.356 - 0.012

ABC 0.998 0.592 0.895 0.875 0.972 0.988 -
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3. Materials and Methods

3.1. Running History Information Guided Genetic Algorithm

HIGA is an LGA-based hybrid search algorithm that is designed for protein-ligand docking.
GA is an algorithm for simulating natural evolution process, and it generates solutions to optimise
problems with the assistance of mutation, selection, and crossover. In each iteration of the genetic
algorithm, the individual selection is made according to the fitness of the individual in the feasible
region of the problem. Thus, a new and better approximate solution is generated. GA is simple, easy to
realize, and has high robustness, so it has been successfully applied to solve the protein-ligand docking
problem. LGA, which combines GA with local search method, searches the potential energy surface
rapidly by GA and optimises the potential energy surface by local search method. LGA is proved to
be an effective method for the protein-ligand docking, but the solutions that are obtained by LGA
are unstable because of its randomness. Therefore, HIGA is proposed to overcome the drawback.
Three core mechanisms are used to enhance the performance of HIGA for docking problems, and they
are CE crossover, ED muation, and binary space partitioning (BSP) tree. CE crossover uses history
information to improve the randomness of crossover operation. ED muation can guide the solutions
to evolve in a better direction. BSP tree can memorize evaluated solutions that it has visited so that
the diversity of solutions is maintained and the waste of computer resources is reduced. Taking the
three techniques into consideration, the novel algorithm is guided to find some promising solutions by
the running history information. Figure 4 is the block diagram of HIGA, and the grey parts are the
three innovative mechanisms, which are newly added into LGA. HIGA first initializes the population
randomly, and then obtains the next population by CE crossover, ED mutation, BSP tree, local search,
selection and fitness evaluation. The process is iterated until a preset termination condition is reached.
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3.2. CE Crossover

Since the parents of elite individuals are not preserved in the crossover process of LGA, the chances
of getting better solutions are reduced by the subsequent crossover operation. CE crossover is
proposed to solve the problem in this section. This new crossover can preserve the parents of the elite
individuals with the best solution so that the good genes can be extended to improve the quality of the
next-generation population. Table 6 shows the pseudocode of CE crossover. In the strategy, Mfather
and Mmother are introduced, in which Mfather and Mmother represent the parents of the elite individual,
e. The individual with current optimum fitness is selected as the elite individual at current iteration,
and Mfather and Mmother are saved. The preserved individuals and the individuals of next-generation
form a new population. The genes of these preserved individuals are excellent, and the possibility
that they continue to reproduce individuals with good genes is greater. For each iteration, the number
of elite individuals is set up to a certain percentage of the number of individuals, and the default is
ten percent.
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Table 6. Pseudocode of CE crossover.

Algorithm: CE Crossover

Input: (1) a population with n indiviudals, (2) elitists e.
Output: a population after CE crossover
01. For i: = 1 to n do
02. Find the historial optimal individual m0
03. If the fitness of current individual mi < m0 then
04. m0 = mi
05. e = m0
06. preserve Mfather and Mmother
07. End if
08. Mfather, Mmother and e ⊂ next population
09. End for

3.3. ED Mutation

In LGA, some genes of the individuals are random changes by mutation operation, which results
in the search direction of the algorithm is also random and aimless. At the early stage of this algorithm,
the randomness plays a very positive guiding effect for global search. It is because the optimal solution
in which the direction is unknown in the case of no search experience. With the continuous iteration of
the algorithm, the group search experience is accumulating, the direction is gradually clear, and the
search space starts to converge gradually. This means that the current best solution is inevitably
abandoned, even the global best solution. Therefore, ED mutation is proposed to optimize the search
direction. The pseudocode of ED mutation is shown in Table 7. Where mi is the current solution; θ and
δ are random numbers; β is a particular adjustable parameter, Moptimum is the historic optimal solution;
and, Msub represents is the historic suboptimal solution; Mmax is the maximum solution; Mmin is the
minimum solution. In the formula, the historic optimal solution and the historic suboptimal solution
are used to ensure the correctness of the optimal solution direction. This mechanism is similar to the
addition of vectors, and the addition can ensure that the algorithm evolves towards a better direction.

Table 7. Pseudocode of ED mutation.

Algorithm: ED Mutation

Input: (1) a population with n indiviudals, (2) balance factor β.
Output: a population after ED mutation
01. For i: = 1 to n do
02. Find the optimal solution Moptimum and the historic suboptimal solution
Msub
03. If θ < β then
04. mi = mmin + θ (Mmax − Mmin)
05. Else
06. mi = mi + θ (Moptimum − Msub) +δ(Moptimum − mi)
07. End if
08. End for

3.4. BSP Tree

The BSP tree that has been applied in non-revisiting genetic algorithm (NrGA) is used to store the
evaluated solutions, and it divides the search space in accordance with the cumulative distribution of
the solutions being evaluated. The BSP tree has only one root node at the beginning, and this node
represents the entire search space. Each node that is subsequently inserted into BSP tree represents a
subspace. If a parent node has two child nodes (l and r), the subspaces that are represented by the two
child nodes are disjoint, and the sum of the two spaces is the subspace corresponding to the parent
node. BSP tree is different from with Octree employed in QuickVina-W [41]. BSP tree stores all of



Molecules 2017, 22, 2233 16 of 18

the solutions that the algorithm has searched before, while Octree stores high-quality history points
which are the output of last iteration of local optimization from all of the searching threads during the
runtime. Table 8 shows the pseudo code for the working principle of BSP tree. Where RF is the revisit
flag; and, d is the distance between two nodes. The position of each previous individual generated
by the algorithm is recorded in a node of the tree. When the new generated individual m visits the
node l or r, their positions are checked. If m = l or m = r, m is revisited and RF is 1. If the solution is
revisited, it mutates to a nearest unvisited neighbor subspace. BSP tree can guarantee the location of
all solutions is different so that the diversity of the individuals is maintained and the sample space of
GA is increased.

Table 8. Pseudocode of BSP tree.

Algorithm: BSP Tree

Input: (1) an individual m, (2) BSP tree T (3) revisit flag RF
Output: an individual m that never revisits
01. Curr_node: = root node of T
02. RF = 0
03. If (Curr_node has two child nodes: l and r) then
04. Compare m with child node l and r
05. If (m = l) or (m = r) then
06. RF = 1
07. End if
08. If d (l, m) < d (r, m) then
09. Curr_node: = child node l
10. Else
11. Curr_node: = child node r
12. End if
13. Repeat steps 03-12
14. Else
15. If (RF = 0) then
16. Insert a child node to Curr_node that records m
17. Else
18. Creat a new child node by mutating
19. End if
20. End if

4. Conclusions

The article presents HIGA, which combines binary space partitioning (BSP), ED muation, and CE
crossover to extend the power of the LGA-based algorithm. CE crossover amplifies the probability of
repeated use of the individual with good genes, so that HIGA is more suitable to the changes of the
environment evolution. ED mutation provides a guarantee for the evolutionary direction of HIGA,
and its concept originates from the property of vector addition. By using the BSP tree, the search
algorithm can not only remove revisits, but also guide to search for the next unvisited position. We have
compared the performance of HIGA, GA, LGA, EDGA, CEPGA, SODOCK, and ABC, the results of
which indicate that HIGA outperforms that the other algorithms, suggesting that HIGA can enhance the
power of AutoDock to protein-ligand docking.
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