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Abstract: This paper presents a model for supporting a production scheduling system with an artificial hormone algo-
rithm. The system consists of lots that have to undergo a number of processing steps on different machines.
The processing steps for a lot are formalized in a recipe assigned to the lot type. Since the steps in the recipe
have to be processed in order, the given system allows choice only in the context of selecting a particular
machine for the next step and in changing the processing order of waiting lots at a machine. Optimization of
such a job-shop scheduling system is an NP-hard problem. In the approach proposed by this paper, artificial
hormone systems are used to express the urgency of a lot and the need for new lots at a machine type, thus pro-
viding a system using local information for optimization. Results indicate that the artificial hormone system
provides an improvement of around 5% over a First Come-First Serve approach.

1 INTRODUCTION

The production of logic and power integrated circuits
(ICs) in the semiconductor industry is a highly dy-
namic process (Geng, 2018). Unlike the high-volume
production of memory ICs, in the logic and power
sector, the wafer production has a huge product mix,
dynamic changes in the system and a high number
of processing steps and involved machines (Khatmi
et al., 2019). Weekly workloads can involve around
105 operations on 103 machines (Teppan, 2018). Op-
timizing such a system for WIP (work in progress)
and flow factor is an NP-hard problem (Garey et al.,
1976), where existing dispatching rules and linear
optimization methods cannot cope with the NP-hard
search space (Lawler et al., 1993), and thus cannot
consider the entire system behavior due to computa-
tional complexity. Therefore, they cannot exploit the
optimization potential in job-shop scheduling in semi-
conductor production systems (Khatmi et al., 2019).

To overcome this issue, we model the production
plant as a self-organizing system of agents that in-
teract with each other in a non-linear way. There-
fore, we aim at achieving near-optimal solutions in
feasible computation time. Furthermore, such a sys-
tem is also able to adapt to changes in the environ-
ment, scale with the number of agents, and is robust

against a single point of failure, as the actions de-
pend on local interactions (Heylighen, 2001). More-
over, local rules and local interactions allow over-
coming the huge computing time of centrally per-
formed linear optimization. One possibility for a self-
organizing approach are algorithms modeled after bi-
ological hormone systems. Such artificial hormone
systems are inspired by the biological endocrine sys-
tem that is adjusting the metabolism of tissue cells
in our body (Turing, 1952; Sobe et al., 2015). It
is a class of self-organizing system with properties
like scalability, adaptability, and robustness (Prehofer
and Bettstetter, 2005) that can be used in networked
technical applications to coordinate a set of com-
plex agents interacting with each other (Elmenreich
et al., 2009; Böszörmenyi et al., 2011; Sobe, 2012).
Such algorithms are especially of interest for such
large cyber-physical systems, as, for example, in the
semiconductor industry, where traditional control or
scheduling mechanisms are at their limit.

In this paper, we describe an artificial hormone al-
gorithm that can be applied to optimize the process-
ing of lots and to balance the load between machines
of the same type. Section 2 describes the target sys-
tem problem statement that forms the basis to inte-
grate an artificial hormone-based algorithm in such a
system in Section 3. Section 4 evaluates the approach
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compared to a FIFO (first-in-first-out) principle and
presents simulation results in Section 5. Finally, Sec-
tion 6 presents the related work to this topic and Sec-
tion 7 concludes the paper.

2 PROBLEM STATEMENT

A production plant has a number of machines, each
being able to perform a specific process. Additionally,
there can be multiple instances of a machine type. It
is guaranteed that there exits at least one machine for
each process step. Based on real semiconductor facto-
ries the processing time at a machine ranges between
20 minutes and 2 hours. Table 1 depicts the parame-
ters of the system model. The notation N represents
a Normal distributed random variable, while U repre-
sents a uniformly distributed random value. Random
values are calculated once for each instance and re-
main unchanged for the duration of a simulation. The
processing time for each machine type will be set to
the outcome of a random variable X ∼ N (1.16,0.32)
at the beginning of a simulation. This corresponds
to a Normal distribution with 99% of values being
between 0.33 and 2 hours. For a simulation, a vir-
tual production plant comprising a random set of ma-
chines is generated. As it is common in the semicon-
ductor industry, wafers are combined in groups of 25
pieces forming a so-called lot. Each lot is assigned a
unique identification number and follows a respective
recipe defining an ordered list of process steps the lot
has to undergo at different machines. In our simulated
problem set, lots are instantiated according to one out
of 100 recipes. Based on the Raw Process Time (RPT)
each individual lot gets a Planned Cycle Time (PCT)
that is between 2 and 10 times higher than the RPT.
Half of the machines employ batch processing, where
lots are processed in parallel batches of U(2,8).

3 ARTIFICIAL HORMONE
ALGORITHM

The artificial hormone algorithm is engineered in a
bottom-up approach to express the urgency of a lot
and the need for incoming lots by machines. There-
fore, artificial hormones are produced at machines
which can diffuse through the production system
along with the processing steps of lots. The lots act as
swarm members that can be attracted by the hormone
level of a machine. The algorithm is based upon five
parameters, which are described with their respective
mechanisms in the following. Table 2 depicts an ad-

Table 1: Parameters used in the simulation model.

Parameter Value
Process types 100
Machines per process type U(2,10)
Machines with batch pro-
cessing

50

Batch size U(2,8)
Processing time per produc-
tion step

X ∼ N (1.16,0.32)

Number of recipes (lot
types)

100

Recipe length U(90,110)
Lots per type U(2,10)
PCT U(2,10)× RPT
Total number of operations ≈ 60000

hoc definition of parameter values, which will be used
in first simulations. The algorithm describes the cal-
culations and decision mechanisms that affect the pro-
cessing of lots. There are several degrees of freedom
for a particular implementation in the field. For exam-
ple, the hormone-related computing could take either
at the machines or within a layer of a networked mon-
itoring and control system.

3.1 Hormone Model

For each processing step, a corresponding hormone
type exists. Hormones can be at any machine, also
different hormone types can be at the same machine.
Every simulation tick, hormones degrade exponen-
tially at a given rate α.

hormone_amount = hormone_amount · (1−α) (1)
An evaporation rate of 0 means that hormones do

not degrade. The maximum value is 1, where hor-
mones degrade immediately.

3.2 Machines Produce Hormone to
Attract Lots

Each machine generates a hormone of its process
type. Machines that perform the same process type
issue the same hormone. If a machine would be able
to handle multiple process types, it would issue, in
equal parts, the respective multiple hormones instead.
The goal of machines is to maximize their working
time. Therefore, a machine would aim for pulling a
sufficient number of lots into its queue. The amount
of hormone produced by one machine is therefore cal-
culated by

hormone_output =
1

lots_in_queue+β
, (2)

where β is a smoothing factor > 0.
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Table 2: Suggested algorithm parameters.

Parameter Value
α .3
β 1
γ .5
δ .2
ε .8

3.3 Machines Are Linked

A machine A is upstream-linked to a machine B if
there exists a recipe that has a process of machine
B and a process of machine A in subsequent steps.
If each machine has exactly one process, the link-
ing strength from this recipe is 1, otherwise, the link
strength is 2 divided by the number of supported pro-
cesses. If the same sequence appears in other recipes,
the link strength adds up.

3.4 Hormone Diffuses Upstream

If upstream links exist, a part γ of the hormone at a
given machine diffuses upstream:

upstream_hormone = hormone_amount · γ (3)

hormone_amount =
hormone_amount−upstream_hormone (4)

For each machine connected upstream a propor-
tional part of the upstream hormone is added:

added_hormone =

upstream_hormone
link_strength

∑ link_strengths
, (5)

where link_strength refers to the upstream link
strength for the given hormone between the respec-
tive machines and ∑ link_strengths refers to the sum
of all upstream link strengths for the given hormone
that emerge from the sending machine.

3.5 Incoming Lots Diffuse Hormone

In addition to the mechanism above, incoming lots
cause a part δ of the respective hormone at a given
machine to diffuse upstream.

upstream_hormone = hormone_amount ·δ (6)

hormone_amount =
hormone_amount−upstream_hormone (7)

The machine where the lot came from receives the
upstream hormone, this way a flow of lots can self-
stabilize.

added_hormone = upstream_hormone (8)

3.6 Lots Are Prioritized by Their
Timing

A lot has a base priority calculated from its remaining
RPT and its remaining PCT:

base_priority =
remaining_RPT/remaining_PCT (9)

3.7 Lots Are Attracted by Hormone

The priority of a lot is modified by hormones that are
present at the machine where the lot is currently wait-
ing

attraction = ∑
i=0

hi · εi, (10)

where hi is the hormone of the process that is i steps
ahead in the lot’s recipe. Therefore, h0 is the hor-
mone of the current process. ε is a factor indicating
the strength of a hormone’s influence.

The priority of a lot is then calculated with:

priority = base_priority ·attraction (11)

At a machine, lots are processed based on their
priority. If a machine has batch processing, all lots
that fit are accepted for one batch.

4 EVALUATION

4.1 Evaluation Environment

The simulation was constructed in a NetLogo en-
vironment. NetLogo is an agent-based modeling
software which includes the NetLogo programming
language and an integrated development environ-
ment (Wilensky and Rand, 2015). An agent-based
model is used to simulate the interactions of au-
tonomous agents while also keeping track of the
whole simulated system. Every autonomous agent
makes decisions on its own based on predefined rules
which later impact the outcome of the simulation. In
the case of the problem statement, the agents are ma-
chines and lots. Before the simulation can start, the
parameters have to be set. This can be achieved via
the GUI in NetLogo or, for larger quantities, with con-
figuration files. Then, the Setup function is called to
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initialize the model. It uses the specified parameters
or parses the given configuration files to generate the
agents. After the machines and lots have been placed
in the production plant, the lots are introduced into
production as shown in Figure 1. In it the machines
are shown as squares, batch machines are being visu-
alized with additional lines. The lots are numbered
based on their product type and the most recent path
they took is marked with a line.

4.2 NetLogo Model

After the initialization of all entities is finished, the
production starts. A production step runs as follows:
Every lot moves to the queue of the production type
specified in its recipe. It only does so if it is currently
not being processed by a machine. The algorithm then
updates the hormones and sorts the queues based on
the priority of the lots as described in Section 3. List-
ing 1 shows a simplified version of the step function
and Listing 2 and 3 outline two exemplary hormone
functions.

Figure 1: Screenshot from the Netlogo simulation: After
initialization the lots start being processed and move to the
queues specified in their recipes.

Listing 1: NetLogo process step.
to step

ask lots [
if not processing? [ move−to−queue ]

]
ask machines [

produce−hormones self
decay−hormones self

]
sort−queues
ask machines [

pick−lots−from−queue
do−processing

]

end

Listing 2: NetLogo hormone production function.
to produce−hormones [ m ]

let q (item ([m.machine_type] of machine m − 1)
queue_list)

let q_len length [q.lotlist] of q
ask machine m [ set m.hormone_amount

m.hormone_amount + (1 / ( q_len + BETA))
]

end

Listing 3: NetLogo hormone decay function.
to decay−hormones [ m ]

ask machine m [ set m.hormone_amount
m.hormone_amount * (1 − ALPHA) ]

end

After the calculations are done, the machines pick
the lots with the highest priority from their queue to
be processed. When a lot finishes its recipe it leaves
the production plant and writes its ProductionTime,
RPT and PCT to a file. This sequence is repeated un-
til there are no more lots left in the production plant.

4.3 Headless Implementation

Using the technique specified above it is possible to
gather large amounts of data by running multiple in-
stances of the simulation simultaneously without a
GUI in headless mode. The headless controller soft-
ware was written in Python using the NL4Py pack-
age1. This package was chosen instead of other
NetLogo controller software or the NetLogo Be-
haviourSpace because the algorithm has a very high
time complexity and as soon as it gets to simulating
larger quantities of machines, lots, etc. there is a sig-
nificant improvement in performance. Through the
threading module multiple simulations can be exe-
cuted at the same time. The Python code was aug-
mented with an automated configuration file genera-
tor. It creates new files for each simulation run using
randomly chosen values within the limits specified in
Table 3. Listing 4 shows an example workspace for
multi-threading.

Listing 4: Python headless workspace.
def s t a r t _ w o r k s p a c e ( c o n f i g _ f i l e ,

p a r a m e t e r s ) :
workspace = n l4py .

newNetLogoHeadlessWorkspace ( )
workspace . openModel ( model )
workspace . command ( " Se tup " )
. . .

1https://pypi.org/project/NL4Py/
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workspace . command ( " h e a d l e s s −go " )

whi le ( p r o c e s s i n g == 0) :
t ime . s l e e p ( 2 0 )
p r o c e s s i n g = workspace . r e p o r t ( "

IS_FINISHED " )
t i c k s = s t r ( workspace . r e p o r t ( "

t i c k s " ) )
p r i n t ( " T i c k s : " + t i c k s )

4.4 Parameter Optimization

Another implementation of the algorithm was devel-
oped in Java so as to achieve a better way of find-
ing optimal parameter values for the algorithm. This
had various reasons such as performance and adapt-
ability for future work. With the possibilities of
object-oriented programming, the created simulation
environment matching the problem statement is only
based on 3 functions and it is now possible to sim-
ply exchange the algorithm of a production plant to
compare different approaches with one another. The
creation of new algorithms is also fairly easy and for
data comparison, a simple first come, first served al-
gorithm was also used.

5 SIMULATION RESULTS

The simulation results of the NetLogo model are eval-
uated based on average flow factor and tardiness of
the lots. Table 3 details the used evaluation parame-
ters.

flow factor = production_time/RPT
tardiness = production_time−RPT

Table 3: Evaluation parameters.

Parameter Value
Initial RNG seed 58008
Number of simulation runs 100

The hormone algorithm was tested using the parame-
ters outlined in Table 1, Table 2 and Table 3. Results
are depicted in Table 4.

Table 4: Hormone algorithm average simulation results.

Average Value
Time to produce all lots 173 h
RPT 59 h
PCT 348 h
Tardiness 114h
Flow Factor 2.93

A FCFS (first come, first served) algorithm was used

to contrast the results. It ran with exactly the same
test set and resulted in the values depicted in Table 5.

Table 5: FCFS algorithm average simulation results.

Average Value
Time to produce all lots 184 h
RPT 60 h
PCT 331 h
Tardiness 124 h
Flow Factor 3.05

With the used parameters the hormone-based pro-
duction approach seems to perform slightly better
than an FCFS algorithm; however, considering the al-
gorithm parameters in Table 2 are ad-hoc values, there
is a chance of improving the efficiency of the hormone
algorithm by optimizing the parameters, which was
done with the implementation in Java. While the Net-
Logo simulation ran on multiple randomly generated
sample sets to gather a better general understanding
of the speed of the algorithm, the Java version used
the same configuration of machines, lots and prod-
ucts and just the parameters were altered. Table 6 and
Table 7 show the fastest and the slowest simulation
results and parameter values of the Java hormone al-
gorithm. The algorithm with the optimized parameter
set performs 9% better than the reference algorithm,
however, it has to be noted that the optimization was
done for a single test case. More importantly, while
the two tables depict a potential for optimization of
parameters, they also show that even with a bad pa-
rameter set the algorithm works slightly better than
the FCFS algorithm. For reference, Table 8 shows the
outcomes of the FCFS algorithm.

Table 6: Hormone algorithm parameters yielding the fastest
result for the tested sample set.

Name Value
α 0.2
β 3.0
γ 0.6
δ 0.3
ε 0.7
Time to produce all lots 152 h

Table 7: Hormone algorithm parameters yielding the slow-
est result for the tested sample set.

Name Value
α 0.3
β 3.0
γ 0.5
δ 0.1
ε 1.0
Time to produce all lots 164 h
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Table 8: FCFS Algorithm for the tested sample set.

Name Value
Time to produce all lots 165 h

6 RELATED WORK

In a dynamic job shop, currently applied dispatching
rules are based on heuristics with the disadvantage of
not optimizing lot sequences. Although linear opti-
mization methods are used to strengthen the schedul-
ing procedure, they cannot cope with the highly com-
plex, large, and dynamic search space (Lawler et al.,
1993), mostly due to the excessive and unfeasible
computation time in dynamic production plants. This
leads to bottlenecks and work in progress (WIP)
waves are generated. So far, no optimal solution for
job shop scheduling has been developed using lin-
ear optimization that can be computed in polynomial
time (Zhang et al., 2009).

In the course of this paper, we model the produc-
tion plant as a self-organizing system of agents. Due
to its non-linearity, it is able to produce near-optimal
solutions for NP-hard problems in feasible computa-
tion times (Zhang et al., 2009; Dhiman and Kumar,
2017) by transforming the problem from finding an
overall solution to defining a distributed algorithm
that finds the solution from the bottom up. The re-
lated work on the application of self-organization in
production scheduling builds upon the particle swarm
optimization (Ghumare et al., 2015), and artificial
bee colony algorithm (Zhang et al., 2013), and ant
algorithm (Udomsakdigool and Kachitvichyanukul,
2008), to name but a few. Compared to these algorith-
mic approaches, we do not create a swarm that oper-
ates in a solution space to a given job-shop scheduling
set. Instead, we derive a bottom-up approach, where
embodied agents represent physical entities in the fab,
and work with local rules from which a global behav-
ior emerges. This presents a novel approach in the
application of self-organizing principles in job-shop
scheduling.

This approach can be implemented with an arti-
ficial hormone algorithm. It is a bio-inspired self-
organizing algorithm to produce near optimal solu-
tions in NP-hard, highly complex and dynamic sys-
tems based on relatively simple and local rules. The
algorithm was introduced by Sobe et al. (Sobe et al.,
2010) and describes the inspiration by the endocrine
system of higher mammals on the technical applica-
tion of sharing multimedia units. The main principle
describes virtual hormones that show their interest in
specific interest units with their concentration density.

These hormones are created, consumed or evaporated,
and forwarded by the agents in this artificial hormone
system (Szkaliczki et al., 2013). Artificial hormone
systems have been applied in technical systems such
as task allocation (Renteln et al., 2008), synthesis
of robot controller software (Hamann et al., 2010),
or content delivery in dynamic networks (Schelfthout
and Holvoet, 2003). Trumler et al. (Trumler et al.,
2006) propose an artificial hormone system as mid-
dleware for ubiquitous computing, as for example in
smart office applications. Brinkschulte et al. present
an artificial hormone system for task allocation for
heterogeneous processing units in a processor grid
to realize self-X features (self-configuration, self-
optimization, self-healing) (Brinkschulte et al., 2007;
Brinkschulte et al., 2009). Sobe et al. (Sobe et al.,
2015) build a middleware inspired by an artificial
hormone system for search and delivery of informa-
tion units. They showcase the applications of multi-
media distribution at social events, and the informa-
tion dissemination in smart electrical microgrids us-
ing tens of thousands of agents. The evaluation was
also performed on a theoretical foundation to show
that the hormone levels converge to a limit at each
agent using a set of theorems on convergence con-
ditions (Szkaliczki et al., 2016). Finally, Dong et
al. (Dong et al., 2010) successfully proposed the ar-
tificial hormone algorithm for clustering in wireless
sensor networks to prolong the lifetime of the sen-
sor nodes. Further details on the origins of the artifi-
cial hormone algorithm, including the medical back-
ground of the endocrine system and its digitization,
can be found in Xu and Wang (Xu and Wang, 2011).

7 CONCLUSION

The novel contribution of this paper is the application
of an artificial hormone algorithm in the context of a
job-shop scheduling system such as a large semicon-
ductor fab from the bottom-up. The algorithm builds
upon five principles, which are (i) machines produce
hormone to attract lots, (ii) hormone diffuses process-
upstream, (iii) incoming lots diffuse hormone, (iv)
lots are prioritized by their timing, and (v) lots are at-
tracted by hormone. Via these mechanisms, machines
can balance their workload by pulling required lots
towards them. The algorithm has been implemented
and evaluated in a NetLogo simulation model. Simu-
lation results indicate that the artificial hormone sys-
tem provides an improvement of around 5% for over-
all production time and flow factor.
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