
Journal of Computer Science 2 (3): 303-313, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Sabah Mohammed, Department of Computer Science, Lakehead University, 955 Oliver Road,
Thunder Bay, Ontario P7B 5E1, Canada

303

A UDDI Search Engine for SVG Federated Medical Imaging Web Services

Sabah Mohammed, Jinan Fiaidhi and Marshal Hahn

Department of Computer Science, Lakehead University, 955 Oliver Road
Thunder Bay, Ontario P7B 5E1, Canada

Abstract: With more and more medical web services appearing on the web, web service’s discovery
mechanism becomes essential. UDDI is an online registry standard to facilitate the discovery of
business partners and services. However, most medical imaging applications exist within their own
protected domain and were never designed to participate and operate with other applications across the
web. However, private UDDI registries in federated organizations should be able to share the service
descriptions as well as to access them if they are authorized. The new initiatives on Federated Web
Services Identity Management can resolve a range of both technical and political barriers to enable
wide-scale participation and interoperation of separate domains into a singular, robust user experience.
However, there is no widely acceptable standard for federated web services and most of the available
venders frameworks concentrate only on the security issue of the federation leaving the issue of
searching and discovering web services largely primitive. Federated web services security and web
services searching are uniquely intertwined, mutually reliant on each other and are poised to finally
solve a long-running problem in both IT and systems security. Traditional keyword search is
insufficient for web services search as the very small text fragments in web services are unsuitable for
keyword search and the underlying structure and semantics of the web service are not exploited.
Engineering solutions that address the security and accessibility concerns of web services, however, is
a challenging task. This article introduces an extension to the traditional UDDI that enables
sophisticated types of searching based on a lightweight web services federated security infrastructure.

Keywords: Web service federation, web service security, svg image security, medical imaging,

medical informatics

INTRODUCTION

 Like many complex distributed systems, healthcare
information systems involve a variety of services and
participants. When giving and receiving medical care,
for example, participants such as doctors, radiologists,
technicians, administrative staff and patients frequently
interact with information services such as medical
records databases, radiology image stores and billing
systems. In addition, users and services also
communicate with external entities such as insurance
companies, pharmacies and health clinics. While
regular communication is essential between healthcare
providers, these exchanges are largely inefficient.
Currently, exchanges generally occur in paper form or
electronically using mostly custom, incompatible
legacy systems (e.g. PACS, RIS, DICOM)[1]. Because
these disparate users and services lack a common
communications framework, it is difficult for healthcare
participants to obtain comprehensive medical
information about patients when providing care. A
patient may have multiple medical records stored at
various locations (e.g., at a hospital, doctor’s clinic,
pharmacy) and data such as lab results, drug
prescriptions and disease histories are often not

consolidated. Thus, it is likely that healthcare
participants could provide higher quality medical care if
they had access to such information and resources,
especially during emergency situations. There is a range
of other challenging properties of medical work, which
makes it fundamentally different from typical
distributed office network: extreme mobility, ad hoc
collaboration, interruptions, high degree of
communication, etc. – attributes that are in strong
contrast to normal office work[2]. Moreover, healthcare
services are turning to stronger authentication methods.
Biometric methods (e.g., fingerprints, iris scans,
signature and voice recognition) and non-biometric
digital techniques (e.g., e-tokens, RFID, key fobs) are
rapidly replacing passwords for authentication
purposes. Thus, the security requirements in the
healthcare systems require very dynamic and flexible
policy enforcement.
 As a remedy the recent advent of XML and web
services can be seen as an effective solution to the
security issues. In particular web services present a
standardized, loosely-coupled framework that can
incorporate the complex, cross-boundary interactions of
a healthcare system into a fully-connected, distributed
computer system. Utilizing a standardized computer

J. Computer Sci., 2 (3): 303-313, 2006

 304

language like XML, allows a wide and diverse group of
individuals or organizations to "talk" to each other,
which greatly facilitates information gathering and on-
line transactions. On the other hand, Web services are
applications that can share information and services
with other applications over the Internet using a
common interface and messaging system. Such an
integrated environment for exchanging information
may revolutionize communication and information-
sharing practices not only for healthcare systems, but
also for a variety of other industries. This technology
provides an easy way for entities to share data and
services with other entities using a common framework
and a standardized messaging protocol. Thus, there is a
growing number of international associations like
MedBiquitous Consortium (http://www.medbiq.org/)
and the HL7 new initiative on Medical Informatics (or
what is called HL7 V3 Initiative(http://www.hl7.org/))
dedicating their efforts to accommodate this new trend
of technology for constructing a new type of medical
healthcare systems. Such initiatives provided an
environment for a growing number of web services and
XML-based data and applications available within
hospitals and on the Web which raises new and
challenging research problems. Particularly on how to
locate desired web services and how to securely access
these web services.
 Unfortunately the traditional keyword search is
insufficient in context of web services: the specific
types of queries users require are not captured, the very
small text fragments in web services are unsuitable for
keyword search and the underlying structure and
semantics of the web services are not exploited.
Moreover, in creating mechanisms to collect and to
retrieve medical information, however, one must
recognize that protecting patient privacy is a
fundamental system requirement. Engineering solutions
that address the security and accessibility concerns of
web services especially for medical imaging services,
however, is a challenging task. Many corporations and
standards organizations currently undertaking this task
have developed specifications and tools to address these
concerns, but this effort is largely a work in progress.

MEDICAL IMAGING BASED ON
SVG WEB SERVICES

 Using XML to represent patient data records is a
new trend in medical systems[3,4]. However, including
binary images within the format of XML limits the
ubiquity of XML as well as prevents searchability for
these images or their contents. Medical images are at
the heart of the patient’s diagnosis, therapy treatment,
surgical planning, disease screening and long-term
follow-up for outcome assessment. Medical imaging is
becoming increasingly important in patient records. In
the past three decades, we have witnessed tremendous
changes in medical imaging; new techniques include

diagnostic ultrasound, X-ray computed tomography
(CT), magnetic resonance imaging (MRI), magnetic
resonance spectroscopy (MRS), functional magnetic
resonance imaging (fMRI), digital subtraction
angiography (DSA), positron emission tomography
(PET), magnetic source imaging (MSI) and so on.
These digital imaging modalities, which currently
constitute about 30 percent of medical imaging
examinations and records in the United States[5]. These
advancements in medical imaging requires better means
to acquire patient images from patient records[6]. In this
direction Scalable Vector Graphics (SVG) imaging
promises to revolutionize the Web through the
introduction of standard based on vector graphics for
imaging, animation and multimedia interactivity. SVG
standard allows to represent complex graphical scenes
by a collection of vectorial-based primitives, offering
several advantages compared to classical raster
images[6,7].
 The broad support behind SVG comes from its
many advantages. SVG has sophisticated graphic
features, which is naturally important for a graphic
format, but it also benefits from being an XML
grammar. SVG has all the advantages XML brings such
as internationalization (Unicode support), wide tool
support, easy manipulation through standard APIs (e.g.,
the Document Object Model, DOM API, Batik API)
and easy transformation (e.g., through XML style sheet
Language Transformations, XSLT). In the graphical
arena and especially compared to raster graphics
formats (such as GIF, JPEG or PNG images), SVG has
the advantage of being:
* Lightweight. For many types of graphics, an SVG

graphic will be more compact than its raster
equivalent

* Zoomable. SVG content can be viewed at different
resolutions, e.g., enlarged or shrunk without losing
quality.

* Searchable. Because SVG content is XML, it
becomes possible to search the content of an SVG
image for text elements, comments or any kind of
meta-data.

* Structured and Accessible. Graphic objects can be
grouped and organized hierarchically.

 It is natural for Web Services to accommodate
SVG for graphical and image based services. In
addition to being open and XML, SVG has a rich
structure and preserves semantic because of its
descriptive element and metadata. This richness
provides an opportunity to Web Services to generate,
modify or search rich graphical content[8]. Traditionally
SVG has been used as a flexible imaging viewer only,
which limited its’ potential for advanced imaging
applications. Security issues have been the main
challenge in SVG applications. A key challenge,
therefore, is to enable the interoperability between SVG
Web Services to take place seamlessly and securely[9].

J. Computer Sci., 2 (3): 303-313, 2006

 305

BUILDING FEDERATED WEB SERVICES

 To meet the challenge of current industry trends
such as growth in increased mobility and the need for
persistent connectivity, healthcare organizations are
extending internal systems to external users providing
connectivity to customers, partners, suppliers and
mobile healthcare users. However, providing efficient
and seamless connectivity requires building "trust-
based" relationships that enable organizations to
securely share a user's identity information. Trust
relationships allow identity and policy information to
flow between healthcare organizations independent of
platform, application, or security model. Trust
relationships need to be formed quickly and efficiently
to maximize productivity and eliminate the manual
processes that often take place today. Web Service
Federation describes the technology and business
arrangements necessary for this interconnection[10]. The
term federation derives from the Latin word for trust. In
the world of distributed network services, the term
refers to the need for trust agreements among
decentralized security and policy domains. Federation
lets access-management functions span diverse
organizations, business units, sites, platforms, products
and applications. Federation requires that an
organization trust each trading partner to authenticate
its own users' identities. In a federated environment, a
user can log on to his home domain and access
resources transparently in external domains, such as
those managed by customers or suppliers, subject to
various policies defined by home and external
administrators. Federated systems need to interoperate
across organizational boundaries and connect processes
utilizing different technologies, identity storage,
security approaches and programming models. Within a
federated system, identities and their associated
credentials are still stored, owned and managed
separately. Each individual member of the federation
continues to manage its own identities, but is capable of
securely sharing and accepting identities and credentials
from other members' sources. Within a federated
system, an organization needs a standardized and secure
way of expressing not only the services it makes
available to trusted partners and customers, but also the
policies by which it runs its business such as which
other organizations and users it trusts, what types of
credentials and requests it accepts and its privacy
policies.
 In this direction, web service federation requires
standards, specifications and frameworks that will
describe the model for establishing both direct and
brokered trust relationships (including third parties and
intermediaries). The industry is yet to agreed about one
standard. Although there are some serious attempt to
have a united framework, but we cannot yet see the
light in the tunnel. Currently there are many standards
and techniques to develop and managed federated web

services. The most notable of all is the ebXML which
provides an open, industry-wide standard for building
support for collaborative Web services, including
reliable messaging. This standard provides a suite of
managing specifications including:
* Reliable messaging: (ebMS) -- Provides

guaranteed, once-and-once-only delivery, layered
on SOAP messaging.

* Business process specifications (BPSS) -- Defines
business activities, collaborations and transactions
and describes their relationships. Also provides a
machine-readable specification instance.

* Partner profile and agreements (CPP/A) -- Holds
configuration information for partners' runtime
systems and stores quality-of-service (QOS)
information.

* Registries and repositories (Reg/Rep) -- Provides a
powerful classification and storage mechanism for
artifacts, including BPSS and CPP/A.

 More recent standards like the WS-Federation
standard has been developed recently by a group of
major vendors (BEA, IBM, Microsoft, RSA Security
and VeriSign http://xml.coverpages.org/WS-
Federation.pdf). This standard provides a language
(WS-Federation) that defines mechanisms "used to
enable identity, account, attribute, authentication and
authorization federation across different trust realms.
Other group of vendors (Oracle, BEA, IBM, Microsoft)
are also aggressively working on another standard for
orchestrating Web-services-based end-to-end business
processes. They introduced the BPEL (Business Process
Execution Language). BPEL is the XML standard that
can create trusted and federated environment for web
services. Moreover, there are many other standards that
can be used to enforce federated web services
environment:
* The Universal Business Language (UBL)

(http://docs.oasis-open.org/ubl/cd-UBL-1.0/)
* The Extensible Access Control Markup Language

(XACML)
(http://java.sun.com/developer/technicalArticles/Se
curity/xacml/xacml.html)

* The Business Transaction Protocol (BTP)
(http://www.developer.com/java/data/article.php/1
0932_3066301_2)

* The Global XML Web Services Architecture
(GXA)
(http://www.ftponline.com/wss/2003%5F01/magaz
ine/features/mmercuri/)

* The Liberty Alliance Project
(http://www.projectliberty.org/)

* XML Key Management Specifications
(http://www.w3.org/TR/xkms/)

 Among the many evolving mentioned security
standards for Web services there are only two major
basic initiatives:

J. Computer Sci., 2 (3): 303-313, 2006

 306

1. Security assertion markup language (SAML):
SMAL protocol relies on Single-Sign-On (SSO)
services to deliver authentication through federated web
services. ClearTrust 5 is an example of such
protocol[11]. Actually, SMAL defines set of XML
formats for representing identity and attribute
information, as well as protocols for requests and
responses for access control information. The key
principle behind SAML is an assertion, a statement
made by a trusted party about another. Assertions can
be encoded in browser requests or included in Web
services transactions, enabling logins for both person-
to-machine and machine-to-machine communications.

2. WS-security (WSS): This is a security standard that
focuses on message integrity, confidentiality and
authentication. WSS does not address SSO but covers
message encryption in detail. WS-Security will
standardize how security information is added to SOAP
messages. One important class of such security
information is one which WS-Security calls Security
Tokens -- a security token is "a collection of claims"
about the sender (the sender typically proving their
right to this claim through a digital signature). WS-
Security begins with the assumption that, if one of the
parties uses a particular type of security token(e.g.
X.509 certificates, Kerberos tickets, SAML Assertions,
XACML policies, etc.) within the WS-Security header,
then the other party will be able to interpret and process
this token. The basic architecture of WSS is shown in
the Fig. 1[12]. A SOAP client sends a SOAP message to
a business application SOAP service (for the sake of
this example a purchasing application), which, after
appropriate business processing, sends the SOAP
response back. Supporting this fundamental exchange
are the components of the security infrastructure, a
SOAP gateway and a security token service (STS),
which work together to ensure that the SOAP service
receives only messages with "appropriate" security
tokens.

Fig. 1: Basic model of web service security

 Obviously the SAML approach to solving the WS
security has been based on SSO, the centralization of
access control information into one server or servers
that requires special plugins (e.g., "Web agents" for
Web servers) to retrieve the information. Every
application needs to be "SSO enabled" by programming

to the proprietary API, different for each competing
vendor. The coding task usually falls to the IT
organization. Overall, this technology has not been as
successful as originally hoped, with many SSO
implementations either behind or experiencing
scalability challenges. Indeed, identity information and
access control policies are some of the most valuable
and frequently used data in any IT organization. Instead
of coding to a proprietary agent (which in turn uses a
proprietary protocol to communicate with a particular
brand of identity management server), applications can
make Web services (SOAP) requests to authenticate
users or authorize transactions. In conclusion, we may
see WSS is more mature than SAML. Even though both
SAML and WSS overlap, they are not mutually
exclusive and may be merged into a single standard in
the future. However, to be successful with either SAML
or WSS, you must build a layered system that supports
current and future security implementations.
 Thus, one interesting of our ongoing research is to
extend SOAP to gain access to the actual network
stream before it is decentralized into objects and vice
versa. For instance, through these extensions encryption
algorithms can be developed on top of the Web Service
call. However, most of the SOAP extensions are
transport Protocols dependent, especially for
multimedia applications, such as RTP
(http://www.ietf.org/rfc/rfc1889.txt.), Multicast and
UDP. To deal with this issue, brokering-based
architectures can be used. In this direction we proposed
an AXIS Based Web Service Management Network
(AWSMN), as management architecture for federated
service management[13]. Since we believe it is safe to
assume Internet services will be implemented using
web service technology (SOAP, XML, WSDL),
AWSMN is based on such technology. The critical
concept in AWSMN is that of Axis Security Handlers
(ASH). SAHs are intermediary components that can
explicitly defined to manage agreements between
services. The SAH concept allows us to frame and
solve many problems rather elegantly and effectively.
AWSMN, then, is a network of cooperating
intermediaries, each such intermediary implemented as
a proxy sitting between a service and the outside world
and a set of protocols to manage service relationships
expressed through SAHs (Fig. 2).

Fig. 2: The AWSMN System

J. Computer Sci., 2 (3): 303-313, 2006

 307

 The AWSMN is concerned with the following
security-related tasks:

* XML Encryption\Decryption (used by various

ASH handlers).
* XML Signature\Verification (also used by various

ASH handlers).
* Generation and storage of RSA public\private key

pairs. The public key is always wrapped in X509
Certificate.

* Authenticates user requests for Web Service usage.
* Authorizes users for Web Service usage.
* Handles group management tasks such group

creation, member addition, WS addition and
related tasks such as organization and
registration\deletion.

* Assist in handling WS search.
* Processes messages.

 Tasks 1-3 and 8 are performed locally using the
Secure class. However, tasks 4-6 are performed
remotely by the other classes of the AWSMN Security
Subsystem (Fig. 3). Task 7 is a compound task that
includes tasks 1-6 and work in collaboration with the
UDDI Subsystem.

Fig. 3: The AWSMN security subsystem

 Details of the AWSMN classes implementation can
be found at[13,4].

UDDI SEARCH ENGINE

 Basically a UDDI client works by searching UDDI
servers for all services that matches the service required
name through parsing the WSDL specifications. Each
web service has an associated WSDL file describing its
functionality and interface. A web service is typically
published by registering its WSDL file in UDDI
registries. Each web service consists of a set of
operations. Through the WSDL, we have access to the
following information on web services: Name and text
description, Operation descriptions and Input/Output
descriptions. To the outside world, UDDI provides two
sets of interfaces: one for service registration and one
for service discovery. For discovery, UDDI can be
considered as White Pages registry that provides
business contact information. However, UDDI search
engines in this context does not help in categorizing

web services based-on accepted business classifications
nor it comply to the federated security initiatives. For
this purpose we are extending the UDDI client to
accommodate the category-based searching facilities as
well as to comply to the AWSMN federated web
service model. The advantage of this approach is that
several candidate services can be considered and
searched and by using a unified classification pattern, a
single interface provided to all of the candidates. In this
context, UDDI can be extended to represent Yellow
Pages registry that can categorize business and their
services according to standard taxonomies. To extend
UDDI so to be aware of a business classification
scheme, we used mammography cancer staging
categories as described by the American Joint
Committee on Cancer
(http://www.imaginis.com/breasthealth/staging.asp).
The categories are kept in an external XML file and can
be changed to any other application. However, the
categories use the tumor, nodes, metastasis (TNM)
classification system. The stage of a breast cancer
describes its size and the extent to which it has spread.
The staging system ranges from stage 0 to stage IV
according to tumor size, lymph nodes involved and
distant metastasis. T indicates tumor size. The letter T
is followed by a number from 0 to 4, which describes
the size of the tumor and whether it has spread to the
skin or chest wall under the breast. Higher T numbers
indicate a larger tumor and/or more extensive spread to
tissues surrounding the breast.

a. TX: The tumor cannot be assessed.
b. T0: No evidence of a tumor is present.
c. Tis: The cancer may be LCIS, DCIS, or Paget

disease.
d. T1: The tumor is 2 cm or smaller in diameter.
e. T2: The tumor is 2-5 cm in diameter.
f. T3: The tumor is more than 5 cm in diameter.
g. T4: The tumor is any size and it has attached itself

to the chest wall and spread to the pectoral (chest)
lymph nodes.

 The letter N indicates palpable nodes. The letter N
is followed by a number from 0 to 3, which indicates
whether the cancer has spread to lymph nodes near the
breast and if so, whether the affected nodes are fixed to
other structures under the arm.

a. NX: Lymph nodes cannot be assessed (eg, lymph

nodes were previously removed).
b. N0: Cancer has not spread to lymph nodes.
c. N1: Cancer has spread to the movable ipsilateral

axillary lymph nodes (underarm lymph nodes on
the same side as the breast cancer).

d. N2: Cancer has spread to ipsilateral lymph nodes
(on the same side of the body as the breast cancer),
fixed to one another or to other structures under the
arm.

J. Computer Sci., 2 (3): 303-313, 2006

 308

e. N3: Cancer has spread to the ipsilateral mammary
lymph nodes or the ipsilateral supraclavicular
lymph nodes (on the same side of the body as the
breast cancer).

 The letter M indicates metastasis. The letter M is
followed by a 0 or 1, which indicates whether the
cancer has metastasized (spread) to distant organs (eg,
lungs or bones) or to lymph nodes that are not next to
the breast, such as those above the collarbone.

a. MX: Metastasis cannot be assessed.
b. M0: No distant metastasis to other organs is

present.
c. M1: Distant metastasis to other organs has

occurred.

 Hence the main purpose of the extended UDDI
client is to search for SVG based mammograms based
on the beast cancer staging categories and via Security
Server[16]. The object which provides the main
functionality of this UDDI client (Search and Retrieve
Subsystem) is a singleton of type uddiConnectivity.
Fig. 4 illustrates the main classes involved in the UDDI
client. The uddiMessage class inherits from class
java.lang.Exception. Methods in the uddiConnectivity
singleton object sometimes will create and throw
objects of type uddiMessage to pass messages to the
GUI subsystem such as “No Services Found”. The
methods of class uddiConnectivity throw other
exceptions as well that are mostly JAXR-related.
Information (name, which SVG service offers it, …)
regarding each SVG found by an SVG search is stored
in a svgImageResult object and these objects are passed
to the GUI subsystem.If the user indicates the desire to
view an SVG listed in the search results list, this
subsystem will retrieve the URL of the SVG Web
Service offering that SVG and store it in an
accessPoints object. Next, the accessPoints object will
be passed to the SVG Image Retrieval Subsystem.

Fig. 4: The UDDI search and retrieval subsystem

 This image retrieval subsystem is responsible for
the secure retrieval of SVG Images and is shown in Fig.
5. The axisRPC class is designed specifically to
encapsulate remote procedure calls to an RPC Style
SVG Web Service. To create an object of this class, the
only parameter required is an accessPoints object
(which contains the URL needed to contact a particular

SVG Service). Using this object, the constructor will
create the necessary Axis call objects. The Axis-related
code of this class is similar to that of the securityRPC
class of the Security Subsystem.

Fig. 5: The SVG image retrieval subsystem

 The axisRPCPool class stores a number of
axisRPC objects in a static vector object. Each axisRPC
object in the pool is configured to connect to exactly
one SVG Web Service and none of these objects
connect to the same SVG Web Service. Each time the
Client user attempts to retrieve an SVG from an SVG
Web Service that he has not accessed before, a new
axisRPC object configured to connect to that SVG Web
Service will be added to the pool. When an axisRPC
object is created, the public key certificate of the SVG
Web Service it will connect to must be retrieved. An
advantage gained by using the axisRPCPool class
regards the fact that the certificate of each SVG web
service must only be downloaded once. Note that the
pool must be rebuilt each time the Client is restarted
(the public key certificates are not saved locally). The
axisRPC getSVG(…) method returns an object of type
svgImage. Each svgImage object contains an SVG
image (stored in an org.w3c.dom.Document) as well as
the name and uuid of that SVG image. Objects of type
svgImage are passed to the GUI Subsystem.
 The HandlerClientSecurityRequest and
HandlerClientSecurityResponse instances behave
similarly to the ASHs discussed in[15] with only one
difference where the public key of the SVG Web
Service being contacted is used for the encryption
operation in the Request Handler and the signature
verification operation in the Response Handler.
 The UDDI client or the SVG Search Engine client
can then query the UDDI registry to discover the
required Web services and can make use of them.
Searches can be performed based on a number of
criteria types such as the service name, Breast Cancer
classification and the service groups. The system
supports hierarchal classification schemes and
classification-based searches will return all SVGs with
a more specific classification then the one the user
chose to search for (Fig. 6).

J. Computer Sci., 2 (3): 303-313, 2006

 309

Fig. 6: UDDI SVG search client

a. Searching for breast cancer web service

b. Searching via the group type

Fig. 7: Searching by category and by group

Fig. 8: The SVG web services search results

 After the results of a search are displayed, the user
can attempt to view any of the SVGs listed. After the
user chooses to view an SVG, the Client will retrieve
the location of the SVG Web Service from the UDDI
Server. Next, the Client will attempt retrieval of the
SVG image. Whether or not this retrieval is successful
depends on whether or not the user is a member of the
group the SVG belongs to. The SVG Web Service will
contact the Security Server to both authenticate (based
on the user’s digital signature) and authorize users who
request SVGs.
 To prevent someone from setting up a fake
Security Server in an attempt to gain access to SVGs
that have been registered, all messages sent from the
Security Server are digitally signed. Moreover, every
message sent by each user is digitally signed by that
user. Although digital signatures prove that a message
is from a particular user and that this message has not
been changed, they do not prevent others from seeing
what that message is. Therefore, most messages sent
within the system are encrypted.

Searching by SVG web service name: A search in
which name criteria is specified will find all SVGs
whose names meet certain criteria. Some of the SQL-92
syntax such % (matches any 0 or more characters) and
_ (matches any one character) is supported (this support
is actually built into the JAXR\UDDI API). For
example, if you enter %SVG% in the “Search By
Name” field, all SVGs which have the string “SVG”
inside their names will be found. However, if you enter
just SVG, all SVGs which begin with the string “SVG”
will be found. If the “Exact Match” search criterion is
specified, only SVGs whose names match the contents
of the “Search By Name” field exactly will be found.
For example, if I were to enter “Blue”, only SVGs
whose names are “Blue” would be found. Suppose you
want to find all SVGs whose names include the strings
“SVG” and “Service”. This could be done by entering
the following string into the “Search By Name” field:
%SVG%Service%. Moreover, suppose that you want to
find all SVGs whose names include the string “SVG”
or “Service”. This can be done use the | character.

J. Computer Sci., 2 (3): 303-313, 2006

 310

Fig. 9: The SVG viewer

Fig. 10: The UDDI SVG client system components

The following string would be entered into the “Search
By Name” field: %SVG%|%Service%. If the | character
is entered in the “Search By Name” field more than
once, the search will always fail to produce results. I’m
not sure why this is happening and I will investigate
this matter eventually.

Searching by breast cancer classification: To search
for an SVG based upon “Breast Diagnosis”, “tumor
size”, “palpable nodes”, or “metastasis”, double click
the appropriate “Classification” table entry. This will
cause the Client to display a window similar to that
shown in Fig. 7a. After selecting the appropriate
classification, click “OK” to confirm your selection.

You can search for SVGs based upon any combination
of these classifications.
 Note that classification-based searches will always
return all SVGs with a more specific classification then
the one the user chose to search for as well as with the
classification chosen. For example, if you chose to
search based upon the “Breast Cancer” classification
shown in Fig. 7a, all SVGs with any of the
classifications in the black box shown in Fig. 8 would
be returned.
 Once you have specified your search criteria, click
the “Get SVGs” button. This will cause a list of SVGs
to be retrieved from the UDDI server. If any SVG in the
list is clicked, that SVG will display in the “SVG
Viewer” tab, as shown in Fig. 9.

J. Computer Sci., 2 (3): 303-313, 2006

 311

Fig. 11: The UDDI SVG client subsystems

Fig. 12: A sequence diagram illustrating how the various subsystems are called after the user press get SVG button

Searching by group: To search by group, double click
the text field next to the “Search By Group” check box
shown in Fig. 7b. You can retrieve a list of groups
based on any combination of the following criteria:
whether or not you “own”, “belong to”, or “don’t
belong to” a group and whether or not the name of the
group contains a certain string. If the “Name
Containing” text field is left blank, it will be ignored.
Once you have selected your search criteria, click the
“Submit Query” button to retrieve a list of groups. If
the group that you are looking for appears in the results
list, select that group and then click “OK”. The name of
this group should now appear in the text field next to
the “Search By Group” check box.

CONCLUSION

 The AWSMN provides a secure means of sharing
medical SVG files between Clients which utilize

Apache Axis. The architecture of the system is shown
in Fig. 10. We can see that the system has three main
components: a Security Server (Security Web Service),
a UDDI Server (UDDI Web Service) and any number
of Clients.
 At each client there is exactly one user and one
SVG Web Service associated with each Client.
However, the SVG Web Service allows the user to
share any number of SVGs with other users who belong
to particular groups. Each Client has a special folder in
which the user can place all SVGs that should be
accessible by the SVG Web Service and therefore,
other users who belong to the appropriate groups. Each
user can create and therefore, own any number of
groups. The owner of a group decides who is allowed to
join that group and is also a member. Each group can
have a subset of all users registered as members and
will always have at least one member (the owner). Each
user can and should register the SVGs offered by his

J. Computer Sci., 2 (3): 303-313, 2006

 312

SVG Web Service with the Security Server. During this
registration process, the user will specify which groups
his SVGs can be accessed by (Currently, an SVG can
be accessed by exactly one group) and therefore, the set
of SVGs belonging to a group is a subset of the union
of all SVGs owned by its members. Of course, before a
user can register SVGs to a particular group, he must be
a member of that group. The Security Server will
register each group and the SVGs that belong to it with
the UDDI Server.
 When a user wishes to search for SVGs, they will
contact the UDDI Server directly. Searches can be
performed based on a number of criteria types such as
name, Breast Cancer classification and group. The
system supports hierarchal classification schemes and
classification-based searches will return all SVGs with
a more specific classification then the one the user
chose to search for.
 The UDDI SVG Client is composed of seven
subsystems, as shown as Fig. 11. In this Fig. 11, a line
between two subsystems indicates that some kind of
interaction takes place between them. The type
interaction taking place is not indicated. Possible
interactions include a subsystem accessing an instance
variable located in an object in another subsystem, a
subsystem calling one of the methods of a singleton
object contained in another subsystem, etc. As indicated
in the diagram, many interactions take place between
the seven subsystems. In fact, there are many
interactions taking place between the objects and
classes of each subsystem as well.
 Moreover, Fig. 12 shows the interactions that occur
when a user searches for SVGs. This diagram shows
what happens when a user attempts to view an SVG.
After the user enters the search criteria, he will click the
“Get SVGs” button shown in Fig. 7. The GUI
Subsystem will pass the search criteria to
uddiConnectivity findSVGs(…) method which will use
JAXR to create and send a SOAP message that
specifies search criteria for a tModel classification-
based search. This SOAP message will be sent to the
UDDI Web Service. The UDDI Web Service will reply
to uddiConnectivity with a SOAP message containing
the results of the search. UddiConnectivity will store
the results of the search in a number of svgImageResult
objects and will send them to the GUI Subsystem.
Finally, the GUI Subsystem will display the search
results for the user. However, it is important to mention
that the GUI subsystem has the classification stored as
JTable. With each client the GUI load the following
four classification schemes: Breast Diagnosis, tumor
size, palpable nodes and metastasis. Indeed, the GUI
could easily be changed to check which classifications
exist in the myClassificationSchemes.xml file. It could
then simply create a tree object to store each
classification it finds and associate each tree object with
a column of the JTables. Therefore, assuming that the
program would come preinstalled with appropriate

classification schemes, only minimal changes are
needed.
 When the user indicates his desire to view an SVG,
the GUI Subsystem will ask uddiConnectivity to
retrieve the URL of the SVG Web Service offering the
SVG from the UDDI Web Service. When it receives the
UDDI Web Service’s response, uddiConnectivity will
return an accessPoints object, which contains the URL,
to the GUI Subsystem. The GUI Subsystem will
retrieve a reference to the appropriate axisRPC object
from the axisRPC pool found in the SVG Image
Retrieval (SVGIR) Subsystem. Using this object, it will
tell the SVGIR Subsystem to retrieve the SVG. The
SVGIR Subsystem will send an encrypted and signed
SVG Request SOAP message to the appropriate SVG
Web Service, which may be located within the same
Client or another user’s Client.
 When the SVG Web Service receives the user’s
request, it will tell the Security Subsystem to ask the
Security Web Service if the user is authorized to view
the SVG. The Security Subsystem will react by sending
the Security Web Service a signed and encrypted
Authorized? SOAP Message. The Security Web
Service will reply with a signed and encrypted
Authorization SOAP Message, which will indicate to
SVG Web Service whether or not the user is authorized
to view the SVG. If the user is authorized, the SVG will
be sent to the SVGIR Subsystem of the requesting
user’s Client within a signed and encrypted SOAP
Message. The SVGIR Subsystem will send an
svgImage object containing the SVG to the GUI
Subsystem, which will display the SVG for the user.
 This research also aims to extend AWSMN to
work for peer-t-peer environments based on JXTA[17]
through adding a bridge between AXIS and JXTA[18].

REFERENCES

1. Le Bozec, C., E. Zapletal, M.C. Jaulent, D. Heudes

and P. Degoulet, 2000. Towards content {based
image retrieval in HIS} integrated PACS. In Proc.
of the Ann. Symp. of the 18 Am. Soc. for Med.
Informatics (AMIA), pp: 477-481, Los Angeles,
CA, USA.

2. Alfred, C.W., J. Samuel Dwyer III and Andrew M.
Snyder, et al., 2003. Federated, secure trust
networks for distributed healthcare IT services.
IEEE IECON, Roanoke, Virginia, USA.

3. Jung, B., E.P. Andersen and J. Grimson, 2000.
Using XML for seamless integration of distributed
electronic patient records. In Proc. of XML
Scandinavia Conf., Gothenburg, Sweden.

4. Health Level Seven XML Patient Record
Architecture
[http://xml.coverpages.org/hl7PRA.html]

5. Stephen, I., T.C. Wong and A. Donny, 1999.
Tjandra, A digital library for biomedical imaging
on the internet. IEEE Commun. Mag.

J. Computer Sci., 2 (3): 303-313, 2006

 313

6. Quint, A., 2003. Scalable vector graphics. IEEE
Multimedia, 3: 99-101.

7. Scalable Vector Graphics (SVG) – XML Graphics
for the Web – http://www.w3c.org/Graphics/SVG
(2003).

8. Vincent, H., 2003. Using SVG to create compelling
user interfaces for web services. XML Europe
2003 Conf., London, England, May 5-8.
http://www.idealliance.org/papers/dx_xmle03/pape
rs/02-04-05/02-04-05.pdf

9. Hondo, M., N. Nagaratnam and A. Nadalin, 2002.
Securing web services. IBM Systems J., 41: 2.

10. Yao, J., K.J. Lin and R. Mathieu, 2003. Web
services computing: Advancing software
interoperability. IEEE Computer J., pp: 35-37.

11. George, W., 2004. Secure SSO for web services.
Information Security J., Jan. 2004.

12. Paul, M., 2003. WS-trust: Interoperable security
for web service.
XML.COM Online J., Jun. 2003,
http://www.xml.com/pub/a/ws/2003/06/24/ws-
trust.html

13. Sabah, M., J. Fiaidhi, H. Ghenniwa and M. Hahn,
2006. Developing a secure web service architecture
for SVG image delivery. J. Computer Sci., 2: 171-
179.

14. Hahn, M. and S. Mohammed, 2005. The axis SVG
exchange system. NSERC/Coop Placement
Technical Report. Department of Computer
Science, Lakehead University.

15. Steve, G., D. Davis and S. Simeonov, 2005.
Building Web Services with Java. Sec. Edn. Sams
Publishing.

16. Frank Sommers, “Publish and find UDDI tModels
with JAXR and WSDL”, Java World online
Journal, Dec., 2002,
http://www.javaworld.com/javaworld/jw-12-
2002/jw-1213-webservices.html

17. Mohammed, S. and J. Fiaidhi, 2005. Developing
secure transcoding intermediary for SVG medical
images within peer-to-peer ubiquitous
environment. 3rd Ann. Commun. Networks and
Services Research Conf. (CNSR'05), pp: 151-156.

18. Burton, K., 2002. JXTA soap bridge project.
http://relativity.yi.org/jxta-bridge

