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Abstract: The mobile satcom antenna (MSA) enables a moving vehicle to communicate with a
geostationary Earth orbit satellite. To realize continuous communication, the MSA should be aligned
with the satellite in both sight and polarization all the time. Because of coupling effects, unknown
disturbances, sensor noises and unmodeled dynamics existing in the system, the control system
should have a strong adaptability. The significant features of terminal sliding mode control method
are robustness and finite time convergence, but the robustness is related to the large switching
control gain which is determined by uncertain issues and can lead to chattering phenomena. Neural
networks can reduce the chattering and approximate nonlinear issues. In this work, a novel B-spline
curve-based B-spline neural network (BSNN) is developed. The improved BSNN has the capability
of shape changing and self-adaption. In addition, the output of the proposed BSNN is applied to
approximate the nonlinear function in the system. The results of simulations and experiments are also
compared with those of PID method, non-singularity fast terminal sliding mode (NFTSM) control
and radial basis function (RBF) neural network-based NFTSM. It is shown that the proposed method
has the best performance, with reliable control precision.

Keywords: mobile satcom antenna; inertial sensor; stabilized platform; B-spline neural network;
terminal sliding mode (TSM)

1. Introduction

A mobile satcom antenna (MSA) is a kind of satellite communication antenna which can maintain
continuous and reliable communications between satellites and users in movement. MSAs are widely
applied in vehicle carriers, flying platforms and vessels. The Jet Propulsion Laboratory (JPL) has
developed several mobile vehicular antenna systems for the satellite-based applications [1]. Due to the
uncertain working environment, such as bumpy roads, sea waves and airflows, there might be strong
disturbances in actual systems [2]. MSAs seeking to achieve high data-rate communications require
the inertial antenna to be capable of pointing to within fractions of a degree [3]. Stabilization is used in
the antenna pointing control system to maintain the line of sight by isolating the disturbances caused
by vehicle motion [4]. Generally speaking, the attitude sensor can be an attitude and heading reference
system (AHRS) or an inertial measurement unit (IMU) [5]. The outputs of these inertial sensors are
widely used as feedbacks for stabilization in antenna control systems [6]. The accuracy of control
is influenced by many factors, mainly including the existence of unmodeled nonlinear uncertainty,
random bias of states and sensor noises [7] and friction restriction, which decreases the accuracy most.
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The disturbances and uncertainties can lead to the degradation of tracking and stabilization accuracy
of inertial stabilized platform in engineering applications [8].

Various decoupling control and disturbance rejecting methods have been developed to enable
MSA with high performance. Though the PID control method is widely applied in engineering practice
due to its simplicity and reliability, it is difficult to reduce the disturbances and uncertainties rapidly [8].
Therefore, this method offers low control accuracy and robustness. A feedforward scheme for a two
axis inertial stabilized platform (ISP) was adopted to reject the periodic disturbing torque acting
on the payload due to the static mass unbalance [9,10], but the accelerometer signal may be easily
distorted by the centripetal acceleration [11]. The H∞ control method presents strong robustness, but it
is highly conservative and the control accuracy is usually sacrificed [12]. Internal mode control can
improve the disturbance rejection capability and robustness against model uncertainties, but the exact
structural property of the disturbance needs to be known in advance [13]. The sliding mode control
method is studied in depth for its unique robust control performance for nonlinear and uncertain
systems. In the linear sliding mode, the deviation between the system and the desired trajectory is
asymptotically convergent in exponential forms [14]. TSM control is improved and compared with the
linear hyperplane based sliding modes, showing that the TSM offers some superior properties such as
fast response, finite time convergence [15,16].

However, the conventional TSM has many defects such as singular problem and chattering
phenomena. An initial discussion about avoiding the singularity in TSM control was presented
in [17]. In order to avoid the singular problem, many non-singular TSMs were proposed [14,15,18–20].
The good robustness of TSM is based on the large switching control gain, which is determined by
the uncertain disturbances [20]. If the switching control gain is small, the uncertainty issues cannot
be eliminated, whereas if the gain is large enough, the chattering phenomena would be enhanced.
In many practical control systems, including DC motors and aircraft control system, it is important to
avoid control chattering by providing continuous or smooth control signals [21]. According to the high
order sliding mode algorithm proposed in [22], “chattering removal” can be achieved by combining
the arbitrary-order sliding mode controller with the dynamic sliding mode. Another well-known
way to reduce chattering problem in TSM is to use tanh function instead of the sign function [23].
Neural networks can learn and approximate any arbitrary nonlinear functions [24]. Therefore, neural
networks are implemented to approximate uncertain disturbances in systems as well as to reduce the
chattering [25].

A radial basis function (RBF) neural network has several important features such as simple
structure, fast learning and better approximation capabilities. It has been adopted in TSM control
systems [24,26]. Wavelet neural networks, which are applied to terminal sliding mode control [27,28],
are a new class of neural networks that have been developed using a combined method of multi-layer
artificial neural networks and wavelet analysis. The B-spline function is a piecewise polynomial
function widely used in computer-aided design and computer graphics. For its excellent local
features, the B-spline function can be used as an activation function of neural network. The B-spline
neural networks (BSNNs) can be divided into two groups: one group is based on the B-spline basis
function [29–32] and the other group is based on the B-spline curve [33–38].

The B-spline basis function is only related to the internal knots, hence the definite internal
knots can derive the definite B-spline basis curve. For those kinds of BSNNs, only the weights are
trained in some studies [29,31]. The internal knots are trained by a heuristic algorithm in some other
studies [30,32], making the shapes of B-spline basis function changeable. In this group, the input of the
neural network can be considered as the value of internal knots, then according to the b-Spline basis
function, the output of the neural network can be obtained.

In the group where the B-spline curve is adopted, it is known that the B-spline curve is a linear
combination of control points and B-spline basis functions. If the positions of the control points are
changed, the shapes of B-spline curves are also changed. In some studies, the weights are considered
as control points [38]. Through the training of weights, the BSNN can then become adaptive. In other
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references, control points are trained by rules. In [33,37], the position of control points can be changed
to a known nearby value, but only one control point can be changed once by this method. Additionally,
the input and output of neural network are not relevant directly in this group.

In this paper, a novel B-spline neural network with the capability of shape adjustment is proposed
and applied to approximate the external disturbance and the unmolded dynamics of the system.
The equation of the B-spline curve is reconstructed in numeric form, therefore the new B-spline curve
possesses the properties of the radial basis function, making it different from the previous approaches.
In this research, the activation function of proposed BSNN is a pp-form spline.

The paper is organized as follows: in Section 2, the dynamic model of MSA and the control block
diagram are established respectively. Then a new terminal sliding mode control strategy is proposed
and proved. In Section 3, a novel BSNN is proposed and the parameter updating rules are built.
In Section 4, experiments and simulations are carried out. The performances of the proposed methods
are also compared with other methods. Finally, conclusions and contributions are summarized in
Section 5.

2. Modeling of a Mobile Satcom Antenna

The paper focuses on a double gimbal MSA. The innermost gimbal is an elevation gimbal on
which the antenna array is mounted, while the outmost gimbal is an azimuth gimbal which is mounted
on the base. According to the coordinates system definition and the conversion relationships between
different coordinates, a dynamic model of the mobile satcom antenna is derived.

2.1. Gimbal Coordinates Definition

An orthogonal coordinate system is defined: Base coordinate frame (oxbybzb), azimuth gimbal
frame (oxayaza) and elevation gimbal frame (oxeyeze). The rotating transformations are shown in
Figure 1. As we can see from the Figure 1, θa and

.
θa are the relative angular and relative angular rate

between the azimuth gimbal and the base carrier, respectively. θe and
.
θe are the relative angular and

relative angular rate between the elevation gimbal and the azimuth gimbal, respectively:

Rotation matrices can be written as Ca
b =

 cos θa sin θa 0
− sin θa cos θa 0

0 1 1

 and

Ce
a =

 1 0 0
0 cos θe sin θe

0 − sin θe cos θe

, which represent the transformation from the base coordinate

to the azimuth coordinate and transformation from azimuth coordinate to the elevation
coordinate, respectively.

According to the rotation matrix Ca
b and Ce

a, the angular rate relations of the two gimbals can be
obtained as follows:

ωa
ia = Ca

bωb
ib + ωa

ba =

 p cos θa + q sin θa

−p sin θa + q cos θa

r +
.
θa

 (1)

ωe
ie = Ce

aωa
ia + ωe

ae =

 p cos θa + q sin θa +
.
θe

−p cos θe sin θa + q cos θa cos θe + r sin θe +
.
θa sin θe

p sin θa sin θe − q cos θa sin θe + r cos θe +
.
θa cos θe

 (2)

in which, ωb
ib is the angular rate of the base carrier; ωa

ia is the angular rate of the azimuth gimbal;

ωe
ie is the angular rate of the elevation gimbal; ωa

ba =
[

0 0
.
θa

]T
represents the angular rate of

the azimuth gimbal with respect to the base; ωe
ae =

[ .
θe 0 0

]T
represents the angular rate of the
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elevation gimbal with respect to the azimuth gimbal; ωb
ib =

[
p q r

]T
is the angular rate of the

mobile carrier.
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Figure 1. Coordinate definition and transformation. 

2.2. Dynamic of the Azimuth Gimbal 

The gimbals in this system are all rigid, therefore the basic Newton-Euler rotation equation can 
be written as follows: 
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momentum;  is the inertial moment;  is the absolute angular rate. 

Since the structures of the two gimbals are similar (the difference is that the azimuth gimbal is 
effected by coupling of elevation gimbal), only the azimuth gimbal is considered in this paper. 

According to the Equation (3), the dynamic model of azimuth gimbal can be obtained as follows: 
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To further simplify the analysis, we define that | + | ≤ . Then the proposed control 
block diagram can be obtained as follows: 

Figure 1. Coordinate definition and transformation.

2.2. Dynamic of the Azimuth Gimbal

The gimbals in this system are all rigid, therefore the basic Newton-Euler rotation equation can be
written as follows:

∑ M =
.

H + ω× H
H = Jω

(3)

in which ∑ M is the resultant moment of the force added to the rigid body; H is the inertial angular
momentum; J is the inertial moment; ω is the absolute angular rate.

Since the structures of the two gimbals are similar (the difference is that the azimuth gimbal is
effected by coupling of elevation gimbal), only the azimuth gimbal is considered in this paper.

According to the Equation (3), the dynamic model of azimuth gimbal can be obtained as follows:

(Jaz + Jez)(
.
r +

..
θa) = Mam −Mad −Maez − (Jay + Jey − Jax − Jex)ω

a
iaxωa

iay (4)

where, Mad is the disturbance torque added to elevation gimbal; Mam is the driving torque of elevation
motor; Maez is the coupling torque that effected by elevation gimbal. They are given by Equations (5)
and (6):

Maez = Jez
.

ω
e
iez sin θe +

(
Jex − Jey

)
ωe

iexωe
iey sin θe + Jez

.
ω

e
iez cos θe +

(
Jex − Jey

)
ωe

iexωe
iey cos θe (5)

Mam =
kat

Raa

(
Nauaa − N2

a kab
.
θa

)
−
(

N2
a Jad + Ja f

) ..
θa −

(
N2

a fad + fa f

) .
θa (6)

Jax, Jay, Jaz are the moments of inertia of the azimuth gimbal related to the X, Y, Z axes in azimuth
coordinates, respectively; Jex, Jey, Jez are the moments of inertia of the elevation gimbal related to the
X, Y, Z axes in the elevation gimbal, respectively; kat is the azimuth motor torque constant; kab is the
back-EMF coefficient of azimuth motor; Na is the azimuth gear ratio; Raa is the motor resistance; Jad is
the moment of inertial of driver gear; fad is the viscous friction coefficient of driver gear; Ja f is the
moment of inertial of passive gear; fa f is the viscous friction coefficient of passive gear; uaa is the input
driven voltage of the motor.

Based on the preceding analysis, system (4) can be simplified into a standard second order
control system: { .

xa1(t) = xa2(t)
.
xa2(t) = Aaxa2(t) + Baua(t) + Cada(t) + Dawa(t)

(7)
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in which, xa1 = θa, xa2 =
.
θa, da(t) is external disturbance and wa(t) is the coupling effect torque.

To further simplify the analysis, we define that |Cada(t) + Dawa(t)| ≤ ld. Then the proposed control
block diagram can be obtained as follows:

Aa =

 0 1

0 − katkab N2
a +Raa N2

a fad+Raa fa f

(Jaz+Jez+N2
a Jad+Ja f )Raa

, Ba =

[
0

kat Na
(Jaz+Jez+N2

a Jad+Ja f )Raa

]

Ca =

[
0

− 1
Jaz+Jez+N2

a Jad+Ja f

]
, Da =

[
0

− 1
Jaz+Jez+N2

a Jad+Ja f

]

and da(t) = Mad + (Jaz + Jez)
.
r +

(
Jay + Jey − Jax − Jex

)
ωa

iaxωa
iay.

Then the control block diagram shown in Figure 2 can be obtained.
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Figure 2. Control block diagram of azimuth gimbal. 

The NFTSM control applied in this paper can guarantee that the system state arrives at the 
equilibrium point in a finite time with fast response and higher precision. In the following section, a 
new NFTSM controller is proposed and proved. 

2.3. Non-Singularity Fast Terminal Sliding Mode 

The nonlinear system is defined by Equation (7). In order to improve the control performance of 
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Figure 2. Control block diagram of azimuth gimbal.

The NFTSM control applied in this paper can guarantee that the system state arrives at the
equilibrium point in a finite time with fast response and higher precision. In the following section,
a new NFTSM controller is proposed and proved.

2.3. Non-Singularity Fast Terminal Sliding Mode

The nonlinear system is defined by Equation (7). In order to improve the control performance of
terminal sliding mode, the paper proposed an improved NFTSM as shown in Equation (8), which is
similar to reference [14].

s = ê +
1
α
‖ê‖r+1sign(ê) +

1
β
‖

.
ê‖

p+1
sign

( .
ê
)
= 0 (8)

in which, α, β > 0, 0 < p < 1 and r > p, ê = θa − θc
a. The first derivative can be expressed as

.
s =

.
ê +

r + 1
α
‖ê‖r .

ê +
p + 1

β
‖

.
ê‖

p ..
ê (9)

Theorem 1. For System (7) with the adopted NFTSM, if the control law is designed as:

un = −Ba
−1

 β
p+1‖

.
ê‖

1−p
sign

( .
ê
)(

1 + r+1
α ‖ê‖

r
)

+Aa
.
ê + (ld + δ)sign(s) +

(
Aa

.
θ

c
a −

..
θ

c
a

)
 (10)

the NFTSM manifold will be reached in a finite time. In addition, the tracking error on the sliding mode surface
will also converge to zero in a finite time.
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Proof. Consider the Lyapunov candidate function as:

V =
1
2

s2 (11)

The derivative of V is given by the following function,

.
V = s

.
s = s

 .
ê + r+1

α ‖ê‖
r .
ê + p+1

β ‖
.
ê‖

p
Aa

.
ê + p+1

β ‖
.
ê‖

p
Baun(t)+

p+1
β ‖

.
ê‖

p
Cadn(t) +

p+1
β ‖

.
ê‖

p
Dawn(t) +

p+1
β ‖

.
ê‖

p(
Aa

.
θ

c
a −

..
θ

c
a

) 
= s
(
− p+1

β ‖
.
ê‖

p
((ld + δ)sign(s)) + p+1

β ‖
.
ê‖

p
Cadn(t) +

p+1
β ‖

.
ê‖

p
Dawn(t)

)
≤ −s(δsign(s)) = −|s|δ

(12)

It is obvious that
.

V < 0 if
.
σ = 0. Thus, the condition for Lyapunov stability is satisfied. Then the

system state will converge to zero within finite time. As shown in Equation (10), the value of 1− p < 0
is always greater than zero, therefore, the controller is non-singular. �

We can also obtain the reaching time tr satisfies (see Appendix A)

tr ≤
p + 1

pβ
1

p+1
|e(t0)|

p
p+1 (13)

That completes the proof. Therefore, the system can reach the terminal sliding mode surface
within a finite time.

For terminal sliding mode control methods, the upper disturbance bound is generally required,
but in practical applications, a large upper bound can be used to eliminate the external disturbance
item and guarantee the robustness. However, the chattering phenomena is enhanced correspondingly.
The paper attempts to approximate nonlinear disturbance by using BSNN. A novel BSNN is proposed
in this paper. As its name implies, the B-spline curve is adopted as activation function.

3. B-Spline Neural Network

Artificial neural networks have high nonlinear approximation abilities. A spline function is
a piecewise polynomial function of degree k. The spline neural network can play a role in local
features. In this section, a new kind of B-spline function is introduced herin, then the proposed BSNN
is deduced.

3.1. B-Spline Basis Function Definition

A B-spline curve differs from a Hermite or Bérzier curve, because a B-spline curve usually consists
of more than one curve segment. The B-spline curve is widely used in the field of computer graphics
for its excellent performance. The B-spline basis function is the foundation of BSNN.

Definition 1 [39]. Given a knot vector T = {t0 ≤ t1 ≤ · · · ≤ tm}, the ith B-spline basis function of degree k
can be written as:

Bi,0(t) =

{
1, i f ti <= t < ti+1
0, otherwise

(14)

Bi,k(t) =
t− ti

ti+k−1 − ti
· Bi,k−1(t) +

ti+k − t
ti+k − ti+1

· Bi+1,k−1(t) (15)

Remark 1. If ti+1 − ti(0 ≤ i ≤ m− 1) is a constant, the B-spline curve is called uniform; otherwise, it is
called non-uniform.
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Definition 1 is usually referred to the Cox-de Boor recursion formula.
The jth B-spline basis curve with degree k can be written as Bi

j,k(t) on an arbitrary vector [ ti, ti+1) :

Bi
j,k(t) = ai

j,0 + ai
j,1t + ai

j,2t2 + · · ·+ ai
j,ktk =

[
tk tk−1 · · · 1

]


ai
j,k
...

ai
j,1

ai
j,0

 (16)

An order k + 1 B-spline is formed by joining several pieces of polynomials of degree k with at
most Ck−1 continuity at the breakpoints [40], hence the following formula can be obtained:


ti

k ti
k−1 · · · ti 1

ti+1
k ti+1

k−1 · · · ti 1
kti+1

k−1 (k− 1)ti+1
k−2 · · · 1 0

...
... · · ·

...
...

k!ti+1 (k− 1)! · · · 0 0





ai
j,k

ai
j,k−1

...
ai

j,1
ai

j,0


=



Bi
j,k(ti)

Bi
j,k(ti+1)

Bi
j,k

(1)(ti+1)
...

Bi
j,k

(k−1)(ti+1)


(17)

The derivative of Equation (15) can be written as follows:

d
du

Bi,k(t) = B′ i,k(t) =
k

ti+k − ti
Bi,k−1(t)−

k
ti+k+1 − ti+1

Bi+1,k−1(t) (18)

An arbitrary order derivative formula can be obtained as Equation (19) shows:

B(d)
i,k (t) = k(

B(d−1)
i,k−1 (t)

ti+k − ti
−

B(d−1)
i+1,k−1(t)

ti+k+1 − ti+1
) (19)

According to Equations (14), (15), (18) and (19), the coefficients ai
j,k, ai

j,k−1, · · · , ai
j,1, ai

j,0 in

Equation (16) can be obtained. Then the jth B-Spline basis curve Bi
j,k(t) with degree k on vector

[ ti, ti+1) can be calculated.
The B-Spline basis function Bj,k(t) with degree k can also be represented in matrix form in the

interval [t0, tm],
Bj,k(t) =

[
B0

j,k(t) B1
j,k(t) · · · Bm−1

j,k (t)
]

=
[
tk, tk−1, · · · , 1

]


a0
j,k a1

j,k · · · am−1
j,k

...
... · · ·

...
a0

j,1 a1
j,1 · · · am−1

j,1
a0

j,0 a1
j,0 · · · am−1

j,0


= vt Me

(20)

The expression of different B-spline basis functions in an interval [ ti, ti+1) can be written
as follows:

Bi
k(t) =

[
Bi

0,k(t) Bi
1,k(t) · · · Bi

n,k(t)
]

=
[
tk tk−1 · · · 1

]


ai
0,k ai

1,k · · · ai
n,k

...
... · · ·

...
ai

0,1 ai
1,1 · · · ai

n,1
ai

0,0 a1
1,0 · · · ai

n,0


= vt Me′

(21)
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The coefficient matrixes Me in Equation (20) and M′e in Equation (21) can be obtained by
Equations (14), (15), (18) and (19).

The B-spline curve is a linear combination of control points Pi and a B-spline basis function Bi,k(t).
The definition is as follows:

3.2. B-Spline Curve Definitions

Definition 2 [39]. Given n + 1 control points Pi, a knot vector T = {t0 ≤ t1 ≤ · · · ≤ tm} and B-spline basis
functions Bi,k(t), a B-spline curve is given by:

C(t) =
n

∑
i=0

Bi,k(t)Pi (22)

Remark 2. Indexes m, n, k must satisfy m = n + k + 1.

Remark 3. If the first knot and the last knot have multiplicity with value k + 1, the B-spline curve is called
closed clamped; otherwise, it is called an open clamped B-spline curve. More specific illustrations can be seen in
Figure 3.
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The coefficient matrixes  in Equation (20) and  in Equation (21) can be obtained by 
Equations (14), (15), (18) and (19). 
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Figure 3. (a) Order 3 B-spline basis function in which the internal knot vector is 1 2 3 4 5 6 ; (b) Order 3 B-spline basis function that has multiple knots in which the 
internal knot vector is 1 1 1 2 3 4 5 6 6 6 ; (c) Order 3 B-spline functions with 
multiple knots; the internal knot vector is 1 1 1 2 3 4 5 6 6 6 ; (d) Amplitude 
standardization of c; the internal knot vector is 1 1 1 2 3 4 5 6 6 6 . 

Figure 3. (a) Order 3 B-spline basis function in which the internal knot vector is[
1 2 3 4 5 6

]
; (b) Order 3 B-spline basis function that has multiple knots in which the

internal knot vector is
[

1 1 1 2 3 4 5 6 6 6
]
; (c) Order 3 B-spline functions with

multiple knots; the internal knot vector is
[

1 1 1 2 3 4 5 6 6 6
]
; (d) Amplitude

standardization of c; the internal knot vector is
[

1 1 1 2 3 4 5 6 6 6
]
.
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From Equation (22) on the ith vector the B-spline function can be written as:

Ci(t) =
[

Bi
0,k Bi

1,k · · · Bi
n,k

]
[P0 P1 · · · Pn]

T

= vt Me′[P0 P1 · · · Pn]
T

= vt Me′[(Px0, Py0) (Px1, Py1) · · · (Pxn, Pyn)]
T

(23)

If the horizontal value xin of an arbitrary point (xin, yin) on the B-spline curve is known, the
following formula can be obtained by:

xin = vt Me′[Px0 Px1 · · · Pxn]
T (24)

Therefore, the unknown internal vector vt̂ can be calculated. Furthermore, the vertical value yin
can be obtained:

yin = vt̂ Me′[Py0 Py1 · · · Pyn]
T (25)

In this paper, order 3 B-spline curve is adopted. Then Equation (23) can be simplified to the
following form:

Cj(u) =
[
t2 t1 1

] a1
2 a2

2 a3
2

a1
1 a2

1 a3
1

a1
0 a2

0 a3
0

[Pj Pj+1 Pj+2
]T

=
[
t2 t1 1

]
Me′

[
Pj Pj+1 Pj+2

]T

(26)

xin can be represented as xin =
[

t2 t 1
]

Aβ, in which M′e = (α1, α2, α3)
T ,

β =
[

Px0 Px1 Px2

]T
. According to the known horizontal coordinate value xin, the corresponding

internal knot t̂ can be obtained:

t̂ =
−(α2·β)±

√
(α2·β)2 − 4(α1·β)[(α3·β)− xin]

2(α1·β)
, (α1·β) 6= 0 (27)

Furthermore:
yin =

[
t̂2 t̂ 1

][
(α1 · γ) (α2 · γ) (α3 · γ)

]T

= (α1 · γ)t̂2 + (α2 · γ)t̂ + (α3 · γ)
(28)

in which γ =
[

Py0 Py1 Py2

]T
.

According to the Definition 2, the B-spline function is improved in this paper by proposing two
deformation factors called translation factor and scaling factor.

Definition 3. Given n + 1 control points Pi and a knot vector T = {t0 ≤ t1 ≤ · · · ≤ tm}, a new B-spline
function of degree k can be written as:

C′(t) =
n
∑

i=0
Pi′Bi,k(t)

=
n
∑

i=0
(Pxi + λti + κwi, Pyi)Bi,k(t)

=
n
∑

i=0
[Pi + (λbi, 0) + (κwi, 0)Bi,k(t)]

(29)

Remark 4. At the beginning, the value of the two deformation factors λ and κ are zero. thus, the formulas in
Definition 2 and 3 are equivalent. λ is called translation factor, and κ is called scaling factor.
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Assumption 1. The two factors specify how the shape changes, assuming that b =
[

1 1 · · · 1
]

1×n
,

w =

[
1 1 1︸ ︷︷ ︸

ρ

0︸︷︷︸
τ

−1 −1 −1︸ ︷︷ ︸
ρ

]
1×n

and 2× ρ + τ = n (τ can be 0 or 1).

3.3. The B-Spline Neural Network

Compared with some previous studies, the proposed B-spline adopts an order 3 B-spline function
as activation function rather than a B-spline basis function as in some references [29,31]. Generally
speaking, neural networks always have more than one hidden layer. The structure of our BSNN is
shown in Figure 4.
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Figure 4. The general structure of BSNN.

As shown in Figure 4, the neural network system has multiple inputs and one output. Each input
corresponds to several activation functions. The output of BSNN can be mapped from inputs xi to an
output Ld by using B-splines as activation functions. The output of the hidden layer can be written
as follows:

hl =
a

∏
i=1

ηi,j(xi), j = 1, 2, · · · , ρ (30)

In which, ηi,j(xi) means the ith input corresponding to the jth activation function; ρ means the
number of inputs; a means the number of activation functions. Therefore, the output of BSNN is
as follows:

Ld =
L

∑
l=1

ωlhl =
L

∑
l=1

ωl

(
ρ

∏
i=1

ηi,j(xi)

)
, L = aρ (31)

The training method is to minimize the error function which is defined as follows:

E(t) = V (32)

The chain rules of parameter update can be written as follows:

∂E
∂s

∂s
∂ld

=
p + 1

β
‖ .

e‖p‖s‖ (33)

∆ωi = −
∂E
∂ωi

= −∂E
∂s

∂s
∂ld

∂ld
∂ωi

=
p + 1

β
‖ .

e‖p‖s‖hl (34)

ωi(t) = ωi(t− 1) + η∆ωi + α[ωi(t− 1)−ωi(t− 2)] (35)
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∆λi,j = −
∂E

∂λi,j
= −∂E

∂s
∂s
∂ld

∂ld
∂hl

∂hl
∂ηi,j

∂ηi,j

∂λi,j
(36)

λi,j(t) = λi,j(t− 1) + η∆λi,j + α[λi,j(t− 1)− λi,j(t− 2)] (37)

∆κi,j = −
∂E

∂κi,j
= −∂E

∂s
∂s
∂ld

∂ld
∂hl

∂hl
∂ηi,j

∂ηi,j

∂κi,j
(38)

κi,j(t) = κi,j(t− 1) + η∆κi,j + α[κi,j(t− 1)− κi,j(t− 2)] (39)

∂ld
∂hl

∂hl
∂ηi,j

= wl

ρ−1

∏
s = 1
s 6= i

ηs,j(xs), j = 1, 2, · · · a (40)

In these equations, η is the learning rate; α is the inertial coefficient.

∂ηi,j(xj)

∂λi,j
=

∂[
n
∑

s=0
(Pi,j

s +λi,jts+κi,jbs)Bs,k(t̂)]

∂λi,j

=
∂[

n
∑

s=0
Pi,j

s Bs,k(t̂)+
n
∑

s=1
λi,jtsBs,k(t̂)+

n
∑

s=1
κi,jbsBs,k(t̂)]

∂λi,j

=
n
∑

s=0
tsBs,k

(
t̂
)

(41)

The B-spline basis function has an important property which is called “Partition of Unity”, indicating
that the sum of all non-zero degree k basis functions on span [ ti, ti+1) is 1, i.e., ∑n

s=0 Bs,k(t) = 1.
According to Assumption 1, the following Equations (42) and (44) can be obtained:

∂ηi,j(xj)

∂λi,j
=

n

∑
s=0

Bs,k
(
t̂
)
= 1 (42)

∂ηi,j(xj)

∂κi,j
=

∂[
n
∑

s=0
(Pi,j

s +λi,jts+κi,jws)Bs,k(t̂)]

∂κi,j

=
∂[

n
∑

s=0
Pi,jBs,k(t̂)+λi,jtsBs,k(t̂)+κi,jwsBs,k(t̂)]

∂κi,j

=
n
∑

s=0
wsBs,k

(
t̂
)

(43)

∂ηi,j(xj)

∂κi,j
=



(n−1)
2
∑

s=0
Bs,k
(
t̂
)
−

n
∑

s=(n+1)/2
Bs,k
(
t̂
)
, n is odd

(n−2)
2
∑

s=0
Bs,k
(
t̂
)
−

n
∑

s=(n+2)/2
Bs,k
(
t̂
)
, n is even

(44)

Therefore, an adaptive BSNN is proposed. Experiments and simulations carried out to verify the
performance of the BSNN are discussed in the following section.

4. Results of Experiment and Simulation

Experiments and simulations were carried out to validate the performance of the proposed
BSNN-based NFTSM control method in this section. The experimental system is shown in Figure 5.
Comparisons are made between the results of the conventional PID method, the TSM in reference [19],
the NTSM in reference [15], the NFTSM in this paper, the RBF neural network-based NFTSM. The
parameters of the MSA control system are listed in Table 1.
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Figure 5. Experimental two axis MSA system.

Table 1. Parameters of MSA system.

Parameters Values Unit Parameters Values Unit Parameters Values Unit

Jex 0.51 kg·m2 Jey 0.54 kg·m2 Jez 0.59 kg·m2

Jax 1.49 kg·m2 Jay 1.56 kg·m2 Jaz 1.42 kg·m2

Jad 0.96 kg·m2 Jaf 1.37 kg·m2 Na 2.8 N·m/A
kat 0.42 kab 0.42 Raa 1.23 Ω
fad 0.3 faf 0.5

In this system, the BSNN has two inputs and one output. Each of the inputs corresponds to three
B-spline activation functions which have n + 1 = 7 control points separately. The internal knot vector of
B-Spline curve is

[
1 1 1 2 3 4 5 6 6 6

]
and the degree of B-spline curve is 2. Moreover,

the learning rate η = 0.6, the inertial coefficient α = 0.05 and c = 5. ld = 7 is adopted for NFTSM
control method.

4.1. Description of the Coupling Effect

In this section, the amplitude of the elevation gimbal is 0 degrees in the first 47.9 s (Stage A);
the gimbal is assigned to perform a sinusoidal motion 0.5× sin(0.334× π × t) from 47.9 s to 89.8 s
(Stage B); the gimbal is assigned to perform a sinusoidal motion 1.0× sin(0.1336× π × t) from 89.8 s
to 200 s (Stage C), as shown in Figure 6. In order to describe the coupling effect caused by the elevation
and vehicle movement, there is no control and no input applied to the azimuth gimbal. The vehicle
is assigned to move with speed of 0.5◦/s. Simulation and experiment results are demonstrated in
Figure 7.

As shown in Figure 7, the azimuth gimbal has a large angular output in both the simulation and
experiment. The azimuth gradually increases due to the motion of the elevation gimbal. Apparently,
the results are not what the controller engineer expected. Therefore, a decoupling controller is required.
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4.2. Description of De-Coupling Effect

In order to validate the decoupling ability of the proposed method, the azimuth gimbal is assigned
to perform a sinusoidal motion with amplitude 0 in the first 48.8 s (Stage A); a sinusoidal motion
1.0× sin(0.164× π × t) is applied in the following period (Stage B), as shown in Figure 8. The elevation
gimbal is still assigned to perform a sinusoidal motion as in Section 4.1.
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4.2.1. Simulation Results

The simulation results are shown in Figure 9.



Sensors 2017, 17, 978 14 of 21

Sensors 2017, 17, 978 14 of 21 

 

(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparative azimuth gimbal absolute angle simulation results with four different methods: 
(a) PID method; (b) TSM method in reference [19]; (c) NTSM method in reference [15]; (d) the 
proposed NFTSM method; (e) NFTSM-RBFNN method; (f) the proposed NFTSM-BSNN method. 

From the simulation results, the following conclusions can be obtained: the conventional PID 
method has the worst performance, the peak to peak (p–p) value of tracking error is 0.131° , the 
tracking error at time 48.8 s is 0.058°; while the tracking error ∆  of the conventional TSM method 
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RBFNN based NFTSM the tracking error ∆  is 7.3 × 10 °  and the tracking error at time 48.8 s is 23.0 × 10 ° ; the best performance corresponds to the BSNN-based NFTSM with a tracking error of 1.1 × 10 °  and the tracking error at time 48.8 s of 7.8 × 10 ° . At time 48.8 s, the azimuth gimbal 
begins to perform the assigned sinusoidal motion from a still state. The simulation results show that 
the proposed BSNN has a better adaptive capability and the proposed controller shows better 
decoupling effect than other controllers. 

The forms of the B-spline curves are shown in Figure 10. It can be seen from the figure that both 
the positions and the shapes of the B-spline curves are changed. 

Figure 9. Comparative azimuth gimbal absolute angle simulation results with four different methods:
(a) PID method; (b) TSM method in reference [19]; (c) NTSM method in reference [15]; (d) the proposed
NFTSM method; (e) NFTSM-RBFNN method; (f) the proposed NFTSM-BSNN method.

From the simulation results, the following conclusions can be obtained: the conventional PID
method has the worst performance, the peak to peak (p–p) value of tracking error is 0.131

◦
, the

tracking error at time 48.8 s is 0.058
◦
; while the tracking error ∆θa of the conventional TSM method is

1.75× 10−3(◦) and the tracking error at time 48.8 s is −26.1× 10−3(◦); the tracking error ∆θa of the
NTSM method in reference is 6.9× 10−4(◦), the tracking error is −20.0× 10−3(◦); the tracking error
∆θa of NFTSM is 6.7× 10−5(◦), and the tracking error at time 48.8 s is 18.0× 10−3(◦); for RBFNN based
NFTSM the tracking error ∆θa is 7.3× 10−5(◦) and the tracking error at time 48.8 s is 23.0× 10−3(◦);
the best performance corresponds to the BSNN-based NFTSM with a tracking error of 1.1× 10−5(◦)
and the tracking error at time 48.8 s of 7.8 × 10−3(◦). At time 48.8 s, the azimuth gimbal begins
to perform the assigned sinusoidal motion from a still state. The simulation results show that the
proposed BSNN has a better adaptive capability and the proposed controller shows better decoupling
effect than other controllers.

The forms of the B-spline curves are shown in Figure 10. It can be seen from the figure that both
the positions and the shapes of the B-spline curves are changed.
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of 50 N·m and 100 N·m are added at time 70 s and 130 s, respectively, as shown in Figure 12. 
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4.2.2. Experiment Results

Decoupling effect experiments are carried out in this section. The results are shown in Figure 11.
As shown in Figure 11, the proposed BSNN-based NFTSM performs better than the other three
methods. The p–p value of ∆θa is 0.162

◦
when the PID controller is applied; the p–p value of ∆θa is

0.12
◦

when the NFTSM controller is applied; the p–p value of ∆θa is 0.077
◦

when the RBFNN- based
NFTSM is applied; the p–p value of ∆θa is 0.051

◦
when the BSNN-based NFTSM is applied.
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However, when the RBFNN-based NFTSM is applied, the p–p values of ∆θa are 7.7× 10−5(◦)
and 17× 10−3(◦) at time 70 s and 130 s, respectively; the p–p values of ∆θa are 4.0× 10−5(◦) and
6.2× 10−5(◦) at time 70 s and 130 when the BSNN-based NFTSM is applied, respectively. Therefore,
it is apparent that the neural network is good at nonlinear approximation, and the proposed BSNN
performs better. The forms of B-spline curves are shown in Figure 14.
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According to the simulations and experiments, it can be seen that the proposed BSNN based
NFTSM is good at nonlinear approximate and has strong self-adaptability.

5. Conclusions

The paper focuses on the inertial sensor-based two gimbal mobile satcom antenna. In order to
obtain high quality communications, the MSA should point to the specific satellite when the carrier is
moving. The dynamic model of MSA is established based on traditional Newton-Euler method and the
corresponding control block diagram is built. In this paper, the non-singular fast terminal sliding mode
control is adopted and developed to increase the line of sight stabilization accuracy. Meanwhile, the
features of existence and convergence in finite time are proved. Then a neural network is employed to
approximate the nonlinear item in the system. In addition, a novel BSNN is proposed and used in this
paper. A brief study of B-spline basis and B-spline function is also carried out, then the computational
function used to obtain the arbitrary point on the curve is derived. The B-spline function is reformed
to enhance its adaptive capacity. To validate the effectiveness of the proposed NFTSM and BSNN,
simulations and experiments are conducted. Results of different methods, including PID, NFTSM,
NFTSM-RBF, NFTSM-BSNN, are compared in this paper. It is shown that the proposed method has
better decoupling effects and disturbance rejecting ability than the others. Because the B-spline curve
has an excellent ability called “local control”, it can be used to approximate arbitrarily shaped curves.
According to the analysis in this paper, we can conclude that the proposed BSNN is good at nonlinear
approximation owing to its local features. The robustness of the system can also be improved by
applying this method.
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Appendix A

The Terminal sliding mode surface (8) can be written as follows:

s = ‖ê‖sign(ê) +
1
α
‖ê‖r+1sign(ê) +

1
β
‖

.
ê‖

p+1
sign

( .
ê
)
= 0 (A1)

The following formula can be obtained:

sign(ê) = −sign
( .

ê
)

(A2)

Then Equation (A1) can be further simplified as:

‖ê‖+ 1
α
‖ê‖r+1 =

1
β
‖

.
ê‖

p+1
(A3)

It is apparent that: (
β‖ê‖+ β

α
‖ê‖r+1

) 1
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= ‖
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ê‖ =

.
êsign

( .
ê
)
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Then the following formula can be obtained:

−
(

β‖ê‖+ β

α
‖ê‖r+1

) 1
p+1

sign(ê) =
.
ê (A5)

If ê ≥ 0,

−
(

βê +
β

α
êr+1

) 1
p+1

=
.
ê (A6)

Else if ê < 0, (
β(−ê) +

β

α
(−ê)r+1

) 1
p+1

=
.
ê (A7)

Equation (A5) can be integrated and written as follows:

∫ ê(t0)

0

d(−ê)(
β(−ê) + β

α (−ê)r+1
) 1

p+1
+
∫ ê(t0)

0

dê(
βê + β

α êr+1
) 1

p+1
=
∫ t

0
dt (A8)

∫ |ê(t0)|

0

dê

(βê)
1

p+1
≥
∫ t

0
dt (A9)

Then the convergence time can be obtained:

t ≤ p + 1

pβ
1

p+1
|ê(t0)|

p
p+1 (A10)

This ends the proof.
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