First Demonstration of Agriculture Height Retrieval with PolInSAR Airborne Data

Juan M. Lopez-Sanchez
J. David Ballester-Berman
Irena Hajnsek

Signals, Systems & Telecommunications Group
University of Alicante
Microwaves and Radar Institute
German Aerospace Center (DLR)
Contents

• Motivation
• AgriSAR2006 campaign and interferometric data set
• Height retrieval: inspection and first results
• Next steps
Motivation

- PolInSAR applied to vegetation height retrieval
 - Forests:
 • Demonstrated with airborne data
 • Different bands: P, L, X
 • Different forest types: boreal, tropical, etc.
 • Model: RVoG and variants
 - Agriculture:
 • Demonstrated ONLY with indoor data at EMSL
 • Single samples of corn (S, C, X band) and rice (C, X band)
 • Model: RVoG and OVoG

Objective: experimental demonstration with airborne data
Data set: ground measurements

- AgriSAR2006 (ESA funded campaign)
Data set: interferometric acquisitions

- PolInSAR data (DLR funded campaign):
 - E-SAR system: L band, full pol.
 - 3 flights over the same site (7.5 minutes between passes)
Vertical wavenumber

- Crops (short vegetation): Large baselines are required to ensure enough sensitivity
Vertical wavenumber

Optimum range of k_z for $h = 1$ m

[Cloude2009, Ch.8]
Vertical wavenumber

Optimum range of k_z for $h = 1.7$ m

[Cloude2009, Ch.8]
Results

• This study:
 – One date: 1-Aug-2006
 – 3 crop types (map):
 • Winter rape (yellow)
 • Corn (pink)
 • Winter wheat (orange)
Initial inspection: Coherence HH

Uncompensated MoCo in 2nd flight
$B=90\text{m. Coherence at all channels}$
B=90m. Phase at all channels (no topo)
Retrieval algorithm

• Direct model: RVoG, as in forests

• Inversion (steps):
 – 1st. Line fit for topography estimation (ϕ_0). 2 options:
 • Fit to the usual set of 8 coherences: linear, Pauli & optimum
 • ML algorithm with ESM [Ferro-Famil, IGARSS'09]
 – 2nd. Estimation of height. E.g:

 $$ h_v = \frac{1}{k_z} \left[\arg (\gamma_v e^{-j\phi_0}) + \eta (\pi - 2 \sin^{-1}(|\gamma_v|^{0.8})) \right] \quad \text{with} \quad \eta = 0.8 \quad \text{[Cloude2009, eq.8.38]} $$

• Data pre-processing: a priori knowledge of system coherence or decorrelation $\gamma_{sys} = 0.95$
Results: area
Results: topography (w.r.t. DEM)
Results: vegetation height
Results: vegetation height (fields)
Comparison with in-situ data: Rape

\[\bar{h} = 1.61 \text{ m} \]
\[\sigma_h = 0.22 \text{ m} \]
Difference < 9%

Height (cm)

175
172
170

In far range

\[\bar{h} = 1.76 \text{ m} \]
\[\sigma_h = 0.20 \text{ m} \]
Difference < 20%

Height (cm)

155
145
150

In near range

\[\bar{h} = 1.60 \text{ m} \]
\[\sigma_h = 0.24 \text{ m} \]

Height (cm)

NA

\[\bar{h} = 1.67 \text{ m} \]
\[\sigma_h = 0.25 \text{ m} \]

Height (cm)

NA
Comparison with in-situ data: Maize

$\bar{h} = 0.98 \text{ m}$

$\sigma_h = 0.31 \text{ m}$

Difference <10%
Comparison with in-situ data: Wheat

$\bar{h} = 1.06 \text{ m}$
$\sigma_h = 0.33 \text{ m}$

Difference < 28%

$\bar{h} = 1.31 \text{ m}$
$\sigma_h = 0.47 \text{ m}$

Difference < 40%
Summary of preliminary results

- Analysis at field level (if ground measurements are representative):
 - Rape:
 - Homogeneous estimates around true height
 - Near range: slight overestimation
 - Far range: slight underestimation
 - Ground-to-volume ratio depends on incidence angle
 - Maize:
 - Heterogeneous field, both in estimates and ground data (reality)
 - Right order for the estimates
 - Wheat:
 - Overestimation of height
Next steps…

- Analysis at point level, with coordinates of the ground measurements
- Extension to the rest of crop types in this site
- Influence of baseline and incidence angle, and MB approaches
- Study about the sensitivity w.r.t. ground-to-volume ratio
- Modified model: OVoG
- Time series of the observations or estimates..