Design Test Process in Component-Based Software Engineering: An Analysis of Requirements Scalability

Mariem Haoues, Asma Sellami and Hanêne Ben-Abdallah

FSEG, University of Sfax, Tunisia
ISIMS, University of Sfax, Tunisia
King Abdulaziz University, KSA
Outline

- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective
Problematic

- Building software that will satisfy Functional User Requirements (FUR) within the quality, time, and budget constraint is a challenge
- The complexity of software & the instability of FUR may cause
 - High development costs
 - Risk of software failures
- Researchers agree that Component Based Software Engineering (CBSE)
 - Cost reduction
 - Faster development
 - Software extension more easier (FUR Scalability)
 - Higher cost of testing phase and error detection
Objectives

- Improve the CBD model to decrease the effort at testing phase
- Propose a design test process: component testing, integration testing, and system testing
 - COSMIC Functional Size Measurement
 - Traceability matrix
- The proposed design test is illustrated using Communication Diagram (UML-CM) and Use Case Diagram (UML-UC)
COSMIC-ISO 19761

- COSMIC Functional Size Measurement –V 3.0.1

- Allow the quantification of any type of software (business, real-time, embedded, …) from user’s point of view
- Independent of any quality or technical criteria
- Free on the web: http://www.cosmicon.com/
CBD Model

Outline:
- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective

- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective
Software is decomposed into components (C1, C2, C3, and C4)
- A component encapsulates one or more functionalities

Outline:
- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective
A New CBD Model

Outline:
- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective

Diagram:
- FUR
 - Requirements Definition
 - Storage Components
- Design
 - Components Definition
 - Components Selection
 - Components created/selected
- Implementation
 - Validation test
- Deployment
 - Test
 - Component testing
 - System testing
 - Integration testing
Design Testing Process

- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective
Mapping COSMIC on UML-CM

Outline:
- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective

![Diagram of Mapping COSMIC on UML-CM](image-url)
Measuring the UML-CM

- The functional size of an UML-CM depends on the number of messages exchanged between:
 - Actors and objects
 - Objects and objects

\[
FSM \ (UML - CM) = FSM \ (event) + \sum_{i=1}^{n} FSM \ (m) + \sum_{j=1}^{m} FSM \ (cond)
\]

- FSM (UML-CM): functional size of the UML-CM
- FSM (event): FSM of the event (1 CFP)
- FSM (m): the functional size of a message (1 CFP)
- \(n \): the number of messages
- FSM (cond): the functional size of a condition (1 CFP)
- \(m \): the number of conditions
Traceability Matrix

<table>
<thead>
<tr>
<th>UML-UC elements</th>
<th>UML-CM elements</th>
<th>Name: Number</th>
<th>Actor</th>
<th>Message</th>
<th>Event</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seq</td>
<td>Cond</td>
<td>Res</td>
</tr>
<tr>
<td>Name: Number</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actor</td>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td>Pre-cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Include: use case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extend: use case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic flow</td>
<td></td>
<td>Number</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steps</td>
<td></td>
<td>Pre-condition</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td></td>
<td>Actor</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative flow</td>
<td></td>
<td>Number</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steps</td>
<td></td>
<td>Pre-condition</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td></td>
<td>Actor</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td></td>
<td>Number</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative flow</td>
<td></td>
<td>Actor</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steps</td>
<td></td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td></td>
<td>Number</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative flow</td>
<td></td>
<td>Actor</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steps</td>
<td></td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-functional requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The UML-UC diagram includes four UC
- View alarms
- View monitoring data
- Generate alarm
- Generate monitoring data

Every UC is detailed by a textual description

Every UC is represented by a UML-CM diagram

Use case <View Alarms>
Actors: <Monitoring Operator>
Pre-condition: <The monitoring operator is logged in>
NS /* Nominal scenario */
Begin
<1> <Monitoring Operator> <The monitoring operator requests to view the outstanding alarms>
<2> <System> <The system displays the outstanding alarms. For each alarm, the system displays the name of the alarm, alarm description, location of alarm, and severity of alarm (high, medium, low)>
End
AS /* Alternative scenario */
Begin <Emergency situation, begin at 2>
<2.1> <System> <System displays emergency warning message to operator>
End

Component Testing

FSM of UML-CM “View Alarms”

\[
FSM_{(UML-CM)} = FSM_{(view)} + \sum_{i=1}^{n} FSM_{(FP)} + \sum_{j=1}^{m} FSM_{(cond)}
\]

\[
1 \leq FSM_{CM_{(View Alarms)}} \leq FSM_{MaxUC_{(View Alarms)}}
\]

\[
1 \leq 4 \text{ CFP} \leq 5 \text{ CFP}
\]

- The absence of intra-component errors is verified
Integration Testing

FSM

- We suppose that “View Alarms” is the new component to be integrated
- Verify the possibility of integrated “View Alarms” component
 - Verify the FSM for UML-UC (FSM_{base} ("View Alarms")) and (FSM_{CM} ("View Alarms"), FSM_{CM} ("View monitoring data"), FSM_{CM} ("Generate alarm"), and FSM_{CM} ("Generate monitoring data"))
 - Check the compatibility using traceability matrix

<table>
<thead>
<tr>
<th>Component</th>
<th>FSM results</th>
</tr>
</thead>
<tbody>
<tr>
<td>"View Alarms"</td>
<td>1 CFP ≤ 4 CFP ≤ 5 CFP</td>
</tr>
<tr>
<td>"View Monitoring Data"</td>
<td>1 CFP ≤ 4 CFP ≤ 5 CFP</td>
</tr>
<tr>
<td>"Generate Alarm"</td>
<td>1 CFP ≤ 4 CFP ≤ 5 CFP</td>
</tr>
<tr>
<td>"Generate Monitoring Status"</td>
<td>1 CFP ≤ 4 CFP ≤ 5 CFP</td>
</tr>
</tbody>
</table>
Integration Testing

Traceability Matrix (1st level)

Outline:
- Introduction
- CBD Model
- Design Testing Process
 - Illustrative Example
- Conclusion & Perspective

<table>
<thead>
<tr>
<th>UML-UC</th>
<th>UMC-CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: View Alarms</td>
<td>"View Monitoring data"</td>
</tr>
<tr>
<td>Pre-cond: The monitoring operator is logged in.</td>
<td></td>
</tr>
<tr>
<td>Actor: Monitoring Operator</td>
<td></td>
</tr>
<tr>
<td>Action: Description</td>
<td>The monitoring operator requests to view the outstanding alarms.</td>
</tr>
<tr>
<td></td>
<td>The system displays the outstanding alarms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UML-UC</th>
<th>UMC-CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: View Alarms</td>
<td>"Generate Alarms"</td>
</tr>
</tbody>
</table>

Integration Testing

Traceability Matrix (1st level)
Integration Testing

Traceability Matrix (detailed level)

<table>
<thead>
<tr>
<th>UML-CM "View Alarms"</th>
<th>Name: Number "View Alarms": 1</th>
<th>Operator Request</th>
<th>Alarm Request</th>
<th>Alarm</th>
<th>Display Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Number</td>
<td>Monitoring Operator</td>
<td>Operator</td>
<td>S1</td>
<td>S.1.2</td>
<td>S.2.1 Display Info</td>
</tr>
<tr>
<td>Actor</td>
<td></td>
<td>Request</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-condition

Actor: Monitoring Operator

Description: The monitoring operator is logged in.

Basic flow

Action

Number 1

Pre-condition

Actor: Monitoring Operator

Description: The Monitoring Operator requests to view the outstanding alarms.

Alternative flow

Action

Number 2.1

Pre-condition

Actor: Monitoring Operator

Description: The system displays the outstanding alarms. For each alarm, the system displays the name of the alarm, alarm description, location of alarm, and severity of alarm (high, medium, low).

Alternative flow

Action

Number 2.1

Pre-condition

Actor: Monitoring Operator

Description: Emergency situation. System displays emergency warning message to operator.
System Testing

- System testing is used to verify that the system satisfy all FUR
- Check the correspondance between FSM (UML-CM) and FSM (UML-UC)

<table>
<thead>
<tr>
<th>Use Case</th>
<th>FSM using UML-UC</th>
<th>FSM using UML-CM</th>
<th>Formula (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Alarms</td>
<td>$1 \leq FSM_{base} \leq 5$</td>
<td>4 CFP</td>
<td>$1 \leq 4 \leq 5$</td>
</tr>
<tr>
<td>View Monitoring Data</td>
<td>$1 \leq FSM_{base} \leq 5$</td>
<td>4 CFP</td>
<td>$1 \leq 4 \leq 5$</td>
</tr>
<tr>
<td>Generate Alarm</td>
<td>$1 \leq FSM_{base} \leq 8$</td>
<td>4 CFP</td>
<td>$1 \leq 4 \leq 8$</td>
</tr>
<tr>
<td>Generate Monitoring Status</td>
<td>$1 \leq FSM_{base} \leq 6$</td>
<td>4 CFP</td>
<td>$1 \leq 4 \leq 6$</td>
</tr>
</tbody>
</table>
Conclusion & Perspective

- Introduction
- CBD Model
- Design Testing Process
- Illustrative Example
- Conclusion & Perspective
Conclusion

- Propose a design test process in CBSE
 - Component testing for intra-component errors detection using FSM
 - Integration testing for inter-component errors detection using FSM and traceability matrix
 - System testing for system defects detection using FSM

- A measurement interval between UML-UC and UML-CM is proposed
 - Identify modeling errors
 - Ensure the compatibility between these diagrams in terms of CFP

- Illustration through the “Emergency Monitoring System” case study
Perspective

- Further works
 - Apply the design test process on some real-word case studies to ensure its efficiency
 - Analysis of the FUR impact change in terms of functional size
 - Implement the proposed design test process
Thank you!

Mariem Haoues
Asma Sellami
&
Hanène Ben-Abdallah

e-mail:
mariem_haoues@yahoo.fr
asma.sellami@isimsf.rnu.tn
hbenabdallah@kau.edu.sa
Questions?