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Abstract: The ongoing SARS-CoV-2 pandemic demonstrates that the capacity of centralized clinical
diagnosis laboratories represents a significant limiting factor in the global fight against the newly
emerged virus. Scaling up these capacities also requires simple and robust methods for virus
diagnosis to be easily driven by untrained personnel in a point-of-care (POC) environment. The use
of impedance sensors reduces the complexity and costs of diagnostic instruments and increases
automation of diagnosis processes. We present an impedance point-of-care system (IMP-POCS)
that uses interdigitated electrodes surrounded by an integrated heating meander to monitor loop-
mediated isothermal amplification (LAMP) and melt curve analysis (MCA) consecutively in a short
time. MCA permits distinguishing false- from true-positive results and significantly raises the validity
of pathogen detection. Conclusively, the herein-developed miniaturized total analysis system (µTAS)
represents a powerful and promising tool for providing reliable, low-cost alternatives to standard
clinical diagnosis.

Keywords: point-of-care; impedance; virus detection; LAMP; melt curve analysis; microheating

1. Introduction

Since early 2020, the newly emerged severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has dominated the globalized world, pushing our healthcare systems to the
limit. Current detection for SARS-CoV-2 infection is routinely performed by specific nucleic
acid amplification tests (NAATs), using specialized equipment and trained personnel.
In this context, the method of reverse transcription-quantitative polymerase chain reaction
(RT-qPCRs) is considered the “gold standard”. For this purpose, total RNA is purified
from respiratory samples of potentially infected individuals and subsequently subjected to
RT-qPCR for viral RNA detection. Here, RT and PCR can either be performed consecutively
within a single tube and buffer (one-step assay), or sequentially in separate vessels with
optimal buffers for each reaction (two-step assays). Ideally, 3 to 4 h are required until the
diagnosis is finalized.
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In the current pandemic, significant limitations in standard diagnostics have emerged
worldwide, e.g., in the supply of sufficient quantities of appropriate nasopharyngeal swabs,
RNA extraction kits, or RT-PCR detection reagents.

To expand testing capacity, several new compact cartridge-based point-of-care (POC)
analyzers, originally developed for other indications such as meningitis, have been adapted
for SARS-CoV-2 detection [1].

The main advantage of these space-saving cartridge analyzers is that they combine
and automate nucleic acid extraction, purification, amplification, and detection in a (mostly)
self-explanatory RT-qPCR-like device [2]. Some platforms such as the Cobas SARS-CoV-2
8800 system (Roche Molecular Diagnostics, Pleasanton, CA, USA) even allow for high-
throughput automated screenings with a potential capacity of 1056 tests in 8 h [3]. However,
many of these new test devices are based on disposable cartridge systems designed for
single use. The fabrication of these cartridges is complex and cost-intensive, as it requires for
example functionalization of sensor surfaces or particles or the use of expensive labels [4,5].
Current market leaders such as Abbott ID NOW or Ceiphas GeneXpert use fluorescent dyes
that are activated by incorporation into double-stranded DNA (dsDNA) [6,7]. However,
as the acquisition and material costs of these devices are high, the corresponding POC tests
can only be offered by a few laboratories. In addition, these POCs (costs approx. EUR 200)
are currently used mainly at airports, where quick results are needed [8]. Consequently,
expensive equipment remains a major bottleneck of current testing and mass screening
strategies outside laboratory environments in general.

To overcome these limitations, other powerful methods of nucleic acid sequence-
specific tests, which do not require temperature cycling, have been developed in recent
decades. Referred to as isothermal amplification methods, these techniques vary in their
basic concept and have different merits and drawbacks. Their common features are rapid re-
action, operation at constant temperature, and independence of bulky, elaborate, and costly
equipment. For example, innovative experimental detection approaches derived from
the combination of clustered regularly interspaced short palindromic repeats (CRISPR)
and recombinase polymerase amplification (RPA) that are usually conducted at constant
temperature, ranging between 37 ◦C and 42 ◦C, were just recently introduced [9]. Assays of
Specific High-sensitivity Reporter unLOCKing (SHERLOCK) [10] and One-tube RT-RPA- DNA
Endonuclease-Targeted CRISPR Trans Reporter (OR-DETECTR) using Cas13 and Cas12a en-
zyme, respectively [11], seem to represent promising and future-orientated approaches for
pathogen detection. Nonetheless, in this special case, novelty can be seen as a disadvantage,
as there is currently no accurate data of mass validation and field trials.

Another PCR alternative that became popular as a NAAT outside laboratories is
known as loop-mediated isothermal amplification (LAMP). LAMP reactions are highly spe-
cific, and the detection limit is similar to that of a standard PCR due to the involvement of
4–6 specific primers targeting 6–8 distinct nucleic acid target regions. Unlike standard PCR
reactions, LAMPs are robust and tolerant of inhibitors allowing analysis of crude or mini-
mally processed input samples, thereby providing convenient and fast assay setups [12,13].
At a constant temperature of 65 ◦C, supplied by any heat source such as a water bath, this
“hyper-priming” on the target sequence driven by a strand-displacing DNA polymerase
takes place and leads to a high-speed exponential amplification in less than 30 min [14].
Subsequently, the amplification products can be visualized by a variety of methods, includ-
ing turbidity detection, real-time fluorescence detection (when used with LAMP fluorescent
dye), and pH-based colorimetric detection [15]. Besides that, other physical effects are
known that can be exploited to monitor pathogen detection techniques without the use of
labeling dyes or immobilization. The bulk electrical properties of suspended nucleic acids
were investigated by Ma et al. [16] using impedimetric sensors with regard to fragment
length, concentration, and denaturation. They characterized a droplet of DNA solution
with a two-electrode configuration without any immobilization on the electrode surface
and showed that the sensing electrode can distinguish between single-stranded (ss-) and
double-stranded DNA (dsDNA). Even earlier, a digital polymerase chain reaction system
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was presented [17] that consists of a microfluidic setup and interdigitated electrodes to
perform PCR and detect the amplification products by electrical impedance measurement.
The same method was used to perform real-time measurement of PCR inside a laboratory
thermal cycler [18]. Additionally, the denaturation of dsDNA can also be measured by
electrical impedance spectroscopy. It was reported that the execution of melt curve analysis
on impedance shows comparable results to experiments conducted on a qPCR cycler [19,20].
Unlike previously described methods for PCR monitoring, immobilized DNA strands on
the electrode surface were necessary to perform melt curve analysis.

In this context, we present an approach that provides rapid and efficient detection
of SARS-CoV-2 by melt curve analysis (MCA) based on virus-specific LAMP products.
Both LAMP and MCA are performed consecutively on passivated impedimetric sensors.
Thus, together with a temperature control module, a promising miniaturized total analysis
system (µTAS) for successful real-time application and impedance-based monitoring of
LAMP and MCA was developed (see Figure 1). Our approach opens up new opportunities
for innovative, cost-effective, and future-orientated NAAT-POCTs.
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Figure 1. Schematic drawing of the virus detection concept. The sensing element is an impedance
sensor 1© that consists of passivated interdigitated electrodes 2©, which are surrounded by a thermis-
tor and heating elements 3©. The capacitance measured by the impedance sensor is influenced by the
dielectric properties of the sample solution. The idea is to sense the configuration and concentration
of suspended nucleic acids 4© on the surface of the impedance sensor.

2. Materials and Methods
2.1. SARS-CoV-2 N Gene RNA Reference
2.1.1. PCR

PCRs were performed according to our earlier published protocol [21]. Different
dilutions of commercial plasmid 2019-nCoV_N_Positive Control (Integrated DNA Tech-
nologies, Coralville, IA, USA) were used as a template (100,000–100 plasmid copies),
together with T7-promoter containing primer T7-N1F (5′-TAATACGACTCACTATAG-
GGGACCCCAAAATCAGCGAAAT-3′) and the NotI-N2 reverse primer (5′-TATCATGACG
GCGGCCGCGCGCGACATTCCGAAGAA-3′) to amplify sufficient amounts of DNA cover-
ing a stretch of 944 bases of the viral N gene (coordinates: bases from 28,287 to 29,230 of the
Wuhan wildtype, GenBank ID: MN908947.3 [22]). Amplification products were separated
by 1% agarose gel electrophoresis, purified using the NucleoSpin Gel and PCR Clean-up
kit according to the provider’s instructions (Macherey-Nagel, Düren, Germany), pooled,
and the resulting DNA yield was determined by spectrophotometry using a Nanodrop
2000 device (Thermo Fisher Scientific, Waltham, MA, USA).

2.1.2. In Vitro Transcription and RNA Isolation

Subsequent in vitro transcription (IVT) was carried out with 2 µg of the purified N gene
amplicon using the TranscriptAid T7 High Yield Transcription Kit (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. IVT products were
purified using the Monarch Total RNA Miniprep Kit (NEB, Ipswich, MA, USA) according
to the manufacturer’s protocol. Optional DNase treatment was included and prolonged to
25 min. The concentration of the resulting RNA was determined by spectrophotometry.
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2.2. Accredited SARS-CoV-2 Reference Samples

In the Federal Republic of Germany, the INSTAND society has been appointed by
the German Medical Association as a reference institution for external quality assessment
(EQA). The versatile interlaboratory comparison program from INSTAND is accredited
in all representative specialist disciplines of laboratory diagnostics by the German Ac-
creditation Body (DAkkS) according to DIN EN ISO/IEC 17043:2010. Here, two crude
heat-inactivated cell-culture supernatants from SARS-CoV-2 INSTAND reference samples
were used along with mentioned IVT N gene RNA as an alternative for clinical patient
samples that were not available at the time of this study.

In advanced impedimetric LAMP experiments, the EQA sample 417010 contain-
ing a 1:2500 diluted thermally inactivated cell-culture supernatant derived from Beta-
CoV/Passau/ChVir21652/2020 (VOC B.1.1.7) was used as a reference for SARS-CoV-2-
positive specimens. As a negative control, EQA cell lysate sample 409040 was used. For this
SARS-CoV-2-negative sample, participants in EQA testing reported positive or questionable
results [23].

2.3. Mini-LAMP Assay

A WarmStart Colorimetric LAMP 2X LAMP kit with UDG and dUTP included in
the reaction master mix (E1804, NEB, Ipswich, MA, USA) was used for all experiments
presented herein. The oligonucleotide set for the detection of SARS-CoV-2 (Table 1) in-
cludes F3/B3, FIP/BIP, and FL/BL loop primers. The FIP and FL components further
incorporate 5′-biotine and FAM-labels, respectively, to enable additional lateral-flow dip-
stick (LFD) verification using the AMODIA DetectLine Basic kit (AMODIA Bioservice,
Braunschweig, Germany) [21,24]. Primers were ordered from Integrated DNA Technologies
(Leuven, Belgium).

Table 1. All SARS-CoV-2-related sequences used in this study.

Designation Sequence Genomic Coordinates:
(Bases from)

SARS-CoV-2
(GenBank ID: MN908947.3)

GACCCCAAAATCAGCGAAATGCACCCCGCATTACGT
TTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAATGGAG

AACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTT
TACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACAT

GGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAA
TTAACACCAATAGCAGTCCAGATGACCAAATTGGCTACTACCGAA
GAGCTACCAGACGAATTCGTGGTGGTGACGGTAAAATGAAAGATC
TCAGTCCAAGATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGC
TGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTGCAA
CTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAAT
CCTGCTAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAACAAC
ATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGGCAGTCAAG
CCTCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCA
ACTCCAGGCGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCA

ATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACC
AGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAGGCCAA
ACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAA
AACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGT
GGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGAC
AAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCA

GCGCTTCAGCGTTCTTCGGAATGTCGCGC

28287 to 29230,
(N gene)

SARS-CoV2-1.F3 ATGACCAAATTGGCTACTAC 28515–28534

SARS-CoV2-1.F2 TTCGTGGTGGTGACGG 28554–28569
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Table 1. Cont.

Designation Sequence Genomic Coordinates:
(Bases from)

SARS-CoV2-1.FL FAM-CCATCTTGGACTGAG 28597–28583

SARS-CoV2-1.F1c AGCTTCTGGCCCAGTTCC 28630–28613

SARS-CoV2-3.B1c CAAAGACGGCATCATATGGG 28651–28670

SARS-CoV2-3.BL ACTGAGGGAGCCTTGA 28676–28691

SARS-CoV2-3.B2 GGATTGCGGGTGCCAATGTG 28726–28706

SARS-CoV2-3.B3 AGCACGATTGCAGCAT 28749–28734

SARS-CoV2-1.FIP Biotin-AGCTTCTGGCCCAGTTCCTTCGTGGTGGTGACGG 28630–28613;
28554–28569

SARS-CoV2-3.BIP CAAAGACGGCATCATATGGGGGATTGCGGGTGCCAATGTG 28651–28670;
28726–28706

2.4. Procedures

Prior to the experiments, chemicals were allowed to adapt to room temperature for
45 min. After cleaning the sensors in an ultrasonic bath with 70% ethanol inside the reaction
chambers, the sensors were rinsed with deionized (DI) water and dried with N2. LAMPs
were carried out according to the manufacturer’s protocol, except that 40 mM guanidine
hydrochloride was added. The reaction mix was filled into the reaction chambers and
incubated at room temperature for 5 min. Subsequently, a temperature of 65 ◦C was applied
by the sensor-controlled heating ability (see Section 3). The colorimetric mix was used
to validate the success of the amplification by optical inspection, as the included phenol
red indicator initially shows pink (pH 8.2–8.6) and should turn yellow during a successful
LAMP reaction. This switch of color is initiated when nucleotides are incorporated into the
3’ end of nascent DNA products by releasing protons, which results in a remarkable pH
drop (below pH 7) [15].

Melt curve analysis (MCA) was carried out by executing impedance measurements
at temperatures from 65 to 100 ◦C in steps of 0.25 ◦C. The acquisition of one impedance
measurement took around 15 s; therefore, the speed of temperature change was 1 ◦C/min.
The theoretical melting temperature Tm of the SARS-CoV-2 amplicon was calculated with
the online tool uMelt [25] using the Unified SL model.

For laboratory measurements, an impedance analyzer (HP 4192A), together with Ana-
log Devices ADG1207 multiplexers, was used to perform the impedance measurements,
as well as to validate the measurements made by our µTAS. The calculation of the capaci-
tance was performed by assuming an equivalent parallel R-C circuit using the equation.

C = − 1
2π f Z sin θ

(1)

An overview of this experimental laboratory setup is provided in Figure 2. Addi-
tionally, to the described temperature control system and the impedance measurement,
it shows the reaction chambers, which are realized by gluing a half-cut PCR tube strip to
the impedance sensor and the corresponding cap strips for a hermetic enclosure. On the top
of the caps, an aluminum plate was placed as a heating block to prevent any condensation
of sample solution on the caps.
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Figure 2. Overview of the experimental laboratory setup. The temperature control system was used
to set the desired temperature for the sample solution. An impedance analyzer was used to measure
the impedance of the sensor via a multiplexer IC ADG1207. A heated aluminum block prevents
condensation of the sample solution on the PCR tube caps.

2.5. Fabrication of the Packaged Sensors

The impedance sensors were fabricated inside a class 1000 clean room. A 5 nm TiW
adhesion layer and 175 nm gold were deposited on quartz glass substrates (150 mm wafer).
The metal was structured by a lithographic etching process and then tempered. A 2 µm
thick polyimide layer was deposited on the top of the structured metal as a passivation
layer. The sensors were packaged in a sensor-on-hole configuration on a flexible printed
circuit board (FLEX-PCB) [26]. The developed flexible packaging provides both electrical
connectivity and hermetic encapsulation of the sensor. To provide reaction vessels, a PCR
tube strip was cut in half, the upper part was glued onto the hole of the FLEX-PCB. PCR
tube strips are usually made of polypropylene, which has unfortunately poor adhesion
properties. Pretreatment with Loctite SF 770 primer solution and gluing with Loctite
424 ethyl-based instant adhesive produce acceptable hermetic sealing properties for at least
three consecutive experiments. In initial iterative experiments, we managed to reduce the
required reaction volume of the sample solution from 50 µL initially to 35 µL (data not
presented in this paper).

3. Results and Discussion
3.1. Newly Developed Sensors

Impedance sensors with different geometries were fabricated (Figure 3). From the
center to the outside, a sensor consists of a reference electrode (dark color), two comb-like
electrodes, a thermistor, and a heating meander. Only the reference electrode, the bondpads,
and a sawing line on the chip edge are not covered by the polyimide layer (indicated by
the darker color in Figure 3). The distance between the electrode fingers varied between
6, 10, and 50 µm. The resistance of the thermistor was used as a measure of the temper-
ature. A current was applied to the heating meander to increase the temperature of the
sensor. The impedance was measured between the two comb-like electrodes. The reference
electrode, in the center, was implemented just in case the sensors will be used for other
applications in the future.

COMSOL Multiphysics was used to calculate the capacitance for the different geome-
tries in air and in contact with various liquid media. The model consists of a multilayered
stack having a glass substrate, electrodes, a passivation layer, and the medium above this
passivation. Figure 4a shows the electric potential in a cross-sectional view between two
neighboring electrode fingers in water. The white lines represent the streamlines of the
electric field, and their thickness corresponds to the magnitude. It can be seen that the
majority of the electric field energy is accumulated inside the substrate and the passivation
layer, as their dielectric constant is small compared to water (glass = 4.2, polyimide = 3.6,
and water = 80). However, the capacitance of the sensors is still influenced by the dielectric
properties of the above media, especially if the thickness of the passivation is smaller than
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the electrode finger gap. In this case, the passivation layer was 2 µm thick. By assuming
ε = 100 for 1% DNA solution [16], the full-scale change (FSC) for different geometries
was calculated (see Figure 4b). Effectively, the wider the electrode gap, the higher the
FSC, but the lower the capacitance, which makes it harder for the readout electronics to
measure such small changes in the capacitance. Our microcontroller-based readout method
measures a capacitance change of 10 fF. Nevertheless, from previous studies, we know that
a base capacitance value of >10 pF is required for a stable measurement [27].
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Figure 3. Impedance sensor. From the center to the outside of the chip, the structures in the gold
layer are visualized: a reference electrode, two interdigitated electrodes, a temperature resistor, and a
heating meander. The darker color visualizes areas that are not covered by the polyimide passivation
(yellow), such as the reference electrode and the bondpads.
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Figure 4. (a) Visualization of the electric potential and the streamlines of the electric field (white)
in water. The graph shows a cross-section through the chip between two electrode fingers. One
is grounded (blue) and the other one at a potential of 1 V (red). (b) The simulated values for the
capacitance of the three geometry variants are shown. From the capacitance in water and 1% DNA
solution, the expected full-scale change was estimated.

3.2. Description and Validation of the Temperature Control System

The designed system to conduct the experiments is shown in Figure 5. The system is
powered by a 12 V source (e.g., in a car’s cigarette lighter). It can handle and measure eight
impedance sensors simultaneously. Figure 5b shows a FLEX-PCB with eight reaction vessels
connected to the system. For each channel, there is a temperature measurement provided
by the thermistor of the impedance sensor (Rtemp in Figure 5a). Together with Rref, it builds a



Biosensors 2022, 12, 261 8 of 17

resistive voltage divider, where the voltage is dependent on the resistance of the thermistor
and therefore the temperature of the sensor’s surface. An 8-channel 16-bit SAR ADC (Texas
Instruments ADS8332) compares this voltage to the 2 V reference voltage of a linear voltage
regulator and transfers the reading to the microcontroller (STM32L476RG) via the SPI
protocol. The microcontroller features eight timer controllers used to generate a PWM timer
signal for each channel. The PWM signal, together with a MOSFET, adjusts the current
through the heating meander of the impedance sensor. The temperature measurement
was calibrated by placing the system in an incubator and measuring the ADC reading
for each channel at different temperatures of 25, 40, 55, and 70 ◦C. A PID algorithm was
used to calculate the duty cycle for the PWM and therefore the heating current from the
ADC reading to control the temperature of the sensor’s surface. Prior to the experiments,
the calibration data were loaded onto the microcontroller, and a Python framework [27]
was executed to perform instrument control and data acquisition from a PC.
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Figure 5. Temperature control system. (a) Block diagram. The temperature control is realized
by three components. Temperature measurement is performed by ADC with the resistive voltage
divider between Rref and the thermistor Rtemp. Heating current calculation is performed by the
microcontroller (µC) with a PID. Current through the heating meander Rheat is controlled by the Timer
PWM and the MOSFET. A UART interface enables instrument control and data acquisition through a
PC. (b) Photograph. The orange FLEX-PCB incorporates 8 impedance sensors in a sensor-on-hole
packaging. A half-cut PCR tube strip is glued onto the PCB. The white PCB is the Nucleo evaluation
board of the STM32L476RG.

The microcontroller features a touch-sensing controller that has been used as a mea-
surement engine for these types of sensors in previous projects. It utilizes the charge-transfer
method for the measurement of the sensor capacitance. Only one external component (Cref
in Figure 5a) is needed [27,28].

The temperature control concept was tested by recording the ADC readings via the
serial interface from the microcontroller (see Figure 6). The temperature set point started at
75 ◦C and was increased by 0.5 ◦C every 5 s. The response time of the control is lower than
the data acquisition interval of 100 ms. The temperature stability is good and around 0.2 ◦C.

A heatable aluminum plate was placed over the caps to prevent the condensation of
liquid on the caps of the tube strip. During the experiment, the temperature of this plate
was controlled to the same set value. A 35 µL volume of DI water was added to the reaction
vessels, heated, and kept at a constant temperature of 65 ◦C. After two hours, 35 µL was still
present inside the vessel. The loss due to evaporation can be neglected, and a hermetically
sealed vessel can be assumed. These results are encouraging because errors induced by
any evaporation effect of the LAMP mix on the impedance could be ruled out.
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Figure 6. Recorded ADC readings from the temperature control system (Figure 5) for a given
temperature set point (red). The data were recorded every 100 ms. A 0.5 ◦C change needs a response
time of less than 100 ms. Despite single measurement deviations, the fast PID update timer stabilizes
the temperature control inside an interval of 0.1 ◦C.

3.3. LAMP Reaction

To select the optimum measurement parameters, first, a frequency spectrum of the
impedance data was acquired in the range from 10 to 400 kHz with a sinusoidal voltage
stimulus of 0.3 V amplitude. As the impedance sensor can be modeled as a parallel RC
circuit, for high frequencies, the capacitive contribution to the impedance is predominant.
It was chosen as the dielectric constant was supposed to be linked to the DNA configuration.
The measurement was performed with 400 kHz as the maximum frequency. This represents
the highest possible measurement frequency of the touch-sensing controller integrated into
the microcontroller, used to develop a point-of-care (POC) demonstrator. The experiment
was carried out in parallel on impedance sensors with different electrode distances. Figure 7
shows the spectra for the 6 µm sensor (Figure 7a), 10 µm sensor (Figure 7b), and 50 µm
sensor (Figure 7c). The color indicates the temporal evolution from 0 min (brown) to 35 min
(green) in steps of 5 min. The buckling of the data near 30 kHz results from a switch in the
current measurement range by the impedance analyzer. Overall, the impedance decreases
with time, but the maximum impedance change is observed for the 50 µm sensor. A purely
capacitive behavior is represented by a straight line in the logarithmic impedance plot and
a phase angle of −90◦. This is solely the case for frequencies higher than 50 kHz with the
50 µm sensor (see Figure 7c). For smaller gap values, there is a negative resistive part of
the impedance.

In this case, the heating meander acts as an additional electrode. As the voltage at the
heating meander (5 V) is higher compared to the stimulating AC voltage of the impedance
measurement (0.3 V), the current from the heater to the electrode decreases with increasing
AC voltage. Current transport is provided by the polyimide passivation. As reported
in the literature [29], wet polyimide causes leakage currents in the presence of a high
concentration of ions. The increased resistive part of the impedance at lower frequencies
is also caused by this leakage current. Especially for smaller distances of the electrode
fingers and for lower frequencies, the conductivity of the wet polyimide contributes to the
impedance. By analyzing the Nyquist plots of the measurements in Figure 8, it can be seen
that the impedance change can be mainly reasoned by a change in the imaginary part of
the impedance, which is represented by the capacitance of a parallel RC circuit.
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Figure 7. Impedance spectra of (a) the 6 µm sensor, (b) 10 µm sensor, and (c) 50 µm sensor for a
SARS-CoV-2 RT-LAMP reaction in a Bode plot, which shows impedance (top) and phase (bottom)
versus frequency. Impedance spectra are plotted from the start of the reaction 0 min (brown) until
35 min (green) in steps of 5 min. Impedance is decreasing with time. Current measurement by
the impedance analyzer undergoes a range switch at around 30 kHz, which results in a buckling
curve. Negative resistance contribution in frequencies higher than 30 kHz can be explained by a third
electrode (heating meander).
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Figure 8. Nyquist plots of (a) the 6 µm sensor, (b) 10 µm sensor, and (c) 50 µm sensor measurement
of a SARS-CoV-2 RT-LAMP reaction. Impedance spectra are plotted in steps of 5 min from the start of
the reaction 0 min (brown) until 35 min (green). The change in the impedance is mainly happening in
the imaginary part of the impedance. Assuming the sensor to be modeled by a parallel RC circuit,
the capacitive contribution to the impedance change is therefore dominant. Changes in the dielectric
constant are measured by this impedance analysis using interdigitated electrodes.

The idea behind the sensing concept is to look at the change in the dielectric prop-
erties, which can be extracted from the measured capacitance of the passivated sensor.
These results show that at sufficiently high frequencies, this concept is valid. Capacitance
values were calculated from these results and are shown with the time-dependent change
of impedance and phase in Figure 9. for both frequencies of 25 and 400 kHz. The de-
ployed impedance analyzer exhibits a fairly high error of 1% and an acceptable error of
0.4% for 25 kHz and 400 kHz, respectively. Effectively, the impedance analyzer measures
the current response from a voltage stimulus. The lower the frequency, the higher the
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impedance, the lower the current, and the lower the measurement accuracy. Therefore,
400 kHz was chosen as the optimum frequency for both the impedance measurement in
the laboratory and for the microcontroller-based capacitance measurement used in the
miniaturized total analysis system (µTAS). Previous reports have shown that impedimetric
sensors with 10 pF capacitance can be measured with good accuracy using a touch-sensing
controller [30]. Although the results at 25 kHz show a higher full-scale change (FSC) for all
measured quantities, the higher frequency was chosen for accurate capacitance measure-
ment. The capacitance part of the impedance is below 1 pF, which is hard to measure with a
high-precision impedance analyzer, but even harder with a microcontroller-based readout.
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Figure 9. Real-time monitoring of RT-LAMPs targeting SARS-CoV-2 reference RNA and time-
dependent data collection of (a) impedance, (b) phase, and (c) capacitance at 25 kHz and
(d) impedance, (e) phase, and (f) capacitance at 400 kHz versus time. In the value sequence of
the results, three phases can be identified: an initial constant value, an exponential change, and a
saturation. The same behavior is observed for qPCR measurements. For small finger distance (6 µm
and 10 µm sensor) and high frequency (400 kHz), the signal change is purely capacitive (phase
constant in (e)) and measurable by the used equipment (impedance < 100 kΩ, C > 9 pF).

During the LAMP reaction, an increase in capacitance was observed, and the measure-
ment curve is similar to characteristic curves from qPCR measurements [21]. After an initial
equilibrium phase with a stable measurement value, the exponential growth starts (in this
case, after 10 min) and reaches saturation after a short time. Presumably, during the LAMP
reaction, a change in the dielectric constant occurs as single dNTPs get incorporated into
the nascent cDNA. In theory, the presence of dsDNA leads to an increase in the dielectric
constant [31]. The dissolved DNA is a negatively charged polyanion, and counterions are
accumulated on the negative charge positions. As these counterions can travel along the
backbone of the DNA molecule, it is induced to form a strong dipole in an electric field.
The dipoles of the DNA base pairs do not contribute to the dielectric properties of the
medium, as they are complementary and cancel each other.

The capacitive full-scale change of the LAMP reactions surpasses the expectations
derived from the simulated values. With more reasonable assumptions, the simulation
could be improved by specifying the dielectric constant in more detail. The initial LAMP
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Master Mix has a lower dielectric constant due to the replacement of H2O molecules by
other ingredients.

The high ohmic proportion of the impedance can be reasoned by the use of the
ADG1207 multiplexers, which exhibit an extremely low charge injection of 0.5 pC but a
high on-resistance of up to 300 Ω. Regarding the selection of the sensor’s geometry, for the
following experiments, the 6 µm sensor was used, as it showed the highest capacitance
value. Compared to the 50 µm sensor, which shows an FSC of around 20%, the 6 µm sensor
reaches an FSC of 9% (compare Figure 9f), which still delivers a good signal-to-noise ratio
for these measurements.

To prove the capability of this measurement to quantify the nucleic acid target from
the LAMP monitoring, LAMP reactions with different sample concentrations of 160, 16,
and 4.6 pg/µL were performed on these sensors. Figure 10a shows that for lower concen-
trations, the reactions start to reach exponential growth at a later point in time. A statistical
analysis of all LAMP experiments conducted on capacitive sensors is shown in Figure 10b.
The full-scale change is located between 1% and 5% for the 6 µm sensor and 17% for the
50 µm sensor. All experiments shown in this graph were performed with a virus concen-
tration of 160 pg/µL, and the x-axis shows the time when the exponential increase of the
signals starts to be recorded.
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Figure 10. (a) Monitoring of SARS-CoV-2 RT-LAMP reactions deploying different target concen-
trations. The capacitance data has been normalized to improve comparison of the rise time. For
less concentrated samples (lower viral copy number), the LAMP reaction starts at a later point in
time. (b) Distribution of results (x-axis: rise time, y-axis: full-scale change of the capacitance) for the
performed amplification experiments on impedance sensors.

3.4. Melt Curve Analysis

After the LAMP reaction was completed, the heating control was turned off. Once
room temperature was reached, the remaining sample solution was checked by pipetting,
and the color change of the colorimetric buffer was noted. In the case of a positive reaction
and a negligible volume loss, MCA was then performed by closing the caps, placing the
aluminum heating block, and then heating the sensor from 65 to 100 ◦C in steps of 0.25 ◦C.
At the end of each step, the capacitance of the sensors was measured. After this ramp,
heating was turned off, and after cooling down to room temperature, the remaining reaction
volume was repeatedly checked. For the data analysis, the results were smoothed by the
Savitzky–Golay filter method with 25 data points and plotted against the temperature.
The negative first derivative was calculated by OriginLab data analysis software.

As a reference, MCA was compared to parallel-conducted experiments, and results
were obtained using a qPCR cycler (Figure 11). On the qPCR cycler, the SARS-CoV-2
amplicon showed a Tm of 88.25 ◦C, which is comparable to the value predicted by uMELT
(88.25 ◦C), while the nontemplate control displayed no Tm value. Analogously performed
impedimetric measurement results are shown in Figure 12.
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Figure 11. Melt curve analysis of a SARS-CoV-2 RT-LAMP product executed by a qPCR cycler
(positive control, PC; nontemplate control, NTC) compared to the theoretically predicted melt curve
by uMELT.
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Figure 12. (a) Capacitance change measured for parallel experiments of three SARS-CoV-2 LAMP
amplicon positive controls (PC, red) and one negative template control (NTC, black) using the 6 µm
sensor and the impedance analyzer at 400 kHz. As the sensors exhibit different base capacitance
values, data are shown by the change in C referred to as the capacitance value at 70◦C. (b) Mean value
of the derivation of the 3 PC curves in (a) with the standard deviation (error bars). The experiment
exhibits good reproducibility between 70 and 100◦C. The capacitance decrease, which corresponds to
denaturation, is identical to the expected theoretical Tm value of 88.25 ◦C (see Figure 11).

Three MCA experiments were performed simultaneously on three different 6 µm
impedance sensors using the SARS-CoV-2 LAMP amplicon sample. Figure 12a shows the
capacitance change for the three equivalent sensors compared to a non-template control
(NTC). As the sensors exhibit different base capacitance, the data are shown by the change
in capacitance referred to as the capacitance value at 70 ◦C. Since data progress between 70
and 100 ◦C is similar, good reproducibility is proven. As expected, MCA of the nontemplate
control exhibited no detectable value at all, as no amplification was observed, while all
investigated amplicons of the SARS-CoV-2 RNA template were detected correctly. Thus,
the method can discriminate between positive and negative samples.

As can be seen in Figure 12b, which displays the mean value of the negative derivative
of the three curves with the standard deviation (error bars), there is an initial decrease in
capacitance at 85 ◦C that can be traced back to the denaturation of the amplicon, and an
increase in capacitance at 90 ◦C is observed. The maximum decrease in capacitance is at
88.25 ◦C, while the maximum increase in capacitance is at 92.5 ◦C.

Both a decrease at 88.25 ◦C and an increase at 92.5 ◦C were observed for the MCA
with the SARS-CoV-2 amplicons for all three experiments. However, the latter extreme
value was not visible in the MCA analogously performed on a qPCR cycler (see Figure 11).
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There are several aspects during the denaturation of cDNA that contribute to a change in
the dielectric constant of the sample solution. An increase in capacitance can be explained,
e.g., by the breakup of nucleic base pairs. This leads to an additional dipole contribution
by the nucleic acid bases. A decrease in capacitance could be reasoned by the fact that
single-stranded nucleic acid has a smaller polarization moment than double-stranded one.
The different points of temperature might be related to the necessity of a reorientation
of the strand. However, the dipole properties of nucleic acids are also dependent on the
distribution of the four different nuclei bases, which have a huge impact on the geometric
orientation of the strands. Simulations of these folding mechanisms might be required
to fully understand the capacitive measurements during MCA. Additionally, impedance
investigation of MCA on other RNA sequence amplicons might also reveal the underlying
mechanisms of the different processes. However, the absence of any capacitance changes in
the melt curve of nontemplate controls shows that the main idea of distinguishing between
positive and false-positive amplicons is possible by capacitive measurement.

During denaturation, the cDNA, which is generated by the LAMP reaction, is sepa-
rated into ssDNA. The denatured ssDNA does not contribute to the total dielectric constant
of the medium in the same portion as dsDNA. Therefore, a melt curve should be charac-
terized by a decrease in the impedance, which is in line with previous studies [19,20,32].
In these earlier studies on impedimetric MCA, immobilization of DNA strands onto the
surface of an impedance sensor was necessary to identify the Tm value [19,20]. It is worth
underlining that in this work, melt curve analysis was conducted without any require-
ment for functionalization/immobilization of RNA or DNA on sensor surfaces or particles.
The impedimetric sensors enable obtaining with good precision the Tm of the suspended
dsDNA in the LAMP product.

3.5. Transfer to a Microcontroller-Based Readout System

Figure 13 shows the development of a POC demonstrator based on an impedimetric
sensor for the virus detection using the combined LAMP and MCA processes. To facilitate
the use of the system by the operators, the prototype was extended by a Raspberry-Pi-
powered user guidance interface.
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Figure 13. The developed and fabricated demonstrator features (a) PCB with the components of the
prototype system (see Figure 6a) and the sensor FLEX-PCB. It is part of (b) a housing unit with a
display and a rotary encoder to guide the user through the steps of sample preparation and extract
the results.

The display guides the user through the necessary steps to be performed, starting with
the preparation of the mixture, the heating, and the readout of the LAMP reaction results
first and MCA reaction results afterwards.

SARS-CoV-2 RT-LAMPs and subsequent MCAs were repeated using this improved
demonstrator. The 6 µm sensor was used, as it exhibits a capacitance higher than 10 pF at
the TSC measurement frequency. For this experiment, the EQA sample 417010 containing
an Alpha VOC cell-culture specimen was used as a positive control (PC) for SARS-CoV-2.
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The virus-free cell lysate sample 409040 that demonstrated false-positive results in multiple
gold-standard RT-PCR assays, as reported by INSTAND, was used as a negative control
(NC). Both crude samples were diluted 1/10 before using them as templates in impedi-
metric and colorimetric RT-LAMP, followed by lateral-flow dipstick analysis (LAMP-LFD
assays). Figure 14 shows the results of the LAMP reaction (Figure 14a) and subsequent
MCA (Figure 14b). The touch-sensing controller (TSC) of the used STM32L476 is sensitive
enough to measure the process of the LAMP reaction and monitor the capacitive change
versus time. The accuracy is lower compared to the impedance analyzer results, but the
outcome is comparable. The full-scale change (FSC) is at 3%. Data of the MCA were
smoothed using a Savitzky–Golay filter. The negative derivation of the smoothed data
reveals a maximum loss in capacitance at 88.25◦C for the PC sample, which is consistent
with the obtained melting temperature from earlier qPCR cycler control experiments (see
Figures 11 and 12), as well as theoretically predicted Tm by uMELT. The capacitance in-
crease obtained from the impedance analyzer measurement cannot be resolved by the TSC
measurement. For the EQA 409040 NTC (red line in Figure 14b), no capacitance change was
observed. As the primer set used (Table 1) includes Biotin- and FAM-labeled primer compo-
nents, LFD analysis was additionally carried out at the end and successfully demonstrated
the correctness of our LAMP and MCA impedimetric measurements (Figure 14c).
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Figure 14. (a) LAMP reaction and (b) MCA on a 6 µm sensor of 1/10 dilutions of crude SARS-CoV-2-
positive Alpha VOC sample EQA 417010 (BetaCoV/Passau/ChVir21652/2020, black) and EQA
virus-free sample 409040 (NC, crude cell lysate, red) measured by the touch-sensing controller of the
STM32L476 on the demonstrator PCB. Unlike observed for the 417010 positive control, the negative
reference sample 409040 does not feature any capacitance changes. (c) Final verification of LAMP
and MCA results by lateral-flow dipstick analysis. C = internal dipstick control line, T = SARS-CoV-2
positive test line.

4. Conclusions and Outlook

A two-stage impedimetric POCT system for the detection of pathogens was success-
fully developed (IMP-POCS) and demonstrated on pandemic-causing SARS-CoV-2 and
the descendant Alpha variant of concern. During the first stage of this novel approach,
pathogenic target nucleic acid is detected by monitoring a (reverse transcription-, RT-)
LAMP process with target-specific primers immobilization free on the impedance sensor.
The resulting measurement provides a (RT-) LAMP reaction readout and endpoint detection
in real-time (e.g., Figure 9). The results are similar to those accomplished with professional
laboratory thermal cyclers used for classical qPCRs. Importantly, there is no actual need
for intensive upstream sample preparation (e.g., RNA extraction). In the second step,
the LAMP product is then analyzed by MCA (see Figure 12). As different temperatures
(up to 95 ◦C) can be run, practically any kind of other potential future POCTs is enabled,
for example, promising CRISPR/Cas-RPA assays that require other, lower permanent
thermal conditions, e.g., 37 ◦C [9]. Thus, the safety advantage of an “unopened” one-
vessel, one-step test such as for gold-standard clinical analysis and diagnosis is maintained.
Any potential incorrect LAMP amplicons, such as self-amplified primer conglomerates,



Biosensors 2022, 12, 261 16 of 17

etc. [33,34], can be distinguished from correct (e.g., viral) target-induced specific LAMP
products by MCA [35]. The specificity of the LAMP amplification, as verified by the
impedimetric results of the MCA, was conclusively confirmed by lateral-flow dipstick
(LFD) chromatography. With this increase in the validity of LAMP reactions, the presented
concept delivers a robust and cost-effective method for future NAAT-POCTs. It is plausible
that this method could also be used for the quantification of the virus load (see Figure 12a).
Of note, this new combined LAMP and MCA impedance sensor, in contrast to cartridge an-
alyzers, neither requires the complicated functionalization of electrode surfaces [4], nor the
use of fluorescent dye labeling or other nanomaterial particles, thereby saving costs and
labor time in general.

Compared to existing impedance studies on amplification or denaturation processes [16–20],
this research does not rely on electrical contact between the sample solution and the bare metal
of the sensing electrodes. As the sensing electrodes are not directly in contact with the
sample, it might be a promising solution to make the passivation layer interchangeable.
The impedance sensor in that case could be reused and therefore costs per test would
be decreased. In the end, this first experimental “out-of-the-box” demonstrator proto-
type for impedimetric LAMP assays managed to successfully “mimic” real-time qPCR
and MCA results for SARS-CoV-2 variant-resistant detection that are usually achieved in
professional laboratories.
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