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Abstract 
Aircraft Data Network (ADN) is a data communication developed specifically for the 

aircraft environment. Such environment requires data communication system that can work in 
real-time and has a high level of reliability. One of the standards in ADN is Avionics Full-Duplex 
Switched Ethernet (AFDX) based on the ARINC 664 specification being data communication 
standard for ADN utilizing IEEE 802.3 standard on physical layer 1 and 2. There are some 
challenges to implement the standard on the component of COTS By utilizing Linux-based 
embedded systems. The features designed and implemented in this paper are the switching and 
fault tolerant data components of ARINC 664. From the tests obtained, there are several results 
showing that ADN functional features can be implemented and can simulate ADN mechanisms 
including fault tolerant capabilities. However, there are performance limitations exemplified by the 
obtained average jitter value of 3380 microseconds not meeting the requirements for aircraft use 
required to have the range of 500 microseconds. 
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1. Introduction 

Started from 1988 to the most recent implementation on Airbus A320 aircraft, the aircraft 
industry has switched to an all-electronic fly-by-wire system. Aircraft is fully controlled using 
electrical signals and no longer utilizing mechanical signals. Moreover, aircraft employs a real-
time system requiring reliable data communication between the avionics subsystems in the 
aircraft. Boeing began developing and introducing a full Aircraft Full Duplex Switched Ethernet 
(AFDX) platform that is implemented based on the ARINC 664 standard specification using IEEE 
802.3 (Ethernet Commercial Off The Shelf (COTS)) components on the physical layer and data 
link layer [1]. 

In the case of special engineering such as aircraft, the problems encountered in the 
development of aircraft technology are the duration of development time and the amount of fund 
required for carrying out related research. The use of Ethernet as a component of COTS will save 
time and development costs because Ethernet compliant with the IEEE 802.3 specification 
standard itself is already a mature technology and continues to grow since 1970 and continues to 
be developed to present time [2]. However, designing a system that only capitalizes the COTS 
component to achieve a deterministic performance according to real-time system requirements 
can present a challenge. A situation needed to be proven by this study.  

The functional feature that will be selected to be implemented in COTS for aircraft data 
network is data switching serving to forward data from the sender to the receiver at a particular 
address deterministically [3][4]. The deterministic nature of the functional data switching is defined 
as: 
1. A network having a jitter value of <500 microseconds to ensure almost zero delay variance. 
2. Having latency value of <150 Ms. 
3. Limiting package receive meeting frame filtering rules and ensuring all data transmissions 

completed on paths and destinations defined by the traffic policing rules. 
In addition to the deterministic switching data feature, there is also an analysis of fault 

tolerant feature implementation which is one of the requirements on real-time system in an 
environment required a high level of safety. 

This paper describes the study and implementation to design Aircraft Data Network 
platform based on real-time system utilizing Embedded PC based on Linux as COTS component. 
This platform should meet ADN standard employing ARINC 664 specification. The stages include 
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software and hardware designing and developing in accordance with the needs of the system 
before finally tested to conclude the system made entirely with the COTS component can meet 
the deterministic network properties expected by Aircraft Data Network (ADN). In systems 
implemented in the ADN scope, a deterministic network is required, so the designed switches 
must be able to handle frame filtering, traffic policing and of course fault tolerant functions to 
ensure that all data frame transmissions on the system are running deterministically. 
 
2. Research Method 

The research was started by carefully studying ARINC 664 standard features to be 
utilized to establish aircraft data network system. There were some relevant standards employed 
in this study as a reference of aircraft data network [1]: 
1. The application of ARINC 664. ARINC 664 is a communication standard created to meet the 

needs of the modern aircraft industry requiring high bandwidth for data connections between 
subsystems. Moreover, it uses minimal cable connections to reduce aircraft load. This has not 
yet been achieved by its predecessor, ARINC 429. In a system having many end points like 
an Airbus, the unidirectional use of point-to-point data buses becomes extremely ineffective. 
This is a weakness of ARINC 429, having a standard requiring a lot of cabling that will increase 
the load of aircraft. On the other hand, ARINC 664, implementing Ethernet usage, can use 
switching techniques to meet the same infrastructure needs, with much less cabling. 

2. The application of virtual link. AFDX uses the concept of a virtual link to replace the 
unidirectional bus connection concept used by the previous standard, ARINC 429. Using 
virtual links, multiple point-to-point connections were made in the network without the need for 
physical cables for each link. Thus, minimum cabling on an aircraft can be managed. Since 
networks on AFDX are profiled, addressing and bandwidth requirements for each VL must 
also be initially determined. In its physical topology, AFDX consists of 3 components, namely 
Avionics Subsystem, End Systems and AFDX Interconnect (Switch). 

3. The application of Full Duplex Switch. Full duplex communication can transmit and receive 
packages simultaneously. This will overcome the possibility of collision occurring in case of 
existing transmission. If multiple collisions occur, large delay transfers are also possible. It is 
certainly not acceptable in aircraft data networks requiring reliable and real-time connections. 
It underlies why Full Duplex Switched Ethernet can eliminate the possibility of collision, 
becoming absolute standard on ADN. Figure 2 illustrates each End-System embedded in each 
avionics subsystem connected to the switch through Full-duplex link consisting of twisted pair 
to transmit (Tx) and twisted pair to receive (Rx). 

4. The application of Virtual Links. The main idea of Virtual Links was based on ARINC 664. Part 
7 maintained the concept of point-to-point links. However, in reducing the number of wiring by 
changing the use of physical paths on point-to-point connections such as ARINC 429, specified 
virtual path was chosen. The following are some specifications of Virtual Links based on 
ARINC 664 standard: 

• In theory, a network can define up to 64k (216) Virtual Links based on a 16-Bit Identifier on 
a MAC Destination Field in an Ethernet Frame. 

• An End-System can have more than one Virtual Link. 

• End-System performs Traffic shaping and Integrity Checking on every Virtual Link. 

• Switches Traffic manages policing on each Virtual Link. 

• By combining Traffic shaping and policing, the formation of an outline of deterministic 
network behaviour can be established. 

In addition to functional communication standards, Standard fault tolerant was applied. 
Fault tolerance is the ability of the subsystem to recover from component failures without 
interrupting the service. Devices with fault tolerant capabilities usually have backup strategies 
with redundant components and control each other. One component is passive or in a stand-by 
state and other components are active. The passive components will be activated when other 
components fail and will provide services that were previously provided by failed components. 

For the method of obtaining fault tolerance, the basic principle of fault tolerant design was 
redundancy. Here are three basic techniques used to meet the fault tolerant system [5]: 
1. Spatial (Hardware Redundancy). 

This technique was established by creating hardware being identical to be a backup in the 
time of main hardware failure.  
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2. Informational (Redundant Data Structure) 
This technique was established on more software oriented. Therefore, this technique was 
more flexible because the software can be changed or adjusted to the needs of the existing 
system. 

3. Temporal (Redundant Computation) 
This technique usually required computation and was considered having slow speed in the 
system recovery process after experiencing failure compared to spatial techniques. 

 
3. Design and Implementation 
3.1 System Design 

The built system consists of two parts. The End System included AFDX Package 
Transmitter being responsible for sending AFDX packages and AFDX Switch being responsible 
for receiving the packages as well as forwarding them to another port based on the specified rule. 
This rule was implemented using Virtual Link illustrated by Figure 1. When handling Hardware 
approach, both software will be implemented on the Embedded PC with the design of the 
previously mentioned specifications. AFDX Package Transmitter will be installed on all PCs acting 
as End System while AFDX Switch was installed on all PCs acting as Switch. Because the AFDX 
package structure is different from ordinary TCP/IP packages, it took programming at the data 
link layer level to be able to manipulate raw packages into AFDX packages that met the ARINC 
664 standard specification. The solution of the problem employed Libpcap as a library 
manipulating package frames at the kernel level, capturing and sending raw package regardless 
of protocol stack used [6][7]. 

 

 
Figure 1. ARINC 664 System 

 
In this paper, AFDX packages were built by relying on the data link layer manipulation 

capabilities of Libpcap as well as native Linux libraries having the ability to manipulate and define 
their own headers and content from a raw Ethernet frame. In the established system, the AFDX 
package structure was defined to have 14 Bytes Ethernet Headers (6 Bytes Destination Address, 
6 Bytes Source Address, 2 Bytes Type), 20 Bytes IP Headers, 8 Bytes UDP Header and 58 Bytes 
AFDX Payload wrapped and defined to a data structure that will be injected to the package to 
send AFDX Package Transmitter. This procedure is depicted by Figure 2. 

The sender and receiver system were divided into two End Systems. For example, the 
sender End System and the receiving End System (sniffer). Sender was responsible for sending 
packages redundantly and sniffer was responsible for receiving the package. Both End Systems 
will be built on two PCs according to the design specification. One PC will act as a sender, and 
the other PC will act as a sniffer. 
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Figure 2. ARINC 664 Frames 

 
AFDX Package Transmitter was part of a system implementation having task of delivering 

pre-defined and pre-built AFDX packages from PC End System to another End System via the 
embedded PC Switch to AFDX Switch. AFDX Package Transmitter was written in C language, 
compiled using GCC and supported by Libpcap libraries and native libraries from Linux to enable 
applications sending AFDX packages to the network [8].  

Some alternatives that have been addressed to implement fault tolerant features on two 
designed interfaces are: 
1. Fork & Thread Method 

Based on the results of the analysis when the system was built with the fork and thread 
method, it is concluded that this method becomes less appropriate to use because of the 
delay when eth1 took over the transmission of big data causing a number of missing 
packages. 

2. Bonding Method: Broadcast 
From a technical point of view, this method is reliable and the most similar method to AFDX. 
On the other hand, looking at the device specifications used in the system manufacturing 
process, this method is considered too heavy. Hence, the device cannot handle the package 
receiving process, especially in large quantities because the End System required to 
dismantle, read and eliminate the same package. Meanwhile, the system does not apply the 
principle of scheduling, causing the number of missing packages. 

3. Bonding Method: Active – Backup 
The difference of this method with broadcast method is in the delivery process involving 2 
pieces of path where a path is passive and only active when the main line fails. Thus, there 
is fewer number of packages received in the End System. 

Based on the methods mentioned above, it was decided to make both End Systems work 
redundantly and became fault tolerant. The method used was bonding: active-backup. By utilizing 
bonding, the two interfaces on each end-system will be regarded as the same path. When sending 
the file only one slave (interface) was active, another slave will be active if the first slave was 
interrupted. When bonding was active, MAC address read recipient only when MAC address slave 
was active. 

AFDX Switch was a part of system implementation which was responsible for frame 
filtering and traffic policing of packages sent by AFDX Package Transmitter. After receiving the 
AFDX package sent by the transmitter, AFDX Switch checked the validity of the received 
package. If the packages met the established rule, then the package will be forwarded to the 
destination End System based on the defined Virtual Link ID. Similar to AFDX Package 
Transmitter, AFDX Switch was also written in C language, compiled using GCC and supported 
by Libpcap libraries and native libraries from Linux enabling applications built to receive and 
forward AFDX packages to the network. The use of System Call Fork from Linux also allowed the 
application to handle many network interface adapters at once. In addition, because the system 
was implemented with the Embedded Device approach, the program was also embedded as a 
Linux service. Therefore, the program always run automatically whenever any system was 
booted. 

Embedded system used for switches as shown on Figure 3 was designed using an Intel 
i5 processor having an x86 processor architecture. The x86 processor architecture is now widely 
used in many embedded systems. This is because as a component of COTS. This architecture 
continues to evolve with new innovations, but with backward compatibility, efficient energy 
consumption, lots of support tools available for development as well as more varied costing 
schemes depending on needs. In the field of embedded networking, the x86 architecture is ideally 
used on systems with bandwidth of 10/100 Mbps [2]. Because the built system was designed with 
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ethernet and UTP cables that had bandwidth of 100 Mbps, this architecture was certainly sufficient 
for use in the system. The PC used as a switch required 3 ports for testing because the 
motherboard already had 1 default ethernet port. Hence it needed other 2 ethernet ports. It was 
achieved by adding an ethernet adapter card through the PCI slot and a USB ethernet adapter 
due to the limitations of PCI slots provided by the motherboard. PCI Bus had a bandwidth of 133 
Mbps [9] and USB had a bandwidth of 480 Mbps [10], so it was adequate to use an ethernet 
adapter possessing a bandwidth of 100 Mbps. 

 

 
Figure 3. Embedded System Design 

 
The explanation of the previous Figure 4 is as follows [11]: 
1.  At the initiation stage, Package Transmitter will build the AFDX package from the datalink layer 

then defined the value of the Virtual Link ID of the package 
2.  The transmitter will send the AFDX package to the destination End System according to the 

defined Virtual Link ID 
3.  When the Switch received the package, it will initially check whether the package was coming 

from the corresponding Virtual Link ID. Otherwise, the package will be dropped. In the case of 
appropriacy, it will perform frame filtering according to the defined rule. If the package did not 
match the rule, then the package will be dropped. In the case of appropriacy, the package will 
be forwarded throughout-interface according to the definition of Virtual Link ID that had been 
previously given. If the out-of-interface port packages still passed through the Switch again, it 
will be checked and forwarded again, but if not, the package can be directly received by End 
System. 

The system was implemented by running both pre-made programs, AFDX Package 
Transmitter and AFDX Switch on 4 pre-designed embedded PCs. The AFDX Switch program ran 
as a Linux service on a PC that will act as a switch, so the program will always run automatically 
every time the system was booted to meet the embedded system implementation approach. The 
AFDX package transmitter program was executed through 3 PC units acting as End System and 
was assigned sending AFDX packages to other End Systems via a PC acting as an AFDX Switch. 
In addition, the service abortion and operating system modules were not required due to system 
load reduction. To run the test in accordance with the topology established in Figure 1, three PC 
units acting as End System will be physically connected to the PC acting as a switch through the 
Ethernet port using UTP cable. The process of system testing implementation was completed in 
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2 sessions. In the first session, all PCs used for implementation use Ubuntu standard as the 
operating system. After the first test session was performed and the results were recorded, the 
Ubuntu operating system used in the previous test was customized using ChronOS, and a second 
testing session was conducted. 

In order for the established system to send files redundantly and became fault tolerance, 
bonding on Linux system interfaces was conducted. It was done with the/etc/network/interfaces 
file on Linux. By utilizing bonding on two interfaces that were configured to be active-backups, the 
two interfaces will be regarded as the same path. Therefore, if the main line experienced problems 
then the second line will take over the main line task.  
 

 
Figure 4. Traffic Policy [11] 

 
3.2 System Testing 

This chapter will discuss the testing and analysis from the designed system. The testing 
and analysis were completed with the help of Wireshark tools utilized to measure the system 
performance. The system was tested on two platforms namely Ubuntu 14.04 and ChronOS. The 
test results of both platforms were then compared, so that it can be concluded which platform was 
more reliable for system implementation. 
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3.2.1 Data Switching Features 
The testing will be accomplished using the help of Wireshark tools, used to analyze the 

existing packages on the network. The testing used the following specifications in Table 1 and 
Table 2. 

 
Table 1. Test Parameter 

Parameters Defined values 

Lmax 1518 byte 
Max Jitter 500 Microseconds 
Max Latency 150 Milliseconds 
Lmin 64 bytes 
Bandwidth 100000 bit/s 
Frame sent 10 frames 
Frame validity Valid/not valid 

 
Table 2. Traffic Parameter 

No Multicast/Unicast Sender Receiver Virtual Link ID 

1 Multicast ES A ES B & ES C 01 

2 Multicast ES B ES A & ES C 02 

3 Multicast ES C ES B & ES A 03 

4 Unicast ES A ES B 04 

5 Unicast ES B ES C 05 
6 Unicast ES C ES A 06 

 
The testing for functional routing is completed based on the rules in Table 2. The package 

delivery was performed 5 times on each platform. Moreover, the availability of the switch to 
recognize which packages should be dropped based on the pre-defined package size limit 
specification was tested. 

The test obtained results informing that the system was able to filter the package based 
on the size of its frame as shown in Table 3, so the delivery of packages with the size larger than 
Lmax of 1518 bytes or smaller than Lmin of 64 bytes will cause the package not getting to the 
destination, showing 0%. Nevertheless, the package sent to the specification specifications 
succeeded 100% to the destination. From both tests, it can be seen that there was no difference 
between two platforms. Conclusively, the real-time Linux kernel does not add too much points in 
terms of ensuring the validity of the passing frame through the filtering functionality of the system. 
In addition, COTS component is sufficiently reliable to ensure the validity of the AFDX package 
based on its frame size. 

Table 3. Traffic Parameter 

No 
Source End 

System 
Virtual 
Link ID 

Destination 
End System 

Package 
Size 

(bytes) 

Package 
Received (%) 

Validity 

1 ES A 01 ES B & ES C 100 100 % Valid 
2 ES A 04 ES B 100 100 % Valid 
3 ES B 02 ES C 100 100 % Valid 
4 ES C 03 ES A 100 100 % Valid 
5 ES A 01 ES B & ES C 1600 0 % Valid 
6 ES A 04 ES B 1600 0 % Valid 
7 ES B 02 ES C 1600 0 % Valid 
8 ES C 03 ES A 1600 0 % Valid 
9 ES A 01 ES B & ES C 50 0 % Valid 

10 ES A 04 ES B 50 0 % Valid 
11 ES B 02 ES C 50 0 % Valid 
12 ES C 03 ES A 50 0 % Valid 

 % Validity of Frame Filtering Rules 100% 
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Based on the AFDX specification in ARINC 664, latency is defined as the time between 
when the package is ready to transmit with the duration of completed transmission. Therefore, in 
this paper, the latency was calculated as the average of the time difference between package 
transmissions. The package delivery time will be calculated with the help of Wireshark tools, by 
comparing Linux operating system with Ubuntu and ChronOS. The time measurement format was 
Epoch Time (Unix Time). The difference between arrival time between packages was compared, 
and the results are illustrated in Figure 5.  

 

 

Figure 5. Latency Test on ChronoOS and Ubuntu 
 

The system implemented in ChronOS had a lower latency value than the system 
implemented in Ubuntu, so it can be concluded ChronOS had a higher performance compared to 
Ubuntu with a standard Linux kernel. In addition, COTS components were reliable enough to meet 
the requirement of max latency <150 ms based on ARINC 664 specification [1]. 

Large Jitter measurements on the system were calculated using Wireshark tools. AFDX 
transmitter sent packages from End System A to End System B. Wireshark was installed on both 
End Systems. Afterwards, the delivery and arrival time of the package were recorded and 
calculated based on the difference of the obtained delay value.  

 

 
Figure 6. Jitter Test on ChronoOS and Ubuntu 

 
In measuring the jitter value, the test results show that the system implemented on 

ChronOS had a lower jitter value than the system implemented in Ubuntu as shown in Figure 6. 

Max. Latency Min. Latency Avg. Latency

Ubuntu 95.92 56.02 79.69

ChronOS 88.07 51.95 73.61

95.92

56.02

79.69
88.07

51.95

73.61

0

20

40

60

80

100

120

N
ila

i L
at

en
cy

 (
M

ili
se

co
n

d
s)

Latency Test

Max. Jitter Min. Jitter Avg. Jitter

Ubuntu 7.57 3.17 5.02

ChronOS 5.68 2.02 3.38

7.57

3.17

5.02
5.68

2.02

3.38

0

1

2

3

4

5

6

7

8

N
ila

i J
it

te
r 

(M
ili

Se
co

n
d

s)

Jitter Test



KINETIK                  ISSN: 2503-2259; E-ISSN: 2503-2267 

  

Design and Implementation of COTS-based Aircraft Data Network…,  
Catur Wirawan Wijiutomo, Endro Ariyanto 

259 

Hence, it can be concluded that ChronOS had a higher performance compared with Ubuntu using 
a standard Linux kernel. However, the obtained average jitter value was 3380 microseconds failed 
to the ARINC 664 specification having max jitter of 500 microseconds (Committee, 2002). It was 
because the hardware used was not adequate. Additionally, there are some weaknesses in the 
Linux 2.4 scheduler, experiencing the average of high time-slices, poor I / O-bound task priority, 
and weak support for real-time application. To be able to meet this specification, in the next study, 
it is recommended to use Real Time Operation System platform designed to meet Flight-Critical 
System specifications and uses a more reliable Ethernet Adapter. 
 
3.2.2 Fault Tolerant Features 

The fault tolerant feature used redundancy on two interfaces using bonding feature on 
Linux [12]. The test results are presented in Table 4 and Table 5. 

 
Table 4. Fault Tolerant Scenario Test 

No Conditions Description 
Results 

Status 
Planning Actual 

1 

 
Package 

delivery via 
interface eth0 

and eth 1 
under normal 
circumstances 

eth0 

450 packages 
are 

sent through 
eth0 

450 packages 
are 

sent through 
eth0 

 
success 

eth1 

450 packages 
are 

sent through 
eth1 

450 
packages are 
sent through 

eth1 

success 

2 

Package 
delivery 
through 

interface bond0 
under normal 

circumstances. 

- 

450 packages 
are 

sent through 
eth0 

450 packages 
are 

sent through 
eth0 

success 

3 

Package 
delivery via 
bond0 when 

eth0 and eth1 
have 

hardware 
failure (error) 

eth0 error 

450 packages 
are 

sent through 
eth1 

450 packages 
are 

sent through 
eth1 

success 

eth1 error 

450 packages 
are 

sent through 
eth0 

450 packages 
are 

sent through 
eth0 

success 

eth0 error 
when 

sending 
package 

450 packages 
are sent 

450 packages 
are sent success 

eth0 error 
and back to 
normal state 

450 
packages 

sent through 
eth0, eth1 and 
back to eth0 

450 packages 
sent through 

eth0, eth1 and 
back to eth0 

success 

4 

Testing timing 
on fault 

tolerance 
- - 2,652505 Ms unsuccessful 
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Table 5. Fault Tolerant Test 

Sending 

Output Time 

Average Normal Package Increment 
(Microseconds) 

Difference of Error 
(Microseconds) 

1 8845,324 18440 

2 10972,28 9520 

3 9808,054 20150 

4 9822,26 8020 

5 8421,655 9590 

6 10744,79 14220 

7 9945,548 8960 

8 9862,17 15340 

9 9383,097 9170 

10 9249,799 10170 

Average Delivery 
(milliseconds) 

9,705498 12,358 

Average Difference 
Delivery 

(milliseconds) 
2,652505 

 
4. Conclusion & Future Works 

The previous chapters have shown and explained about the results of simulations 
conducted by the authors, so that the results of the analysis obtain some conclusions and provide 
suggestions for further research as follows: 

Based on AFDX functional related tests that have been conducted in this paper, the 
following conclusions can be drawn: 
1. The COTS component can perform the AFDX package formation function using raw Ethernet 

package, check the validity of AFDX packages using frame filtering function, and well define 
the virtual link path for those packages using traffic policing function. Therefore, it can meet 
the AFDX network characteristics where all data transmissions must be defined statically. 

2. Latency with an average value of 73.61 milliseconds for package delivery made by a system 
using ChronOS is able to meet the ARINC 664 standard specification of <150 Ms, so the 
COTS component is considered reliable enough to implement a system with a latency value 
meeting the specification. 

3. Jitter experienced by the system with an average value of 3380 microseconds still cannot 
meet the standard specifications. According to ARINC 664, the minimum jitter of the system 
must be <500 microseconds, so the system has not been able to meet the deterministic 
network properties expected by the Aircraft Data Network. 

4. The operating system kernel greatly affects the performance of package processing. Systems 
that have kernels designed to achieve real-time properties such as ChronOS have better 
performance than the standard Linux kernel compared to that of Ubuntu. 

5. Although not yet being able to apply the same redundancy principle as AFDX, the established 
system using COTS ethernet component can transmit redundant data and be fault tolerant. 

For fault tolerant feature, the system is able to guarantee data availability when hardware 
error occurs although the resulting delay (2.65 Ms) has not met the maximum delay limit set by 
AFDX (0.5 Ms). The suggestions for the next research include: 
1. To add Frame Check Sequence (FCS). Check the frame can be performed more accurately. 

Use of FCS will cause errors or broken frames to be dropped so as not to overload the 
network. 

2. To use scheduling function specially designed for real-time system. It is intended that the 
BAG rate of the system can be set and measured, and therefore, obtained a more reliable 
performance because the Linux scheduler as a default scheduling function of the Linux kernel 
used on the current system is still less reliable to handle the needs of real-time systems 

3. To use Realtime Operating System (RTOS) designed for Flight-Critical System such as 
RTLinux and VMWorks. Hence, the performance can reach the size meeting the standardized 
requirement. 
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