
Wijiutomo, C., & Ariyanto, E. (2017). Design and Implementation of COTS-based Aircraft Data
Network Using Embedded Linux. KINETIK, 2(4). doi:http://dx.doi.org/10.22219/kinetik.v2i4.229
Paper submitted on June 14, 2017; Revision on July 19, 2017; Received August 11, 2017

KINETIK, Vol. 2, No. 4, November 2017, Pp. 251-262
 ISSN : 2503-2259
 E-ISSN : 2503-2267

251

Design and Implementation of COTS-based Aircraft Data
Network Using Embedded Linux

Catur Wirawan Wijiutomo*1, Endro Ariyanto2
1,2Universitas Telkom

caturwijiutomo@telkomuniversity.ac.id*1, endroa@telkomuniversity.ac.id2

Abstract
Aircraft Data Network (ADN) is a data communication developed specifically for the

aircraft environment. Such environment requires data communication system that can work in
real-time and has a high level of reliability. One of the standards in ADN is Avionics Full-Duplex
Switched Ethernet (AFDX) based on the ARINC 664 specification being data communication
standard for ADN utilizing IEEE 802.3 standard on physical layer 1 and 2. There are some
challenges to implement the standard on the component of COTS By utilizing Linux-based
embedded systems. The features designed and implemented in this paper are the switching and
fault tolerant data components of ARINC 664. From the tests obtained, there are several results
showing that ADN functional features can be implemented and can simulate ADN mechanisms
including fault tolerant capabilities. However, there are performance limitations exemplified by the
obtained average jitter value of 3380 microseconds not meeting the requirements for aircraft use
required to have the range of 500 microseconds.

Keywords: Aircraft Data Network, AFDX, COTS

1. Introduction

Started from 1988 to the most recent implementation on Airbus A320 aircraft, the aircraft
industry has switched to an all-electronic fly-by-wire system. Aircraft is fully controlled using
electrical signals and no longer utilizing mechanical signals. Moreover, aircraft employs a real-
time system requiring reliable data communication between the avionics subsystems in the
aircraft. Boeing began developing and introducing a full Aircraft Full Duplex Switched Ethernet
(AFDX) platform that is implemented based on the ARINC 664 standard specification using IEEE
802.3 (Ethernet Commercial Off The Shelf (COTS)) components on the physical layer and data
link layer [1].

In the case of special engineering such as aircraft, the problems encountered in the
development of aircraft technology are the duration of development time and the amount of fund
required for carrying out related research. The use of Ethernet as a component of COTS will save
time and development costs because Ethernet compliant with the IEEE 802.3 specification
standard itself is already a mature technology and continues to grow since 1970 and continues to
be developed to present time [2]. However, designing a system that only capitalizes the COTS
component to achieve a deterministic performance according to real-time system requirements
can present a challenge. A situation needed to be proven by this study.

The functional feature that will be selected to be implemented in COTS for aircraft data
network is data switching serving to forward data from the sender to the receiver at a particular
address deterministically [3][4]. The deterministic nature of the functional data switching is defined
as:
1. A network having a jitter value of <500 microseconds to ensure almost zero delay variance.
2. Having latency value of <150 Ms.
3. Limiting package receive meeting frame filtering rules and ensuring all data transmissions

completed on paths and destinations defined by the traffic policing rules.
In addition to the deterministic switching data feature, there is also an analysis of fault

tolerant feature implementation which is one of the requirements on real-time system in an
environment required a high level of safety.

This paper describes the study and implementation to design Aircraft Data Network
platform based on real-time system utilizing Embedded PC based on Linux as COTS component.
This platform should meet ADN standard employing ARINC 664 specification. The stages include

http://dx.doi.org/10.22219/kinetik.v2i4.229

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 251-262

252

software and hardware designing and developing in accordance with the needs of the system
before finally tested to conclude the system made entirely with the COTS component can meet
the deterministic network properties expected by Aircraft Data Network (ADN). In systems
implemented in the ADN scope, a deterministic network is required, so the designed switches
must be able to handle frame filtering, traffic policing and of course fault tolerant functions to
ensure that all data frame transmissions on the system are running deterministically.

2. Research Method

The research was started by carefully studying ARINC 664 standard features to be
utilized to establish aircraft data network system. There were some relevant standards employed
in this study as a reference of aircraft data network [1]:
1. The application of ARINC 664. ARINC 664 is a communication standard created to meet the

needs of the modern aircraft industry requiring high bandwidth for data connections between
subsystems. Moreover, it uses minimal cable connections to reduce aircraft load. This has not
yet been achieved by its predecessor, ARINC 429. In a system having many end points like
an Airbus, the unidirectional use of point-to-point data buses becomes extremely ineffective.
This is a weakness of ARINC 429, having a standard requiring a lot of cabling that will increase
the load of aircraft. On the other hand, ARINC 664, implementing Ethernet usage, can use
switching techniques to meet the same infrastructure needs, with much less cabling.

2. The application of virtual link. AFDX uses the concept of a virtual link to replace the
unidirectional bus connection concept used by the previous standard, ARINC 429. Using
virtual links, multiple point-to-point connections were made in the network without the need for
physical cables for each link. Thus, minimum cabling on an aircraft can be managed. Since
networks on AFDX are profiled, addressing and bandwidth requirements for each VL must
also be initially determined. In its physical topology, AFDX consists of 3 components, namely
Avionics Subsystem, End Systems and AFDX Interconnect (Switch).

3. The application of Full Duplex Switch. Full duplex communication can transmit and receive
packages simultaneously. This will overcome the possibility of collision occurring in case of
existing transmission. If multiple collisions occur, large delay transfers are also possible. It is
certainly not acceptable in aircraft data networks requiring reliable and real-time connections.
It underlies why Full Duplex Switched Ethernet can eliminate the possibility of collision,
becoming absolute standard on ADN. Figure 2 illustrates each End-System embedded in each
avionics subsystem connected to the switch through Full-duplex link consisting of twisted pair
to transmit (Tx) and twisted pair to receive (Rx).

4. The application of Virtual Links. The main idea of Virtual Links was based on ARINC 664. Part
7 maintained the concept of point-to-point links. However, in reducing the number of wiring by
changing the use of physical paths on point-to-point connections such as ARINC 429, specified
virtual path was chosen. The following are some specifications of Virtual Links based on
ARINC 664 standard:

• In theory, a network can define up to 64k (216) Virtual Links based on a 16-Bit Identifier on
a MAC Destination Field in an Ethernet Frame.

• An End-System can have more than one Virtual Link.

• End-System performs Traffic shaping and Integrity Checking on every Virtual Link.

• Switches Traffic manages policing on each Virtual Link.

• By combining Traffic shaping and policing, the formation of an outline of deterministic
network behaviour can be established.

In addition to functional communication standards, Standard fault tolerant was applied.
Fault tolerance is the ability of the subsystem to recover from component failures without
interrupting the service. Devices with fault tolerant capabilities usually have backup strategies
with redundant components and control each other. One component is passive or in a stand-by
state and other components are active. The passive components will be activated when other
components fail and will provide services that were previously provided by failed components.

For the method of obtaining fault tolerance, the basic principle of fault tolerant design was
redundancy. Here are three basic techniques used to meet the fault tolerant system [5]:
1. Spatial (Hardware Redundancy).

This technique was established by creating hardware being identical to be a backup in the
time of main hardware failure.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Design and Implementation of COTS-based Aircraft Data Network…,
Catur Wirawan Wijiutomo, Endro Ariyanto

253

2. Informational (Redundant Data Structure)
This technique was established on more software oriented. Therefore, this technique was
more flexible because the software can be changed or adjusted to the needs of the existing
system.

3. Temporal (Redundant Computation)
This technique usually required computation and was considered having slow speed in the
system recovery process after experiencing failure compared to spatial techniques.

3. Design and Implementation
3.1 System Design

The built system consists of two parts. The End System included AFDX Package
Transmitter being responsible for sending AFDX packages and AFDX Switch being responsible
for receiving the packages as well as forwarding them to another port based on the specified rule.
This rule was implemented using Virtual Link illustrated by Figure 1. When handling Hardware
approach, both software will be implemented on the Embedded PC with the design of the
previously mentioned specifications. AFDX Package Transmitter will be installed on all PCs acting
as End System while AFDX Switch was installed on all PCs acting as Switch. Because the AFDX
package structure is different from ordinary TCP/IP packages, it took programming at the data
link layer level to be able to manipulate raw packages into AFDX packages that met the ARINC
664 standard specification. The solution of the problem employed Libpcap as a library
manipulating package frames at the kernel level, capturing and sending raw package regardless
of protocol stack used [6][7].

Figure 1. ARINC 664 System

In this paper, AFDX packages were built by relying on the data link layer manipulation

capabilities of Libpcap as well as native Linux libraries having the ability to manipulate and define
their own headers and content from a raw Ethernet frame. In the established system, the AFDX
package structure was defined to have 14 Bytes Ethernet Headers (6 Bytes Destination Address,
6 Bytes Source Address, 2 Bytes Type), 20 Bytes IP Headers, 8 Bytes UDP Header and 58 Bytes
AFDX Payload wrapped and defined to a data structure that will be injected to the package to
send AFDX Package Transmitter. This procedure is depicted by Figure 2.

The sender and receiver system were divided into two End Systems. For example, the
sender End System and the receiving End System (sniffer). Sender was responsible for sending
packages redundantly and sniffer was responsible for receiving the package. Both End Systems
will be built on two PCs according to the design specification. One PC will act as a sender, and
the other PC will act as a sniffer.

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 251-262

254

Figure 2. ARINC 664 Frames

AFDX Package Transmitter was part of a system implementation having task of delivering

pre-defined and pre-built AFDX packages from PC End System to another End System via the
embedded PC Switch to AFDX Switch. AFDX Package Transmitter was written in C language,
compiled using GCC and supported by Libpcap libraries and native libraries from Linux to enable
applications sending AFDX packages to the network [8].

Some alternatives that have been addressed to implement fault tolerant features on two
designed interfaces are:
1. Fork & Thread Method

Based on the results of the analysis when the system was built with the fork and thread
method, it is concluded that this method becomes less appropriate to use because of the
delay when eth1 took over the transmission of big data causing a number of missing
packages.

2. Bonding Method: Broadcast
From a technical point of view, this method is reliable and the most similar method to AFDX.
On the other hand, looking at the device specifications used in the system manufacturing
process, this method is considered too heavy. Hence, the device cannot handle the package
receiving process, especially in large quantities because the End System required to
dismantle, read and eliminate the same package. Meanwhile, the system does not apply the
principle of scheduling, causing the number of missing packages.

3. Bonding Method: Active – Backup
The difference of this method with broadcast method is in the delivery process involving 2
pieces of path where a path is passive and only active when the main line fails. Thus, there
is fewer number of packages received in the End System.

Based on the methods mentioned above, it was decided to make both End Systems work
redundantly and became fault tolerant. The method used was bonding: active-backup. By utilizing
bonding, the two interfaces on each end-system will be regarded as the same path. When sending
the file only one slave (interface) was active, another slave will be active if the first slave was
interrupted. When bonding was active, MAC address read recipient only when MAC address slave
was active.

AFDX Switch was a part of system implementation which was responsible for frame
filtering and traffic policing of packages sent by AFDX Package Transmitter. After receiving the
AFDX package sent by the transmitter, AFDX Switch checked the validity of the received
package. If the packages met the established rule, then the package will be forwarded to the
destination End System based on the defined Virtual Link ID. Similar to AFDX Package
Transmitter, AFDX Switch was also written in C language, compiled using GCC and supported
by Libpcap libraries and native libraries from Linux enabling applications built to receive and
forward AFDX packages to the network. The use of System Call Fork from Linux also allowed the
application to handle many network interface adapters at once. In addition, because the system
was implemented with the Embedded Device approach, the program was also embedded as a
Linux service. Therefore, the program always run automatically whenever any system was
booted.

Embedded system used for switches as shown on Figure 3 was designed using an Intel
i5 processor having an x86 processor architecture. The x86 processor architecture is now widely
used in many embedded systems. This is because as a component of COTS. This architecture
continues to evolve with new innovations, but with backward compatibility, efficient energy
consumption, lots of support tools available for development as well as more varied costing
schemes depending on needs. In the field of embedded networking, the x86 architecture is ideally
used on systems with bandwidth of 10/100 Mbps [2]. Because the built system was designed with

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Design and Implementation of COTS-based Aircraft Data Network…,
Catur Wirawan Wijiutomo, Endro Ariyanto

255

ethernet and UTP cables that had bandwidth of 100 Mbps, this architecture was certainly sufficient
for use in the system. The PC used as a switch required 3 ports for testing because the
motherboard already had 1 default ethernet port. Hence it needed other 2 ethernet ports. It was
achieved by adding an ethernet adapter card through the PCI slot and a USB ethernet adapter
due to the limitations of PCI slots provided by the motherboard. PCI Bus had a bandwidth of 133
Mbps [9] and USB had a bandwidth of 480 Mbps [10], so it was adequate to use an ethernet
adapter possessing a bandwidth of 100 Mbps.

Figure 3. Embedded System Design

The explanation of the previous Figure 4 is as follows [11]:
1. At the initiation stage, Package Transmitter will build the AFDX package from the datalink layer

then defined the value of the Virtual Link ID of the package
2. The transmitter will send the AFDX package to the destination End System according to the

defined Virtual Link ID
3. When the Switch received the package, it will initially check whether the package was coming

from the corresponding Virtual Link ID. Otherwise, the package will be dropped. In the case of
appropriacy, it will perform frame filtering according to the defined rule. If the package did not
match the rule, then the package will be dropped. In the case of appropriacy, the package will
be forwarded throughout-interface according to the definition of Virtual Link ID that had been
previously given. If the out-of-interface port packages still passed through the Switch again, it
will be checked and forwarded again, but if not, the package can be directly received by End
System.

The system was implemented by running both pre-made programs, AFDX Package
Transmitter and AFDX Switch on 4 pre-designed embedded PCs. The AFDX Switch program ran
as a Linux service on a PC that will act as a switch, so the program will always run automatically
every time the system was booted to meet the embedded system implementation approach. The
AFDX package transmitter program was executed through 3 PC units acting as End System and
was assigned sending AFDX packages to other End Systems via a PC acting as an AFDX Switch.
In addition, the service abortion and operating system modules were not required due to system
load reduction. To run the test in accordance with the topology established in Figure 1, three PC
units acting as End System will be physically connected to the PC acting as a switch through the
Ethernet port using UTP cable. The process of system testing implementation was completed in

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 251-262

256

2 sessions. In the first session, all PCs used for implementation use Ubuntu standard as the
operating system. After the first test session was performed and the results were recorded, the
Ubuntu operating system used in the previous test was customized using ChronOS, and a second
testing session was conducted.

In order for the established system to send files redundantly and became fault tolerance,
bonding on Linux system interfaces was conducted. It was done with the/etc/network/interfaces
file on Linux. By utilizing bonding on two interfaces that were configured to be active-backups, the
two interfaces will be regarded as the same path. Therefore, if the main line experienced problems
then the second line will take over the main line task.

Figure 4. Traffic Policy [11]

3.2 System Testing

This chapter will discuss the testing and analysis from the designed system. The testing
and analysis were completed with the help of Wireshark tools utilized to measure the system
performance. The system was tested on two platforms namely Ubuntu 14.04 and ChronOS. The
test results of both platforms were then compared, so that it can be concluded which platform was
more reliable for system implementation.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Design and Implementation of COTS-based Aircraft Data Network…,
Catur Wirawan Wijiutomo, Endro Ariyanto

257

3.2.1 Data Switching Features
The testing will be accomplished using the help of Wireshark tools, used to analyze the

existing packages on the network. The testing used the following specifications in Table 1 and
Table 2.

Table 1. Test Parameter

Parameters Defined values

Lmax 1518 byte
Max Jitter 500 Microseconds
Max Latency 150 Milliseconds
Lmin 64 bytes
Bandwidth 100000 bit/s
Frame sent 10 frames
Frame validity Valid/not valid

Table 2. Traffic Parameter

No Multicast/Unicast Sender Receiver Virtual Link ID

1 Multicast ES A ES B & ES C 01

2 Multicast ES B ES A & ES C 02

3 Multicast ES C ES B & ES A 03

4 Unicast ES A ES B 04

5 Unicast ES B ES C 05
6 Unicast ES C ES A 06

The testing for functional routing is completed based on the rules in Table 2. The package

delivery was performed 5 times on each platform. Moreover, the availability of the switch to
recognize which packages should be dropped based on the pre-defined package size limit
specification was tested.

The test obtained results informing that the system was able to filter the package based
on the size of its frame as shown in Table 3, so the delivery of packages with the size larger than
Lmax of 1518 bytes or smaller than Lmin of 64 bytes will cause the package not getting to the
destination, showing 0%. Nevertheless, the package sent to the specification specifications
succeeded 100% to the destination. From both tests, it can be seen that there was no difference
between two platforms. Conclusively, the real-time Linux kernel does not add too much points in
terms of ensuring the validity of the passing frame through the filtering functionality of the system.
In addition, COTS component is sufficiently reliable to ensure the validity of the AFDX package
based on its frame size.

Table 3. Traffic Parameter

No
Source End

System
Virtual
Link ID

Destination
End System

Package
Size

(bytes)

Package
Received (%)

Validity

1 ES A 01 ES B & ES C 100 100 % Valid
2 ES A 04 ES B 100 100 % Valid
3 ES B 02 ES C 100 100 % Valid
4 ES C 03 ES A 100 100 % Valid
5 ES A 01 ES B & ES C 1600 0 % Valid
6 ES A 04 ES B 1600 0 % Valid
7 ES B 02 ES C 1600 0 % Valid
8 ES C 03 ES A 1600 0 % Valid
9 ES A 01 ES B & ES C 50 0 % Valid

10 ES A 04 ES B 50 0 % Valid
11 ES B 02 ES C 50 0 % Valid
12 ES C 03 ES A 50 0 % Valid

 % Validity of Frame Filtering Rules 100%

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 251-262

258

Based on the AFDX specification in ARINC 664, latency is defined as the time between
when the package is ready to transmit with the duration of completed transmission. Therefore, in
this paper, the latency was calculated as the average of the time difference between package
transmissions. The package delivery time will be calculated with the help of Wireshark tools, by
comparing Linux operating system with Ubuntu and ChronOS. The time measurement format was
Epoch Time (Unix Time). The difference between arrival time between packages was compared,
and the results are illustrated in Figure 5.

Figure 5. Latency Test on ChronoOS and Ubuntu

The system implemented in ChronOS had a lower latency value than the system
implemented in Ubuntu, so it can be concluded ChronOS had a higher performance compared to
Ubuntu with a standard Linux kernel. In addition, COTS components were reliable enough to meet
the requirement of max latency <150 ms based on ARINC 664 specification [1].

Large Jitter measurements on the system were calculated using Wireshark tools. AFDX
transmitter sent packages from End System A to End System B. Wireshark was installed on both
End Systems. Afterwards, the delivery and arrival time of the package were recorded and
calculated based on the difference of the obtained delay value.

Figure 6. Jitter Test on ChronoOS and Ubuntu

In measuring the jitter value, the test results show that the system implemented on

ChronOS had a lower jitter value than the system implemented in Ubuntu as shown in Figure 6.

Max. Latency Min. Latency Avg. Latency

Ubuntu 95.92 56.02 79.69

ChronOS 88.07 51.95 73.61

95.92

56.02

79.69
88.07

51.95

73.61

0

20

40

60

80

100

120

N
ila

i L
at

en
cy

 (
M

ili
se

co
n

d
s)

Latency Test

Max. Jitter Min. Jitter Avg. Jitter

Ubuntu 7.57 3.17 5.02

ChronOS 5.68 2.02 3.38

7.57

3.17

5.02
5.68

2.02

3.38

0

1

2

3

4

5

6

7

8

N
ila

i J
it

te
r

(M
ili

Se
co

n
d

s)

Jitter Test

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Design and Implementation of COTS-based Aircraft Data Network…,
Catur Wirawan Wijiutomo, Endro Ariyanto

259

Hence, it can be concluded that ChronOS had a higher performance compared with Ubuntu using
a standard Linux kernel. However, the obtained average jitter value was 3380 microseconds failed
to the ARINC 664 specification having max jitter of 500 microseconds (Committee, 2002). It was
because the hardware used was not adequate. Additionally, there are some weaknesses in the
Linux 2.4 scheduler, experiencing the average of high time-slices, poor I / O-bound task priority,
and weak support for real-time application. To be able to meet this specification, in the next study,
it is recommended to use Real Time Operation System platform designed to meet Flight-Critical
System specifications and uses a more reliable Ethernet Adapter.

3.2.2 Fault Tolerant Features

The fault tolerant feature used redundancy on two interfaces using bonding feature on
Linux [12]. The test results are presented in Table 4 and Table 5.

Table 4. Fault Tolerant Scenario Test

No Conditions Description
Results

Status
Planning Actual

1

Package

delivery via
interface eth0

and eth 1
under normal
circumstances

eth0

450 packages
are

sent through
eth0

450 packages
are

sent through
eth0

success

eth1

450 packages
are

sent through
eth1

450
packages are
sent through

eth1

success

2

Package
delivery
through

interface bond0
under normal

circumstances.

-

450 packages
are

sent through
eth0

450 packages
are

sent through
eth0

success

3

Package
delivery via
bond0 when

eth0 and eth1
have

hardware
failure (error)

eth0 error

450 packages
are

sent through
eth1

450 packages
are

sent through
eth1

success

eth1 error

450 packages
are

sent through
eth0

450 packages
are

sent through
eth0

success

eth0 error
when

sending
package

450 packages
are sent

450 packages
are sent success

eth0 error
and back to
normal state

450
packages

sent through
eth0, eth1 and
back to eth0

450 packages
sent through

eth0, eth1 and
back to eth0

success

4

Testing timing
on fault

tolerance
- - 2,652505 Ms unsuccessful

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 251-262

260

Table 5. Fault Tolerant Test

Sending

Output Time

Average Normal Package Increment
(Microseconds)

Difference of Error
(Microseconds)

1 8845,324 18440

2 10972,28 9520

3 9808,054 20150

4 9822,26 8020

5 8421,655 9590

6 10744,79 14220

7 9945,548 8960

8 9862,17 15340

9 9383,097 9170

10 9249,799 10170

Average Delivery
(milliseconds)

9,705498 12,358

Average Difference
Delivery

(milliseconds)
2,652505

4. Conclusion & Future Works

The previous chapters have shown and explained about the results of simulations
conducted by the authors, so that the results of the analysis obtain some conclusions and provide
suggestions for further research as follows:

Based on AFDX functional related tests that have been conducted in this paper, the
following conclusions can be drawn:
1. The COTS component can perform the AFDX package formation function using raw Ethernet

package, check the validity of AFDX packages using frame filtering function, and well define
the virtual link path for those packages using traffic policing function. Therefore, it can meet
the AFDX network characteristics where all data transmissions must be defined statically.

2. Latency with an average value of 73.61 milliseconds for package delivery made by a system
using ChronOS is able to meet the ARINC 664 standard specification of <150 Ms, so the
COTS component is considered reliable enough to implement a system with a latency value
meeting the specification.

3. Jitter experienced by the system with an average value of 3380 microseconds still cannot
meet the standard specifications. According to ARINC 664, the minimum jitter of the system
must be <500 microseconds, so the system has not been able to meet the deterministic
network properties expected by the Aircraft Data Network.

4. The operating system kernel greatly affects the performance of package processing. Systems
that have kernels designed to achieve real-time properties such as ChronOS have better
performance than the standard Linux kernel compared to that of Ubuntu.

5. Although not yet being able to apply the same redundancy principle as AFDX, the established
system using COTS ethernet component can transmit redundant data and be fault tolerant.

For fault tolerant feature, the system is able to guarantee data availability when hardware
error occurs although the resulting delay (2.65 Ms) has not met the maximum delay limit set by
AFDX (0.5 Ms). The suggestions for the next research include:
1. To add Frame Check Sequence (FCS). Check the frame can be performed more accurately.

Use of FCS will cause errors or broken frames to be dropped so as not to overload the
network.

2. To use scheduling function specially designed for real-time system. It is intended that the
BAG rate of the system can be set and measured, and therefore, obtained a more reliable
performance because the Linux scheduler as a default scheduling function of the Linux kernel
used on the current system is still less reliable to handle the needs of real-time systems

3. To use Realtime Operating System (RTOS) designed for Flight-Critical System such as
RTLinux and VMWorks. Hence, the performance can reach the size meeting the standardized
requirement.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Design and Implementation of COTS-based Aircraft Data Network…,
Catur Wirawan Wijiutomo, Endro Ariyanto

261

References
[1] A. Committee, “Aircraft Data Network Part 7, Avionics Full Duplex Switched Ethernet (AFDX)

Network, ARINC Specification 664,” Annapolis, Maryl. Aeronaut. Radio, 2002.
[2] K. Christensen, P. Reviriego, and B. Nordman, “IEEE 802.3 az: The Road to Energy Efficient

Ethernet,” IEEE, 2010.
[3] H. Jung, “Fast Transmission Mechanism of Emergency Data in AFDX Network Systems.”
[4] T. DeChiara, “Flight Control Computers with Ethernet Based Cross Channel Data Links,” US

Pat. App. 11/710,207, 2007.
[5] A. Sreekumar, K. Swetha, A. Swetha, and V. R. Pillay, “Enhanced Performance Capability

in a Dual Redundant Avionics Platform – Fault Tolerant Scheduling with Comparative
Evaluation,” Procedia Computer Science, Vol. 46, Pp. 921–932, 2015.

[6] F. Brajou and P. Ricco, “The Airbus A380-an AFDX-Based Flight Test Computer Concept,”
AUTOTESTCON 2004. Proceedings, 2004.

[7] P. B. Champeaux, D. Faura, M. Gatti, and W. Terroy, “A Distributed Avionics Communication
Network,” in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshop (DSN-W), Pp. 206–209, 2016.

[8] Y. Xiao, L. Li, and J. Wen, “Network Program Architecture Based Winpcap and Sock,”
Ordnance Industry Automation, 2005.

[9] P. Sig, “PCI Local Bus Specification Revision 2.2,” PCI SIG, 1998.
[10] U. Specification, “Revision 2.0, 2000,” Hewlett-Packard Company, Intel Corporation, Lucent.
[11] Faisal Defry Hussainy, “Implementation Full Duplex Switced Ethernet to Aircraft Data Based

on Cots Embedded Device - Documents,” Universitas Telkom, 2015.
[12] A. Rahadian, “Implementation of Data Redundancy to End–System Aircraft Data Network

Based on Cots Embedded Device,” Universitas Telkom, 2016.

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 251-262

262

