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Abstract 
Echinacea purpurea extract, a traditional herbal food additive with dual-purpose of medicine and edible material, 
has been widely used for the treatment and prevention of various infectious diseases, especially for children, old 
aged and immunocompromised patients. Although there were numerous reports suggested E. purpurea possessed 
immunostimulatory and antibacterial effects in vitro, the mechanisms underlying remained to be elucidated. This 
study employed immunologic factors analysis, GC-TOFMS based metabolomics and 16S-rRNA-sequencing 
microbiome profiling technologies to explore the effects of E. purpurea on young rats, a physiological 
insufficient immunity status, by compared with pidotimod treatment on young rats and adult animals. E. 
purpurea treatment significantly increased IL-2, decreased IL-6 and affect immunoglobulins in the spleen of 
young rats, indicating its promotion of cellular immunity. Both the immunologic factors and the global 
metabolome of E. purpurea treated young rats were close to the status of mature individuals. Results of 
16S-rRNA-sequencing of ileum content together with co-metabolism metabolites demonstrated that E. purpurea 
changed gut microbiota structure characteristically as a reducing Firmicutes phylum, especially Lactobacillus, 
and a rising Actinobacteria phylum including Bifidobacterium. The results were concluded that E. purpurea 
could potentially promote the maturation of immune and metabolism of immature rats, and also affect gut flora 
structure. 

Keywords: Echinacea purpurea extract, metabolomics, immunomodulation, gut microbiota 

1. Introduction 

Echinacea purpurea Moench (E. purpurea) is an indigenous medicine of the native American Indians and 
Europeans with multiple biological activities, such as anti-inflammation, anti-oxidation, anti-bacteria, 
antiproliferative, antihypertensive and immunomodulation effects for hundreds of years (Aarland et al., 2017; 
Chiou et al., 2017; LaLone et al., 2007). This medicinal plant was also used as food supplements in infectious 
diseases in children, old people and animals in North America and Europe (Ayrle et al., 2016). As a famous 
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alternative therapeutic herb, E. purpurea is usually considered to be efficient and natural with low toxic and 
fewer side effects. It was also mixed in the fodder as food supplements in animal husbandry (Chen et al., 2014). 
The major ingredients of E. purpurea are choric acid, caffeic acid, and other polyphenols and glycoproteins. 
Glycoproteins, alkylamides and polysaccharides in roots of E. purpurea chemical compounds are believed main 
responsible for their immunomodulatory properties (Balciunaite et al., 2015). It has been reported that the 
activation of immune cells exhibited by E. purpurea arose from the presence of the bacterial components 
(Nirmal, 2008). The immunomodulatory effect of E. purpurea was reported to involve biochemical alterations in 
immune cells and intestinal bacteria, but the exact underlying immunomodulation mechanisms involving plant 
metabolites and microbiome are yet to be understood (Nirmal, 2008; Todd et al., 2015).  

Accordingly, the metabolic profiling associated with 16S rRNA sequencing and conventional immune factors 
was used in this study to discover the effects of E. purpurea on systemic immune, metabolome and gut 
microbiome on young rats after weaning in vivo. The experiment was designed to compare the actions of E. 
purpurea with adult rats, and pidotimod (3-l-pyroglutamyl-l-thiazolidine-4 carboxylate), a synthetic dipeptide 
immunomodulatory, to explore the potential effects of E. purpurea on immature rats.  

2. Materials and Methods 
2.1 Animal Experiments 

Wistar rats were born by the mother rats purchased from Shanghai Laboratory Animal Co Ltd. (SLAC, Shanghai, 
China). After-born, both male and female rats were raised separately. All experimental rats(male rats, 10 rats 
each group) were housed in a clean environment under a controlled condition of 12 h light/12 h dark cycle at 
20-22 °C, and the humidity of the environment was 45 ± 5%, with free access to sterilized chow and water. At 
age of 3 weeks, the rats were randomly divided into four groups: the normal group (N), the E. purpurea group 
(EE), the pidotimod group (P) and the adult group (14w). N group and 14w group were fed as before. The rats in 
EE group were oral administration of E. purpurea (bought from Xi’an Xiaocao Botianical Development Co. Ltd., 
polyphenol 4%) at a dose of 600 mg/kg dissolved in the water. And the rats in P group were oral administration 
of pidotimod (bought from Sunstone Co. Ltd.) at a dose of 150 mg/kg dissolved in the water. The water was 
changed every day. The N, EE and P groups were killed after 6 weeks while the 14w group was killed after 11 
weeks. The day before their death, the urine samples were collected in the metabolic cages for acclimatization. 
The urine samples collected should be centrifuged at speed of 3000 rpm for 10 min and the supernatant was 
subsequently moved to another eppendorf tube before putting into the -80 °C refrigerator. All of the rats above 
were sacrificed to collect whole spleens, small intestinal contents and serum samples. All of the samples were 
stored separately at -80 °C before analysis. 

2.2 Measurement of Immune Factors in Spleen 

The level of immune factors, immunoglobulins and NK cell in the spleen of 6 rats in each group were measured 
by an ELISA kit (IL-2, IL-4, IL-6, IL-10, IgA, IgM, IgG and NK cell ELISA Kit, Shanghai Jianglai Biotech, 
Shanghai, China). All steps followed the manufacturer’s instructions.  

2.3 Sample Pretreatment and GC/TOFMS Analysis 

Serum and urine samples above were pretreated according to previously published methods (Hou et al., 2015; 
Zhang et al., 2016). To minimize systematic analytical deviations, the samples were run in the order of “N 
group-EE group-P group-14w group” alternately. Separation was achieved on a DB-5ms capillary column (30 m 
× 250 µm i.d., 0.25 µm film thickness; (5%-phenyl)-methylpolysiloxane bonded and cross-linked; Agilent J&W 
Scientific, Folsom, CA), with helium as the carrier gas at a constant flow rate of 1.0 mL/min.  

2.4 DNA Extraction and 16S-rRNA-Sequencing-Based Studies of the Ileum Microbiota 

The ileum contents samples of 5 rats in each group were removed from storage. DNA was extracted using the 
QIAamp Stool Mini kit (Qiagen). The V4 region of the 16S ribosomal RNA (rRNA) gene from DNA samples 
was amplified using the bacterial forward primer 5’-AYTGGGYDTAAAGNG-3’ and the reverse primer 
5’-TACNVGGGTATCTAATCC-3’. PCR amplification, pyrosequencing of the PCR amplicons, and quality 
control of raw data were performed, as described previously (Zhang et al., 2010). 

2.5 Statistical Analysis 

The acquired GC/TOFMS data were processed which included smoothing, peak picking, denoising, 
identification, and alignment using ChromaTOF software (v4.22; Leco Co.) as described in a previous 
publication (Cheng et al., 2012). Compounds information, peak retention time and peak area were all included in 
the final dataset. The final peak areas were normalized to internal standards before statistical analysis. The 
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Threonine 1.447236 2.1E-06 1.447681 1.02E-06 1.408453 0.000367 

a-Alanine 1.455853 0.048996 1.525206 5.06E-05 1.015877 0.00881 

Ornithine 1.531911 0.038894 2.609411 5.26E-08 1.478018 0.11376 

Aspartate 2.469403 3.36E-06 2.691249 5.67E-12 2.15994 4.26E-06 

beta-Alanine 2.531269 3.21E-05 1.514046 0.016346 2.595981 1.45E-05 

2-Butenedioate 0.612522 0.017211 0.730709 0.330421 0.495211 0.001958 

Butanedioate 0.675581 0.031717 1.055729 0.227592 0.581517 0.020435 

Malate 0.759408 0.016945 0.866559 0.268401 0.645026 0.022669 

Adonitol 0.763162 0.046659 1.034162 0.299437 0.78851 0.029303 

a-Glucopyranose 1.986988 0.001265 1.678212 0.015034 2.371897 0.01042 

Fructose 0.535557 6.68E-08 0.450993 7.71E-08 0.462019 3.4E-07 

Galactose 0.732033 0.032229 0.780963 0.105601 0.894637 0.079656 

Glucitol 1.602747 0.00109 1.653818 3.35E-06 1.481416 7.45E-05 

Pinitol 0.548279 4.46E-05 0.397404 7.8E-09 0.616687 0.000216 

Ribitol 0.52243 2.83E-08 0.635726 2.31E-08 0.55589 7.82E-10 

Sucrose 0.633938 0.003796 0.556875 0.134673 0.486835 0.129236 

Threitol 1.486085 0.003295 2.199111 1.72E-05 1.270938 1.25E-05 

2-Ethylhydracrylate 0.79067 0.002382 1.094304 0.249812 0.751117 0.011142 

2-Hydroxybutyrate 1.414603 0.047628 1.328419 0.047004 1.33695 0.030115 

Elaidate 0.618278 0.001365 1.010583 0.082998 0.616846 0.022274 

Hydroxyacetate 0.546022 0.005363 0.660644 0.009099 0.602782 0.006295 

2-Aminobutyrate 1.671816 0.002153 1.032849 0.260327 1.429875 3.48E-05 

Nonanoate 1.2423 0.016187 0.45638 0.005259 0.975025 0.455308 

Octanoate 1.457768 0.005886 1.47156 0.030447 1.18409 0.033322 

Propanoate 0.646445 0.00458 0.854677 0.001848 0.788766 1.16E-05 

cis-5,8,11,14,17-Eicosapentaenoate 0.276607 0.024633 0.576539 3.63E-09 1.928515 0.012573 

Hexadecanoate 0.572611 0.044106 0.660664 7.79E-06 0.678792 0.095875 

Tetradecanoate 0.759902 1.63E-05 0.747952 2.86E-05 0.80777 9.0836E-05 

trans-9-Octadecenoate 0.608076 0.000943 1.21415 0.202154 0.436346 0.00346 

9-Octadecenamide 0.371867 0.017459 0.382553 0.000881 0.513681 0.040912 

Ethanolamine 1.401043 0.00441 1.85272 3.42E-09 1.208676 0.001334 

Hypotaurine 1.599124 0.004767 0.746888 0.2833 1.72439 0.015981 

Benzoate 0.042014 0.003527 7.456914 0.004977 0.031509 0.003314 

4-Hydroxycinnamate 0.177439 0.038439 3.812942 0.034499 0.183102 0.038773 

Benzeneacetate 0.326647 0.003253 5.376051 0.008507 0.229609 0.001359 

p-Cresol 0.358233 0.011335 3.750271 0.000113 0.204995 0.003524 

Lactate 0.499429 0.007873 2.193151 0.048429 0.304838 0.001101 

Glycine 0.563747 0.011059 2.27822 0.028177 0.324177 0.000671 

Quinolinate 0.63656 0.004614 0.818062 0.13127 0.448338 0.000168 

Proline 0.688347 0.03225 0.585473 0.011903 0.477745 0.00207 

Hippurate 1.375942 0.049617 1.566047 0.109155 1.007415 0.482886 

Hydrocinnamate 1.39555 0.024018 4.453012 0.00021 1.460509 0.031996 

1H-Indole 2.069217 8.97E-05 1.484211 0.005453 1.447461 0.001801 

Glycerol 2.075444 0.002349 0.343988 0.005923 1.801611 0.005983 

2’-Deoxycytidine 2.107295 0.009614 0.429451 0.014141 2.200168 0.000183 

Ornithine 2.246376 0.000147 0.867554 0.286783 1.727258 0.001758 

Norleucine 2.294829 0.000876 0.473146 0.043601 1.694956 0.026174 

Glucose 3.165048 0.003636 0.1145 0.044839 2.1365 0.023389 

4-Pyrimidinamine 3.603864 0.010001 0.858872 0.401089 3.986408 0.000429 

3-Methylazelate 3.631625 0.000207 6.362245 0.000187 2.590256 0.004074 

Mannose 3.684116 0.00013 0.091526 0.037641 2.379516 0.007041 
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4.1 The Effect of EE on Immunoregulatory Cytokines and Immunoglobulins 

Pidotimod has been definitely confirmed to have immunomodulatory activity on both innate and adaptive 
responses via acting on different immunological pathways (Esposito et al., 2015; Mameli et al., 2015; 
Namazova-Baranova et al., 2014). Pidotimod is also believed a safe immune stimulating agent by stimulating 
nonspecific immunity, humoral immunity and cellular immunity, with no serious adverse event occurred and 
even being used as a child medication (Licari et al., 2014).  

The observation in our research shows that E. purpurea and pidotimod both reduced IL-6, IgA, IgG, IgM and 
NK levels in spleen, presented the same tendency with that of 14 weeks’ rats, suggesting E. purpurea might have 
a positive effect on immune system (Brousseau & Miller, 2005). Different from pidotimod, almost on the 
contrary, E. purpurea significantly increased IL-2. IL-2 is generated by Th1, and IL-6 is produced by Th2. So the 
regulation of E. purpurea on Th1 and Th2 is totally different (Mosmann & Coffman, 1989). It has been reported 
that E. purpurea directly affected the immune system such as T lymphocyte, macrophage, dendritic cell (Cech et 
al., 2010; King et al., 2014). IL-2 was proven to promote the proliferation of T cells and enhance the cellular 
immunity, associated with the production of IgM and IgG (Cozzi et al., 1995). IL-6 promotes the activation of B 
cells, and facilitates humoral immunity together with IL-4 and IL-10. IL-6 can also contribute to the exudation 
and chemotaxis of inflammatory cells, cause fever, participate in inflammation and pathological damage, and 
improve the super sensitive reaction together with IL-4 (Vazquez et al., 2015). Because IL-6 is a terminal 
differentiation factor for B lymphocytes and it can enhance body’s Ig production, the decreasing IL-6 level in 
spleen was associated with the reduced level of IgA, IgG, IgM (Hirano et al., 1985). IgM is an immunoglobulin 
with largest molecular weight existing in circulation, and believed the main immune response in the primary 
immune response (Suzuki & Tomasi, 1979). In combination with the above results, it could be concluded that the 
effect of E. purpurea may exist in the promotion of cellular immunity, and the reduction of cell inflammation 
and the damage caused by hypersensitivity.  

4.2 The Effect of EE on Systemic Metabolites 

From the PCA plots of the four groups’ variants, EE and P groups had more overlap in space, indicating the 
metabolic impaction of EE and P groups had high similarity. Metabolic clusters of 14w and N groups were far 
away from each other, while two administration groups were between the two normal groups with the tendency 
to the status of 14w group, suggesting that EE and P groups made metabolic status of 9 weeks’ rats more mature, 
closed to 14 weeks’ status.  

First of all, most amino acids, like alanine, Beta-alanine, aspartate, glutamate, ornithine, serine, threonine, 
tyrosine and phenylalanine, were mainly up-regulated in serum and urine in EE group and increased with age. 
The only exception was glycine, which was significantly decreased in urine of the rats in EE and P groups. As 
the most important amino acid with immunoregulatory effect, threonine can not only stimulate gene express of 
IgA, but also participant the generation process of immunoglobulin together with serine directly (Kermanshahi et 
al., 2016; Su et al., 2013). 2-Hydroxybutyrate, the metabolic product of threonine, also was found up-regulated 
in our results. Ornithine acted as a precursor into the immune response (Mercado-Lubo et al., 2009). Glutamate 
can stimulate the immune system and aspartate is an incomplete degradation product of glutamate in immune 
cells (Yoshida et al., 1987). It has been proved that the amino acids like alanine, phenylalanine and tyrosine in 
the serum played an important role in the development of strengthening the immune system of children 
childhood (Nathalie Lepage, 1997). Alanine is a major substrate for the hepatic synthesis of glucose, a significant 
energy substrate for leucocytes (Wannemacher et al., 1980). Alanine is also an important component of the 
glycoprotein (Carletti et al., 2013; El-Sabagh et al., 2014). Tyrosine, a product of phenylalanine degradation, is 
the immediate precursor for the synthesis of catecholamine hormones, indicating that an increased SNS activity 
and an up-regulation of catecholamine metabolism followed. Norepinephrine is a key messenger released from 
the sympathetic nervous system to act on the immune system (Wannemacher et al., 1980). Interestingly, both 
Th1 cells and B cells express b2-adrenergic receptors. 

Secondly, many long-chain fatty acids and their derivatives such as 9-octadecenal, 9-octadecenamide, EPA, 
hexadecanoate and tetradecanoate were significantly down-regulated in EE and 14w groups compared with N 
group in the serum. Long-chain fatty acids, especially PUFA (polyunsaturated fatty acids), had been shown to 
contribute to increased immune functions, such as keeping immune cells active, promoting the secretion of the 
type of arachate and cytokine secretion, and maintaining the integrity of the mucosal barriers (Anderson & 
Fritsche, 2002). In this sense, the impact of these kind of compounds on the immune system were complicated 
and profound, so there were also studies proving the high concentration of PUFA might possess inhibition on the 
immune inhibitory effect, for example, high-level EPA had an inhibitory effect on NK cells (Yamashita et al., 
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1988). As representatives of polyunsaturated fatty acids, EPA and DHA acted differently in the regulation of 
immune functions (Gorjao et al., 2009). In this study, we can see E. purpurea significantly decreased the content 
of serum EPA in 9 weeks’ rats, which was even lower than that of 14 weeks’ rats, and had no effect on DHA. 
However, pidotimod increased the content of both the two PUFA, totally contrary to 14 weeks’ results, which 
might be a potential causal correlation with the different impacts on IL2 and IL4.  

Furthermore, some sugars and alcohols, such as threitol, glucitol, a-D-glucopyranose, were up-regulated by EE 
and age factor, while galactose, fructose, pinitol, ribitol and sucrose were all down-regulated. Glucose, Mannose 
and glycerol were significantly increased in urine in EE and P groups. From these results, it could be concluded 
that the impacts of E. purpurea and pidotimod on these metabolites were similar. It is remarkable that the 
decreased content of pinitol in EE and 14w groups were found, which were reported largely accumulated in 
antibiotic treatments (Zhao et al., 2013). Pinitol, derived from exogenous dietary crops, was believed to degrade 
to myo-inositol and then to acetyl-CoA via some enzymes in some bacteria (Reibach & Streeter, 1984; Streeter, 
1987). 

Besides pinitol, our results showed metabolites associated with gut microbiota were changed by E. purpurea. 
p-Hydroxyphenylacetate, one of the metabolites of tyramine and tyrosine produced by Pseudomonas aeruginosa 
and Acinetobacter baumanii, was greatly up-regulated in urine of rats in EE and P groups (Beloborodova et al., 
2012). Coincidentally, Actinobacteria phylum and Pseudomonas genus were increased in ileum of rats in EE 
groups as well. However, p-Cresol, another relevant metabolite, changed in the opposite direction. As a 
decarboxylation metabolite of 4-hydroxyphenylacetate by intestinal bacteria in catabolism of amino acid tyrosine 
and phenylalanine, p-Cresol, was considered to have negative effects on the host (Munoz-Munoz et al., 2011; 
Sivsammye & Sims, 1990). Substantially reduced p-Cresol could be a benefit of EE on the body. Furthermore, 
benzeneacetate, benzoate, hippurate, 4-hydroxycinnamate and hydrocinnamate are generated by the catabolism 
of natural polyphenols and flavonoids by gut bacteria (Chen et al., 2015; Sanchez-Patan et al., 2012). Some 
short-chain fatty acids (SCFA) also associated with gut flora, like serum propanoate, hydroxyacetate and urine 
Lactate, was down-regulated by EE group (van Dorsten et al., 2012). 1H-indole, a degradation product of the 
amino acid tryptophan by bacteria, was detected in lower level of urine in administration groups. All these 
variations indicated gut flora might be changed in EE and other groups.  

4.3 The Effect of E. purpurea on Gut Microbiota Structure 

The analysis of composition of gut microbiota demonstrated that the most dominant bacteria of all the groups 
belonged to two phyla, Firmicutes (Figure 5B) and Proteobacteria (Figure 5C), which are commonly founded in 
the mammal gastrointestinal tract. Then at genus level, several genera were present at different levels in E. 
purpurea and pidotimod-fed rats compared to control samples. Allobaculum and Bifidobacterium were increased 
significantly in E. purpurea group, while Lactobacillus was decreased significantly. The abundant genera could 
be clearly classified into two groups: SCFA-producing bacteria, such as Allobaculum and Bifidobacterium, and 
lactate-producing bacteria were decreased dramatically (Figure 5), which was in agreement with the lower level 
of lactic acid in urine samples (Wang et al., 2015). Allobaculum has been proven to be negatively correlated with 
obesity and could be reduced in gut by antibiotics (Cox et al., 2014).  

In summary, this article studied the effects of E. purpurea of young rats on immune factors, systemic 
metabolome and gut microflora structure by comparing with pidotimod administrated young rats and adult rats. 
High similarity was shown in immunoregulatory cytokines and immunoglobulins, serum and urine metabolome 
among the three groups, indicating E. purpurea could promote cellular immunity and affect systemic metabolites, 
which might lead the juvenile body to a mature status. Metabolites of gut microbiota and the co-metabolism with 
host were taken together to elucidate their interaction and develop a new perspective in which E. purpurea can 
be used as a food additive for developing immunity from infectious diseases.  
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