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Abstract: Pomegranate (Punica granatum L.) peel and sumac (Rhus coriaria L.) fruit and 

leaf extracts were chemically characterized and their ability to inhibit table grape (cv. Italia) rots 

caused by Botrytis cinerea was evaluated on artificially inoculated berries. Different extraction 

methods were applied and extracts were characterized through Ultra Fast High Performance 

Liquid Chromatography coupled to Photodiode array detector and Electrospray ionization 

Mass spectrometer (UPLC-PDA-ESI/MSn) for their phenol and anthocyanin contents. The 

concentrated pomegranate peel extract (PGE-C) was the richest in phenols (66.97 g gallic 

acid equivalents/kg) while the concentrated sumac extract from fruits (SUF-C) showed the 

highest anthocyanin amount (171.96 mg cyanidin 3-glucoside equivalents/kg). Both phenolic 

and anthocyanin profile of pomegranate and sumac extracts were quite different: pomegranate 

extract was rich in cyanidin 3-glucoside, pelargonidin 3-glucoside and ellagic acid derivatives, 

while sumac extract was characterized by 7-methyl-cyanidin 3-galactoside and gallic acid 

derivatives. The concentrated extracts from both pomegranate peel and sumac leaves 

significantly reduced the development of Botrytis rots. In particular, the extract from 

OPEN ACCESS



Molecules 2015, 20 11942 

 

 

pomegranate peel completely inhibited the pathogen at different intervals of time (0, 12, and 

24 h) between treatment and pathogen inoculation on fruits maintained at 22–24 °C and high 

relative humidity (RH). This extract may represent a valuable alternative to control postharvest 

fungal rots in view of its high efficacy because of the low cost of pomegranate peel, which 

is a waste product of processing factories. 

Keywords: UPLC-PDA-ESI/MSn; Punica granatum; Rhus coriaria; anthocyanins;  

phenols; tannins 

 

1. Introduction 

Postharvest losses of fruits mainly occur by decay caused by fungal pathogens, which, in addition to 

the economic damage may produce mycotoxins dangerous to human health [1]. Despite the levels of 

decay acceptable in postharvest systems are generally below 5%, depending on the commodity and 

country (developing or industrialized), they can reach levels of up to 50% [2]. Gray mold caused by 

Botrytis cinerea, can cause significant economic losses on many fruits and vegetables and it is generally 

considered as the most important postharvest pathogen of table grape. The control of fungal postharvest 

rots is closely linked to the use of pesticides but it is increasingly being restricted throughout the world 

because of environmental and toxicological problems [3,4]. The continuous use of fungicides, in fact, 

has faced two major obstacles, increasing public concern regarding contamination of perishables with 

fungicidal residues, and proliferation of resistance in the pathogen populations. As an example, several 

strains of B. cinerea are resistant to almost all of the commonly used fungicides [5]. The use of SO2 

generator pads containing sodium metabisulfite is one of the most common methods to control postharvest 

B. cinerea rots on table grapes. However, several reasons, such as its variable efficacy [6], damage caused 

to berries [7,8] and the allergenic effects recorded in sensitive people restrict SO2 application [9,10].  

In general, there is an emerging interest to develop “safer” alternative methods for decay control that 

meet the consumer demand for healthy/organic food products [11]. 

Natural inhibitors for pathogenic microorganisms have been explored in many plants [12]. Among 

constituents of plants, polyphenols have received a great deal of attention, in recent years, due to their 

diverse biological functions. Tannins are high molecular weight phenolic compounds, which are present 

in many plants, including pomegranate (Punica granatum L.) fruit pericarp, whose tannins have remarkable 

antimicrobial activity [13]. The fruit also contains a rich variety of polyphenols such as anthocyanins, 

gallotannins, hydroxycinnamic acids derivatives, hydroxybenzoic acids and hydrolysable tannins  

(as Punicalagin, which is unique to pomegranate and is part of a family of ellagitannins) and gallagyl 

esters [14]. Approximately 30% of all anthocyanins are concentrated in the peel portion of pomegranate 

fruit, whose concentration depends on the cultivar type and on the various developmental phases of the 

fruit [15,16]. Pomegranate has been widely used for several centuries in traditional medicine for a wide 

variety of diseases including upper respiratory tract infections and influenza [17]. In addition, many 

investigators have reported that pomegranate peel extracts have a free radical scavenger and potent 

antioxidant capacity [15,18]. As natural inhibitor for pathogenic microorganisms, the reports about antifungal 

and antibacterial properties of the pomegranate peel extract are various [1,12,19], depending on the type 
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of the tested microorganism. The above nutraceutical and medical properties are not limited to the edible 

part of pomegranate fruit, in fact, the non-edible fractions of fruit as well as other plant parts contain 

even higher amounts of specific nutritionally valuable and biologically active components [14]. 

Another promising plant source of biologically active molecules is Rhus coriaria L., commonly 

known as sumac, which grows wild in the region extending from Canary Island over the Mediterranean 

coastline to Iran and Afghanistan. The name derives from “sumaga”, meaning red in Syriac [20] and has 

a long history of use by indigenous peoples for medicinal and other uses [21]. Different parts of sumac 

possess significant phytochemical components such as tannins, flavonoids, anthocyanins, organic acids, 

flavones, proteins, fiber, volatile oils, nitrates, and nitrites [22]. The literature well records the potential 

for useful antimicrobial, antifungal, and antiviral agents from R. coriaria extracts [21]. To the best of 

our knowledge, the sumac extract has not been applied before as an antifungal agent in postharvest 

control of fruit diseases. 

Many publications have documented the antimicrobial activity of natural compounds against different 

microbial and fungal species [23–26]. However, there are still few studies about the biological activity 

of sumac and pomegranate against fungi [1,19,21,27]. In particular, their potential use to control fungal 

plant pathogens has been rarely investigated [28]. The present study aimed to evaluate different methods 

to obtain plant extracts from pomegranate peel and sumac fruits and leaves and to assess their efficacy 

against B. cinerea rots on artificially inoculated table grape berries, cv. Italia. 

2. Results and Discussion 

2.1. Total Anthocyanins and Total Phenolics 

Total anthocyanins and total phenols determined in the extracts (detailed in Table 1) obtained from 

pomegranate peel, sumac fruits and leaves are shown in Table 2. 

Table 1. Plant extracts assessed in the present study and relative abbreviations used in the manuscript. 

Species 
Plant 

Materials 

50% 
Ethanol/Water 
Extracts (1:1) 

80% 
Ethanol/Water 
Extracts (4:1) 

Concentrated 
Aqueous Extract from 
80% Ethanol/Water 

Water at 40 °C 
Extracts 

Pomegranate Peels PGE-50 PGE-80 PGE-C PGE-H2O 
Sumac Fruits SUF-50 SUF-80 SUF-C SUF-H2O 
Sumac Leaves SUL-50 SUL-80 SUL-C SUL-H2O 

As expected, the aqueous extracts obtained after evaporation of ethanol from 80% ethanol/water 

extraction (PGE-C, SUF-C and SUL-C) were more concentrated in anthocyanins and phenols than hot 

water and other hydroalcoholic extracts. Among the concentrated extracts, pomegranate peel (PGE-C) 

was the richest in phenols and sumac fruit (SUF-C) was the richest in anthocyanins. The water at 40 °C 

always extracted the lowest quantity of phenols from the different plant materials. For sumac, the leaf 

extract showed a higher value of phenols than the fruit extract (Table 2). Owing to the high phenol 

concentration in sumac leaves, many studies confirmed the possibility to use sumac leaves extract in 

reducing inflammation acting against reactive oxygen species [22,29]. In addition, these extract can be 

used as tanning agent in the leather industry [22]. 
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Table 2. Total anthocyanin and total phenolic contents in pomegranate peel, sumac fruits and 

leaves extracts. 

Extracts ¥ Total Anthocyanins § (mg CGE/kg) Total Phenolics § (g GAE/kg) 

PGE-C 21.64 ± 0.03 e 66.97 ± 0.67 a 
PGE-50 n.q. Ω 9.86 ± 0.20 gf 
PGE-80 n.q. 10.36 ± 0.31 f 

PGE-H2O n.q. 7.35 ± 0.08 h 
SUF-C 171.96 ± 1.51 a 9.47 ± 0.01 g 
SUF-50 39.73 ± 0.04 d 5.34 ± 0.43 i 
SUF-80 41.97 ± 0.02 c 5.42 ± 0.34 i 

SUF-H2O 94.92 ± 0.16 b 2.80 ± 0.01 j 
SUL-C - 29.38 ± 0.24 b 
SUL-50 - 27.16 ± 0.31 d 
SUL-80 - 27.84 ± 0.23 c 

SUL-H2O - 15.22 ± 0.13 e 

Mean values with different letters (a–j), within the same column are statistically different (p < 0.05);  
¥: For abbreviations see Table 1; §: results are expressed as the mean ± standard deviation; Ω: not quantifiable; 

- not detectable. 

In pomegranate extracts, anthocyanins were quantifiable only in the concentrated extract (PGE-C). 

For the sumac, anthocyanins were found only in fruits while these pigments were not detectable in the 

leaves. In addition, the amount of anthocyanins in our extracts were higher than that found by Kosar and 

others [30] who used methanol as extraction solution. The concentrated extract (SUF-C) and the water 

at 40 °C extract (SUF-H2O) showed the highest anthocyanin amounts. 

2.2. Identification of Anthocyanins by UPLC-PDA-ESI/MSn 

The anthocyanins profile of pomegranate peel extract (PGE-C) is shown in Figure 1A. The anthocyanins, 

identified on the basis of their retention times (RT) by comparison with authentic standards and by  

mass spectral analysis, which included MS1 and MS2 fragmentations, were delphinidin 3,5-diglucoside  

(peak 1), cyanidin 3,5-diglucoside (peak 2), pelargonidin 3,5-diglucoside (peak 3), delphinidin 3-glucoside 

(peak 4), cyanidin 3-glucoside (peak 5) and pelargonidin 3-glucoside (peak 6), respectively. Only three 

anthocyanidins, delphinidin, cyanidin, and pelargonidin, all conjugated with one or two hexose sugars, 

were found in pomegranate peel extract. This anthocyanidin profile was the same as has previously been 

found in pomegranate fruit and juice [15,31–33]. Classical fragmentation patterns of anthocyanins in 

ESI positive-mode were recorded and the sequential loss of their saccharide moieties at every induced 

collision was observed [15,34]. The most abundant anthocyanins in pomegranate peel extract (Table 3) 

were cyanidin 3-glucoside (49.36%), pelargonidin 3-glucoside (24.62%), and cyanidin 3,5-diglucoside 

(12.41%); these accounted for more than 85% of the total anthocyanins. The minor anthocyanins  

were pelargonidin 3,5-diglucoside (5.62%), delphinidin 3-glucoside (4.62%), and delphinidin  

3,5-diglucoside (3.37%). 

Five anthocyanins were identified in sumac fruit (SUF-C) extract (Figure 1B). After ESI-MS1 

positive-mode analysis, delphinidin (m/z 303), cyanidin (m/z 287), and methylated cyanidin (m/z 301) 

structures were identified, while hexose sugars ([M-162]+) and galloyl-galactose ([M-314]+) losses were 
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recorded. According to their fragmentations and by comparison of the MS data with those reported  

in the literature [35,36], the identified anthocyanins were delphinidin 3-glucoside (peak 7), cyanidin  

3-glucoside (peak 8), cyanidin 3-(2′′-galloyl)galactoside (peak 9), 7-methyl-cyanidin 3-galactoside  

(peak 10), and 7-methyl-cyanidin 3-(2′′-galloyl)galactoside (peak 11). The fragment ions at m/z 301 of 

peak 10 and 11 indicate methyl-cyanidin aglycone yielded after the loss of galloyl-galactoside moiety. 

An aglycone m/z of 301 is more commonly encountered for peonidin, but recent studies [35,36] have 

confirmed the identification of these unusual 7-methylated anthocyanin compounds in sumac fruits by 

using HPLC-ESI-MS analysis and NMR spectroscopy. The most abundant anthocyanins in sumac fruit 

extract were 7-methyl-cyanidin 3-galactoside (52.92%), 7-methyl-cyanidin 3-(2′′-galloyl)galactoside 

(35.14%), and cyanidin 3-glucoside (7.84%), these accounted for more than 95% of the total anthocyanins 

(Table 3). The minor anthocyanins were cyanidin 3-(2′′-galloyl)galactoside (3.83%), and delphinidin  

3-glucoside (0.28%). 

 

 

Figure 1. HPLC chromatograms of anthocyanin profiles of pomegranate peel (A) and sumac 

fruit (B) detected at 520 nm. Refer to Table 3 for the identification of each numbered peak. 
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Table 3. Identification and relative amounts of anthocyanins in concentrated pomegranate 

peel (PGE-C) and sumac fruit (SUF-C) extracts. 

Peak No. a RT (min) [M]+ (m/z) MSn (m/z) Anthocyanins 
Relative 

Compositions b (%) 

Pomegranate peel 

1 7.6 627 465/303 delphinidin 3,5-diglucoside 3.37 
2 9.1 611 449/287 cyanidin 3,5-diglucoside 12.41 
3 10.0 595 433/271 pelargonidin 3,5-diglucoside 5.62 
4 10.3 465 303 delphinidin 3-glucoside 4.62 
5 11.0 449 287 cyanidin 3-glucoside 49.36 
6 12.6 433 271 pelargonidin 3-glucoside 24.62 

Sumac fruit 

7 10.2 465 303 delphinidin 3-glucoside 0.28 
8 10.9 449 287 cyanidin 3-glucoside 7.84 

9 12.7 601 287 
cyanidin  

3-(2′′-galloyl)galactoside 
3.83 

10 13.4 463 301 7-methyl-cyanidin 3-galactoside 52.92 

11 15.3 615 301 
7-methyl-cyanidin  

3-(2′′-galloyl)galactoside 
35.14 

a: The numbering is according to Figure 1A,B; b: relative content of anthocyanins calculated from peak areas 

at 520 nm. 

2.3. Identification of Phenolic Compounds by UPLC-PDA-ESI/MSn 

Figure 2 shows the HPLC chromatogram of non-anthocyanins phenolic compounds of pomegranate 

peel extract (PGE-C) acquired at 378 nm and 280 nm. In this figure, the four major peaks (Table 4) 

corresponded to punicalagin A and B (peaks 2 and 3), granatin B (peak 4) and ellagic acid (peak 5). 

Table 4. Identification of phenolic compounds present in concentrated pomegranate peel 

extract (PGE-C). 

Peak No. a RT (min) [M − H]− (m/z) MSn (m/z) λmax Phenolic Compounds 

1 2.5 169 125 269, 310 gallic acid 
2 6.9 1083 781/601 258, 378 punicalagin A 
3 17.5 1083 781/601 258, 378 punicalagin B 
4 29.4 951 933/613 260, 365 granatin B 
5 33.5 301 229/185 254, 367 ellagic acid 
6 34.2 - 301 254, 361 ellagic acid derivative 
7 34.6 - 301 254, 360 ellagic acid derivative 
8 34.9 - 301 255, 362 ellagic acid derivative 
9 35.5 - 301 254, 363 ellagic acid derivative 

a: The numbering is according to Figure 2. 
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Figure 2. HPLC chromatogram of phenolic compounds of pomegranate peel detected at 378 

and 280 nm. Refer to Table 4 for the identification of each numbered peak. 

The chromatogram acquired at 280 nm revealed the presence of an hydroxybenzoic acid (gallic acid, 
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(peaks 6–9) were identified as ellagic acid derivatives. As reported in the literature, only anthocyanins, 

ellagitannins and gallic acid were detected in pomegranate peel and the major non-anthocyanin phenolic 

compounds (ellagitannins) of pomegranate products (fruit and juice) are punicalagins [15,32,37]. These 

compounds were found in the two isomeric forms (peaks 2 and 3), which exhibited a molecular ion at 

m/z 1083 and a fragmentation pattern that gave MS1 and MS2 fragments at m/z 781 (punicalin) and 601 

(gallagic acid), respectively. 

Peak 4 exhibited an [M − H]− ion at m/z 951 that produced fragments at m/z 933 and 613 in the MS1 

and MS2 experiments, respectively. The fragment at m/z 933 is typical for castalagin/vescalagin and 

galloylpunicalin, but these compounds exhibited molecular masses lower than granatin B. The fragment 

at m/z 613 derived from the loss of water from the ion at m/z 951 and from the subsequent losses of ellagic 

acid and water from the fragment at m/z 933. Moreover, additional other compounds with ellagitannin 

structure were peaks 6, 7, 8 and 9, all them sharing the ion at m/z 301 in their respective MSn fragmentation 

patterns. The ion at m/z 301 can correspond to both ellagic acid and quercetin. However, ellagic acid 

produced fragments at m/z 229 and 185, whereas quercetin generated fragments at m/z 179 and 151. 

Furthermore, both compounds differ in their maximum of absorbances (λmax) of the respective UV spectra. 
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The HPLC chromatograms of non-anthocyanin phenolic profiles of sumac fruit (SUF-C) and leaf 

(SUL-C) extracts are shown in Figure 3A,B, respectively. As reported in Table 5, ten and eleven phenolic 

compounds were detected in sumac fruit and leaf extracts, respectively. The first peak was gallic acid at 

m/z 169 detected both in sumac fruit and leaves (peak 1 and peak 11). Two flavonoid derivatives (myricetin 

3-rhamnoside and quercetin 3-glucoside) were identified both in sumac fruit (peaks 3 and 4) and leaves 

(peaks 14 and 15). 

 

 

Figure 3. HPLC chromatograms of phenolic compounds of sumac fruit (A) and leaves (B) 

detected at 360 nm. Refer to Table 5 for the identification of each numbered peak. 
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Table 5. Identification of phenolic compounds present in concentrated sumac fruit (SUF-C) 

and leaf (SUL-C) extracts. 

Peak No. a RT (min) [M − H]− (m/z) MSn (m/z) λmax Phenolic Compounds 

Sumac Fruit 

1 2.6 169 125 269, 310 gallic acid 

2 31.9 - 301 255, 354 quercetin derivative 

3 33.9 463 316 257, 366 myricetin 3-rhamnoside (see Figure 4A) 

4 35.3 463 301 255, 351 quercetin 3-glucoside (see Figure 4B) 

5 37.3 939 921/787/169 280 pentagalloyl-glucoside 

6 39.9 1091 939/169 282 hexagalloyl-glucoside 

7 41.9 1243 1091/169 281 heptagalloyl-glucoside 

8 43.5 1395 1243/169 285 octagalloyl-glucoside 

9 45.5 1547 1395/169 283 nonagalloyl-glucoside 

10 50.5 1699 1547/169 278 decagalloyl-glucoside 

Sumac leaves 

11 2.5 169 125 269, 310 gallic acid 

12 31.4 - 316 255, 366 myricetin derivative 

13 31.8 - 301 255, 346 quercetin derivative 

14 33.9 463 316 255, 366 myricetin 3-rhamnoside (see Figure 4A) 

15 35.3 463 301 255, 352 quercetin 3-glucoside (see Figure 4B) 

16 37.1 939 921/787/169 280 pentagalloyl-glucoside 

17 39.7 1091 939/169 280 hexagalloyl-glucoside 

18 41.7 1243 1091/169 281 heptagalloyl-glucoside 

19 43.2 1395 1243/169 285 octagalloyl-glucoside 

20 45.4 1547 1395/169 284 nonagalloyl-glucoside 

21 50.6 1699 1547/169 277 decagalloyl-glucoside 
a: The numbering is according to Figure 3A,B. 

These compounds exhibited the same [M − H]− ions at m/z 463 but a different fragmentation pathways. 

The MS1 spectrum of the peaks at RT 33.9 min (Figure 4A) shows the fragment ion at m/z 613 indicative 

of the myricetin, while the peaks at RT 35.3 min gave a fragment at m/z 301 (Figure 4B), corresponding 

to the deprotonated quercetin. Based on this evidence and the previous literature data [35,38], as well as 

by direct comparison with standards using UV spectra and co-chromatography in several solvent systems, 

we can assess the simultaneous presence of myricetin 3-rhamnoside and quercetin 3-glucoside both in 

fruits and leaves of Rhus coriaria L. Moreover, the presence of other quercetin and myricetin derivatives 

was highlighted (peak 2 and peaks 12 and 13 for sumac fruit and leaves, respectively). 

The main tannin compounds present in the Rhus family are gallotannins [30]. As reported in Table 5, 

sumac fruit and leaves showed the same gallotannin composition from penta to decagalloyl-glucoside. 

These compounds were separated by a constant mass value of 152 Da corresponding to the molecular 

weight of the galloyl moiety. As confirmed by previous studies [38], the loss of galloyl residue attached 

to the pentagalloyl-glucose core via m-depside bonds is favored compared to the loss of gallic acid  

(170 Da) directly linked to the glucose core, due to the higher activation energy needed to break  

this type of bond. For this reason, the ion relative to the loss of gallic acid at m/z 921 only in the  

pentagalloyl-glucoside fragmentation pathway was highlighted. This type of fragmentation is typical of 

galloylated compounds with up to five galloyl units [38,39]. 
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Figure 4. Fragmentation pathways of the ions at m/z 463 at RT 33.9 and 35.3 min, with the 

assignment to myricetin 3-rhamnoside (A) and quercetin 3-glucoside (B), respectively. 

2.4. Efficacy of Sumac and Pomegranate Extracts against Botrytis cinerea on Artificially Inoculated 

Grape Berries 

Among tested extracts, the concentrated ones (PGE-C, SUL-C and SUF-C) were able to reduce the 

incidence and/or the extension of B. cinerea rots (Figure 5). On the contrary, other extracts (PGE-H2O, 

SUF-H2O, SUL-H20, PGE-80, PGE-50, SUF-80, SUF-50, SUL-80 and SUL-50) did not significantly 

reduce rots or had a limited inhibition effect (data not shown). These results are in agreement with the 

chemical composition since total phenols reached the highest content in concentrated extracts (Table 2).  

A direct correlation between total phenols and antimicrobial activity is well documented [12]. Phenols 

may also play an important role by inducing resistance in the host and/or by reducing the production of 

mycotoxins [40,41]. These results highlight the importance of the extraction method, which is strictly 

related to the type of solvent and the solvent ratio and strongly affects the phenolic yield and the consequent 

biological activity [14]. 

150 200 250 300 350 400
m/z

0

5

10

15

20

25

30

35

40

45

In
te

ns
ity

316.05

A

150 200 250 300 350 400
m/z

0

2

4

6

8

10

12

14

16

18

20

22

In
te

n
si

ty

301.28

B



Molecules 2015, 20 11951 

 

 

 

Figure 5. Incidence of decays (columns) and extension of rots (black dots) on table grape 

berries treated with concentrated extracts of pomegranate peel (PGE-C), sumac fruits (SUF-C), 

or sumac leaves (SUL-C) and artificially inoculated Botrytis cinerea after 1, 12 or 24 h. 

Wounds mock treated with a solution of 1% citric acid and inoculated with the pathogen, 

served as controls. For each extract and assessment time (1, 12 and 24 h), values not sharing 

common letters are statistically different according to Duncan’s multiple range test (p ≤ 0.05). 

Standard error bars are shown on each column. 

Among concentrated extracts, pomegranate peel (PGE-C) was the most effective completely inhibiting 

the development of B. cinerea in all the tested time intervals (Figure 5). As regard to sumac, extracts 

from fruits were overall less performing as compared to those from leaves. On fruits treated with SUL-C, 

the rotted areas on artificially inoculated berries was reduced by 70%, 81% and 92% as compared to the 

positive control at 1, 12 and 24 h, respectively (Figure 5). Similarly, the incidence of infected fruit was 

significantly reduced by 63%, 55% and 72% in the three assessment times, respectively. On the contrary, 

SUF-C determined a significant reduction of the incidence of rots only when applied 24 before the 

pathogen, although a reduction of the area of rots was revealed in all times (Figure 5). 

The observed differences in biological activity among PGE-C, SUL-C and SUF-C extracts may be 

related to their qualitative and quantitative composition. In particular, the concentration of total phenolics 
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was very high in PGE-C, intermediate in SUL-C and low in SUF-C (Table 2). Moreover, pomegranate 

and sumac extracts exhibited different tannin patterns (Tables 4 and 5). Among ellagitannins, punicalagins, 

which are the main compounds in the peels, are the most bioactive compounds having antifungal activity [1]. 

3. Experimental Section 

3.1. Pomegranate and Sumac Extracts 

Extracts obtained from pomegranate (Punica granatum L.) peels and from sumac (Rhus coriaria L.) 

leaves and fruits were investigated in the present study. Pomegranate fruits cv. “Mollar de Elche”, at an 

optimum stage of ripening were from an orchard located in Acireale (Italy). Sumac fruits and leaves 

were collected in Buccheri (Siracusa, Italy), a typical production area of this crop. After harvesting,  

all fruits and leaves were immediately transferred to the CRA-ACM laboratories (Acireale, Italy). Then, 

all plant portions were cut into pieces and oven dried at 40 °C up to constant weight, and then powdered 

in a homegrinder (Mx Type A505, Moulinex, Ecully Cedex, France). The dried powder of sumac fruits 

was extracted for 8 h with n-hexane (VWR Chemicals, Milan, Italy) to remove lipid components using 

a Soxhlet apparatus. The defatted sumac fruits were put in an oven at 50 °C for 8 h to remove the residue 

of n-hexane. Afterwards, the powder was extracted with the extracting solutions. All extracts were 

obtained from grinded tissues with water or water/ethanol (95%, food grade, Fichera, S. Venerina, Italy) 

solutions with a ratio of 1:10 (w/v). From both pomegranate and sumac plant materials, four kind of 

hydroalcoholic extracts were tested: (1) 50% ethanol/water (1:1) (v/v); (2) 80% ethanol/water (4:1); (3) 

a concentrated aqueous extract obtained from 80% ethanol/water mixture after evaporation of ethanol 

by using a rotary evaporator (Rotavapor RE111, Büchi, Cornaredo, Italy) under vacuum at 40 °C; and 

finally; (4) a water extract obtained using distilled water at 40 °C (Table 1). The extracting solutions 

were supplemented with 1% citric acid (Sigma-Aldrich, Milan, Italy) except for the solution used for the 

preparation of concentrated extracts (80% ethanol/water (4:1)). For this latter extract a 0.2% citric acid 

solution was utilized in order to have in the final extract (after the evaporation of ethanol) a concentration 

of approximately 1%. The solutions were left in an orbital shaker (711D model, Tecnolab, Messina, 

Italy) for 24 h. Then, the solutions were filtered through Miracloth paper (Calbiochem, Vimodrone, Italy) 

and through a 0.45 μm membrane filter (Albet, Barcelona, Spain) for the subsequent analyses. 

3.2. Determination of Total Anthocyanins and Total Phenolic Content of the Plant Extracts 

The total anthocyanins in the extracts were assayed by the pH differential method [42]. The absorbance 

values of appropriately diluted extracts were measured at 520 nm by a UV-Vis spectrophotometer (Varian 

Cary 100 Scan, Palo Alto, CA, USA). The total anthocyanins was expressed as mg of cyanidin 3-glucoside 

equivalents (CGE)/kg of extract. The total phenolic content in the extracts was determined according to 

the Folin–Ciocalteu (FC) colorimetric method [43]. The extracts were mixed with 5 mL of FC commercial 

reagent (previously diluted with water, 1:10 v/v) and 4 mL of a 7.5% sodium carbonate solution. The 

mixture was stirred for 2 h at room temperature away from strong light. The absorbance of the resulting 

blue solution was measured spectrophotometrically at 765 nm and the total phenolic content was expressed 

as g of gallic acid equivalents (GAE)/kg of extract. 
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3.3. UPLC-PDA-ESI/MSn Analyses 

For identification of anthocyanins, PGE-C and SUF-C extracts were loaded onto a C18 Bond Elut 

SPE cartridges (Varian Inc., Palo Alto, CA, USA) pre-washed in methanol and then pre-equilibrated in 

water. Anthocyanins were adsorbed onto the C18 Bond Elut column, while other soluble compounds were 

removed by washing the cartridges with water. Then anthocyanins were eluted with acidified methanol 

(containing 1% of formic acid). The acidified methanol solutions were evaporated to dryness, and then 

the dry fractions were re-dissolved in a 7% formic acid aqueous solution. Samples were filtered through 

a 0.45 μm membrane filter (Albet, Barcelona, Spain) and injected into the UPLC-MSn chromatographic 

system (see below) for identification of individual anthocyanins. The standards of cyanidin 3-glucoside, 

cyanidin 3,5-diglucoside, delphinidin 3-glucoside, delphinidin 3,5-diglucoside, pelargonidin 3-glucoside, 

pelargonidin 3,5-diglucoside, and myricetin 3-rhamnoside were purchased from Extrasynthese  

(Genay, France). Gallic acid, quercetin 3-glucoside, ellagic acid, and punicalagin were purchased from 

(Sigma-Aldrich). All other chemicals were of analytical grade (Sigma-Aldrich). Solvents for chromatography 

were HPLC grade (Merck KGaA, Darmstadt, Germany). 

For identification of non-anthocyanins phenolic compounds, a sample of PGE-C, SUF-C and  

SUL-C extracts was diluted in mobile phase solvent A (water containing 0.3% of formic acid), filtered 

through a 0.45 μm filter, and injected directly into the column. 

Separations of anthocyanins and non-anthocyanins phenolic compounds were conducted on an Onyx 

Monolithic C18 column (100 × 3.0 mm i.d., monolithic particle size; Phenomenex, Torrance, CA, USA), 

using an Ultra Fast HPLC system coupled to a photodiode array (PDA) detector and a Finnigan LXQ ion 

trap equipped with an electrospray ionization (ESI) interface in a series configuration (Thermo Electron, 

San Jose, CA, USA). Two different binary gradients were used. A binary gradient composed of water 

containing 7% of formic acid (solvent A) and methanol (solvent B) was used for the separation of 

anthocyanins. The gradient was run as follows: from 5% to 40% of B in 20 min, isocratic for 7 min, followed 

by re-equilibrating the column to initial conditions. A binary gradient composed of water containing 

0.3% formic acid (solvent A) and acetonitrile containing 0.3% formic acid (solvent B) was used for the 

separation of phenolic compounds. The gradient was run as follows: 0 min, 5% B, 10 min, 2% B, 50 min, 

28% B, 60 min, 43% B, isocratic for 20 min, followed by re-equilibrating the column to initial conditions. 

The flow rate was 300 μL/min, the column temperature was maintained at 30 °C and the injection volume 

was 20 μL, both for anthocyanins and phenolics analysis. Chromatograms were recorded at 280, 320, 378 

and 520 nm. 

Operating parameters of the mass spectrometer were the same for both anthocyanins and phenolics 

analysis: spray voltage 5.00 kV, capillary temperature 275 °C, capillary voltage 19 V. A sheath gas flow 

rate of 30 arb (arbitrary units) was applied, and the auxiliary and sweep gas were set at 15 and 4 arb, 

respectively. Preliminary positive and negative tunings were carried out with direct injection of diluted 

solutions of cyanidin 3-glucoside and punicalagin, respectively at a flow rate of 5 μL/min and the voltages 

of the optical lenses were optimized by using TunePlus Xcalibur v. 2.0.7 software (Thermo Electron,  

San Jose, CA, USA). MS full-scan acquisition was carried out from m/z 100 to 2000, in both positive 

and negative mode. Then, chosen peaks were isolated in the ion trap and fragmented by an MSn scan 

acquisition. The MSn spectra were obtained by using a collision energy of 13%–17% of instrument 

maximum, operating with an isolation width (m/z) of 1.5. The mass spectrometry data were acquired  
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in the positive ionization mode for anthocyanins and in the negative ionization mode for other  

phenolic compounds. 

The anthocyanins and phenolics were identified by using their retention times (tR), UV-Vis spectra, 

co-chromatography with standard in several solvent systems, MS and MSn spectral data operating in 

positive and negative ion mode, respectively. In addition, comparison of the MS data with those of pure 

standards and/or those reported in literature was performed. The relative composition (%) of the 

individual anthocyanins and phenolics were calculated from the peak areas of the chromatograms 

detected at 520 and 320 nm, respectively, using Xcalibur v. 2.0.7 software (Thermo Electron). 

3.4. Preparation of the Pathogen Inoculum 

A pure culture of B. cinerea was obtained from infected grape berries. Conidia were directly collected 

from decayed fruits, serially diluted with sterile water and plated on potato dextrose agar (Sigma-Aldrich) 

in order to obtain single conidia colonies. Pure cultures were kept on PDA at 5 °C for long-term storage 

or grown at 22 °C for 7–10 days to produce inocula. Conidia were collected with a spatula, suspended 

in sterile distilled water, filtered through a double layer of sterile muslin cloth (Artsana, Rome, Italy), 

vortexed for 1 min to assure uniform mixing, and diluted to the final concentration of 2 × 106 conidia mL−1. 

A hemocytometer chamber (Brand Gmbh COKG, Wertheim, Germany) was utilized to evaluate the 

concentration of conidia. 

3.5. In-Vivo Assays of Extracts on Artificially Inoculated Grape Berries 

Tests were performed with all extracts (Table 1) on table grape berries, cv. Italia, of uniform size and 

ripeness from an organic farm located in Calabria (Southern Italy). Individual berries were surface 

sterilized by immersion in a 2% sodium hypochlorite solution for 1 min, washed twice with tap water, 

air-dried and glued on polypropylene honeycomb panels (Nidaplast, Thiant, France) using a double-sided 

tape. Berries were kept 1 cm apart to avoid nesting and wounded with a nail in the equatorial zone. 

Wounds were treated by applying 10 μL of extracts and inoculated with an equal volume of a conidia 

suspension of B. cinerea after 1, 12 or 24 h. Wounds treated with 1% citric acid and inoculated with the 

pathogen, served as a control. Fruits glued on polypropylene honeycomb panels were always maintained 

at room temperature (22–24 °C) in lidded plastic boxes containing wet paper to ensure high relative 

humidity (RH). The incidence of infected wounds and the area of rots (with and without mycelia) were 

evaluated after 4 days of incubation. The formula of the ellipse using the two perpendicular axes as input 

data was utilized to determine the rotted area. Each treatment was applied on 30 grape berries arranged 

in three groups of 10 berries. 

3.6. Statistical Analysis 

Data analysis was carried out with the SPSS software (version 21.0, IBM Statistics, Armonk, NY, 

USA). One-way ANOVA analysis of variance was used to test the effect of the different variables on 

the measured factors. Duncan’s test was used to perform multiple comparisons between the means  

(p ≤ 0.05). The data of decay % converted into Bliss angular values (arcsin √%) were submitted to  

one-way ANOVA analysis and compared using Duncan’s test (p ≤ 0.05). 
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4. Conclusions 

Although results of the present study may be considered preliminary, they suggest PGE-C and SUL-C 

as potential effective plant extracts to control B. cinerea rots as well as other postharvest fungal pathogens. 

An important feature is the high efficacy of PGE-C, which completely inhibited B. cinerea unlike the great 

majority of currently available alternative control means, which only determine a delay in the development 

of rots. Furthermore, this extract proved to also be every effective when applied 12 and 24 h before the 

pathogen, indicating that its biological activity lasts for several hours after its application on the infection 

site. From a practical point of view, this result suggests the possible use of the extract just before or soon 

after harvest to protect fruits during critical phases such as harvesting and packaging, in which fungal 

pathogens can penetrate trough wounds and establish infections. Finally, the wide availability and the low 

cost of pomegranate peel, which is a waste product of the processing factories, and of the sumac plant that 

grows wild in the Mediterranean area, may facilitate the development of new commercial formulations. 
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