

VARTM Variability and Substantiation

D. Heider, C. Newton, J. W. Gillespie

June 21st 2006

UNIVERSITY OF DELAWARE CENTER FOR COMPOSITE MATERIALS INTERNATIONALLY RECOGNIZED EXCELLENCE

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Dirk Heider
 - John W. Gillespie, Jr.
 - Crystal Newton
- FAA Technical Monitor
 - Curtis Davies
- Industry Participation
 - Gore (Munich, Germany)
 - Provided membrane materials, access to instrumentation and technical input
 - Hexcel (Seguin, Texas)
 - Provided resin and fabric material and technical input
 - Cytec (Anaheim, CA)
 - Provided resin and fabric material and technical input
 - EADS (Augsburg, Germany)
 - Provided technical and financial input
 - Boeing (Philadelphia, PA)
 - Provided technical input

MOTIVATION

- VARTM process: +/-
 - Main advantages: low cost, high fiber volume fraction, large scale parts
 - Still some limitations
 - High variability compared to autoclave process
 - From part to part
 - In the same part
- Following conditions have to be met to make VARTM viable for high-performance aerospace applications:

APPROACH

- Three VARTM processes will be evaluated on process repeatability, part quality, and mechanical performance
- Establish the fundamental understanding of the membrane/resin interaction
- Conduct model experiments to understand infusion and post-infusion stages of various VARTM processes
 - Implement novel characterization equipment
 - Model the thickness variation
 - Model the void formation
- Establish an elevated temperature VARTM workcell for toughened epoxies

VARTM Process Variations

- 1. Seemans Resin Infusion Molding Process (SCRIMP)
 - Use of Distribution Media
 - Patent held by TPI Inc.
- 2. Vacuum-Assisted Processing (VAP)
 - Use of an additional membrane
 - Patents held by EADS
 - Reduces Void Content, Improves Process robustness
- 3. Controlled Atmospheric Resin Infusion Process (CAPRI)
 - Reduced pressure differential
 - Patent held by the Boeing Co.
 - Reduces thickness gradient, improves fiber volume fraction variation

AEROSPACE VARTM'D COMPONENTS

A400M CFC Cargo Door

C-17 Main Landing Gear Door

The Joint Advanced Materials and Structures Center of Excellence

Rear Bulkhead 787

Liquid Injection Molding Simulation

- Simulation of Liquid Composite Molding (LCM) processes such as
 - Resin Transfer Molding (RTM)
 - Vacuum-Assisted Resin Transfer Molding (VARTM)
- Finite Element Model (FEM) allows
 - Simulation of large-scale complex structures
 - Optimization of injection and vent locations
 - Study of dry-spot and high void content areas
 - Integration of various materials (fabric, core, metal meshes, etc.)
 - Simulation of cure behavior
- Successful <u>virtual</u> VARTM product development examples include

MEMBRANE-BASED VARTM PROCESSING (VAP)

- Utilize membrane cover to allow continues degassing and uniform vacuum pressure during VARTM processing
 - Reduces void content
 - Improves uniformity (fiber volume fraction, thickness)
 - Eliminates dry-spots

Process Variations: The CAPRI Process

CAPRI Patent held by Boeing

Woods, J., Modin, A. E., Hawkins, R. D., Hanks, D. J., "Controlled Atmospheric Pressure Infusion Process", International Patent WO 03/101708 A1.

MAIN REQUIREMENTS OF THE MEMBRANE

•Desirable Characteristics for a membrane used in VARTM:

- Gas permeable material
 - OR High air permeability through the thickness
- Resin-proof material
 - OR Low liquid/resin permeability through the thickness

•Compatibility with resin

- Compatible: The resin does not go through the membrane and is forced into the part
- Incompatible: The resin penetrates the membrane

__High air permeability

www.gore-tex.co.uk

Low liquid

Membrane (from W. L. Gore & Associates, GmbH)

- Optical microscope
 SEM of the membrane
 - The membrane is mounted on _ Top surface a support

• SEM of the support

- Vacuum applied during the VARTM process (≤10⁵ Pa)
- Capillary effect
- Gravity force

- Gravity: $P_g = \rho g \xi$
- Pressure in the fluid below the meniscus P_1^* :

And

- γ: resin surface tension (N/m)
- θ: contact angle membrane/resin of interest
- r: pore radius (m)

$$P_1^* = P_1 - \frac{2\gamma\cos\theta}{r}$$

- ρ: resin density (kg/m³)
- g: gravitational acceleration (m/s²)
- ξ: position of the flow front in the pore (m)

• The flow front position of the resin into the pore is given by <u>integration</u> of the flow front velocity

As a result:
$$\xi = \sqrt{\frac{2t}{\eta} \frac{\varepsilon^3}{k\tau^2 S^{*2}}} \left[\Delta P + \frac{2\gamma \cos \theta}{r} - P_g \right]$$

• Time for - Model $t = \frac{h^2}{\frac{2}{5} \frac{\epsilon^3}{\eta S^{*2}} \left[\Delta P + \frac{2\gamma \cos \theta}{r} - P_g \right]}$ where the membrane: Membrane: Membrane: Membrane: Membrane: Capillary effect The Joint Advanced Materials and Structures Center of Excellence

- Pore size: porometry \Rightarrow mean flow pore diameter d = 130.5 \pm 5.7nm
- Resins' characterization
 - Density

- Viscosity

- : from manufacturers : viscometer
- Surface tension : dynamic contact angle apparatus
- Membrane/Resin characterization
 - Contact angle : sessile drop/high-speed camera

The Joint Advanced Materials and Structures Center of Excellence

Overview of Model Input

• Density, viscosity and surface tension of both resin systems:

Fluids	Density (kg/m ³)	Viscosity (cP)	Surface tension (N/m)
Source	From manufacturer	Measured	Measured
Vinyl-ester resin system	1024	106 ± 3.7	3.39x10 ⁻² ± 1.8x10 ⁻
Epoxy resin system	1198	183 ± 4.8	3.7x10 ⁻² ± 2x10 ⁻⁴

Contact Angle Measurements:

*30-250 frames/s (max: 100.000) -1024x1024 pixels SC15 Part A

θ = 139^o

 $\theta = 91^{\circ}$

Evaluation of Capillary Effect and Gravity

- Evaluation of the different contributions
 - Vacuum pressure: $\Delta P = 98 \times 10^3 \pm 0.6 \times 10^3 Pa$
 - Capillary pressure: $P_c = -\frac{2\gamma\cos\theta}{r}$
 - Gravity effect:

$$P_g = \rho g \xi$$

Fluids	P _g (Pa)	P _c (Pa)
Epoxy resin system	0.588	8.30 x 10 ⁵
Vinyl-ester resin system	0.502	1.76 x 10 ⁴

⇒The gravity term <u>can be neglected</u> The Joint Advanced Materials and Structures Center of Excellence

Experimental time to go through the membrane

- Setup
 - Central injection line
 - CCD (Charge-Coupled Device) camera to capture the wetting of the membrane

	Resin System	Reminder: gel time	Experimental	Model
	VE + Styrene (1:6)	30 minutes	11s ±30% ⇒INCOMpatibl e	1.7s (from 0.4s to 4s) ⇒ INCOMpatible
	SC15	7 hours	About 10h \Rightarrow COMpatible	No impregnation ⇒ COMpatible

- A <u>model</u> based on:
 - Classical transport through porous medium
 - And surface science
- was <u>built</u> to address the issue of membrane/resin interactions
- \Rightarrow The model captures the predominant transport mechanisms but still needs $\underline{refinement}$
- Ongoing work
 - Model
 - Use the final model of resin transport through membrane to identify the critical parameters of membrane and resin
 - Design a membrane
 - Create a design chart, which gives the adequate membrane for a specific resin system
 - Validate the design chart with various membranes
 - Optimize membrane for toughened epoxies

- PhD Student (Solange Amouroux) won numerous awards including
 - R. L. McCullough Scholars Award, May 2006
 - Winner of the Student symposium at the 2006 Long Beach SAMPE Conference and Exhibition
 - 3rd place in the Student symposium at the 2005 Long Beach SAMPE Conference and Exhibition
- Technology highlighted in the JEC and SAMPE journal
- Following companies have shown interest in the membrane research:

Approach:

- Develop instrumentation to characterize compaction behavior and permeability as a function of compaction pressure and debulking cycle
- Conduct model experiments to evaluate process and use existing models to predict flow and thickness changes

Design of the Permeability Measurement Work Cell (PermCell)

•Benefits of the PermCell

- Rapid, clean and easy method to obtain permeability
- Permeability can be obtained online as a function of compaction, fiber volume fraction and debulking cycle
- Measurement Cell is capable for use of gas well as liquid flow
- Dimension (14.5 inch diameter) minimizes errors from boundary effects

Experimental Set-Up

- Water permeability is slightly lower compared to air permeability
 - Lubrication may allow add. sliding during infusion
- After debulking the permeability is reduced and identical The Joint Advanced Materials and Structures Center of Excellence

Effect of Debulking on Thickness and Fiber Volume Fraction

- The thickness and spring-back behavior is greatly reduced during debulking
 - Increases Fv
 - Reduces thickness gradient

The Joint Advanced Materials and Structures Center of Excellence

A Center of Excellence

Transport Aircraft Structure

Effect of Debulking on Permeability

 Debulking also reduces the permeability (up to a factor of 10 times) and thus flow behavior

Thickness Behavior Comparison between CAPRI and SCRIMP

Debulking can
 greatly increase
 final fiber volume
 fraction

A Contor of Evcallon

The thickness gradient is reduced when the CAPRI pressure is applied (insignificant for the debulked case)

Model to Predict Thickness Variation

- Considers infusion and resin bleeding behavior
- Requires compaction and permeability behavior of fabric
- Provides anticipated thickness after infusion and during resin bleeding

Thickness Field During Typical SCRIMP Processing

³¹

Thickness Field During CAPRI Processing

1

 The infusion bucket was evacuated to 0.5atm (CAPRI pressure)

CAPRI Process

➔ This resulted in 30% reduction in thickness gradient directly after infusion

➔ The resin bleeding time reduced by 80% to obtain a 5% thickness gradient

Aerospace VARTM Requires Elevated Temperature Processing

- Robust System Construction
- Re-Configurable Infusion Schemes
- Improved Resin Mixing System
- Statistical Data Sampling During Infusion &
- Electronic Work Instruction

A Contor of Evcallon

Transport Aircraft Stru

.....

ELEVATED PROCESSING REQ

- Heated External Resin Supply
- Heated Tooling
- Adapt IPC capabilities to elevated temperature processing

CONSIDER TWO AEROSPACE TOUGHENED EPOXY SYSTEMS

- Cytec Epoxy Cycom 977-20
 - Viscosity = 120 cps @ 167°F
 - Ramp with 4°F/min to 355 cure for 3 hours, cool to 140°F @ 5°F/min
 - Cured Resin Density = 1.31g/cm²
 - $Tg = 212^{\circ}C$
- Hexcel Epoxy RTM 6
 - Viscosity = 180 cps @ 177°F / 40 cps @ 248°F
 - Ramp with 5°F/min to 320 °F, cure for 75 minutes
 - Cured Density = 1.14g/cm²
 - Tg = 183°C (Hexcel Datasheet)

Elevated VARTM Requires New Grippers and Sensors

A Center of Excellence

Pneumatic High Temperature Gripper

High Temperature Flow Front Sensors and mold materials

Component Fabrication

- Consistent fiber volume fraction of > 56% is achievable
 - AS4-GP-6K-5HS 377g/m² carbon fabric
 - Higher performance fibers are being considered
- Void Content below 1%
- Unitized structures can be fabricated
 - Stiffened Structures
 - Cored Structures
- Automation has been implemented

- Compare various processes
 - Fiber Volume Fraction
 - Void Content
 - Dimensional Tolerances
- Structural
 - Tension, compression, bending
 - Damage tolerance
 - Open-hole compression
 - Compression after impact

A Look Forward

- Benefit to Aviation
 - Improved fundamental understanding of VARTM processing to understand benefits and disadvantages of various process variations
 - Reduce part-to-part variations / improve allowables
 - Automated VARTM will allow QA/QC of part production reducing costs and improve quality while maintaining traceability
 - Open-access database of structural properties
- Future needs
 - Work close with VARTM manufacturers to transition technology
 - Improve VARTM to achieve autoclave-level fiber volume fraction
 - Investigate more complex geometries / unitized structures