
The Cecil Language
Specification and Rationale

Craig Chambers

Department of Computer Science and Engineering, FR-35
University of Washington

Seattle, Washington 98195 USA

Technical Report 93-03-05
March 1993

chambers@cs.washington.edu
(206) 685-2094; fax: (206) 543-2969

ii

Abstract

Cecil is a new purely object-oriented language intended to support rapid construction of high-
quality, extensible software. Cecil combines multi-methods with a classless object model, object-
based encapsulation, and optional static type checking. Cecil’s static type system distinguishes
between subtyping and code inheritance, but Cecil enables these two graphs to be described with
a single set of declarations, optimizing the common case where the two graphs are parallel. Cecil
includes a fairly flexible form of parameterization, including both explicitly parameterized objects,
types, and methods and implicitly parameterized methods related to the polymorphic functions
commonly found in functional languages. By making type declarations optional, Cecil aims to
support mixed exploratory and production programming styles.

This document describes the design of the Cecil language as of March, 1993. It mixes the
specification of the language with discussions of design issues and explanations of the reasoning
that led to various design decisions.

iii

Table of Contents

1 Introduction. 1

1.1 Design Goals and Major Features 1

1.2 Overview 3

2 Dynamically-Typed Core . 4

2.1 Objects and Inheritance 4

2.2 Methods 5
2.2.1 Argument Specializers and Multi-Methods 6
2.2.2 Statements and Expressions 8
2.2.3 Method and Closure Results 10
2.2.4 Abstract Methods 11
2.2.5 Primitive Objects and Methods 11
2.2.6 Programming Environment Support 12

2.3 Fields 14
2.3.1 Fields and Methods 15
2.3.2 Copy-Down vs. Shared Fields 16
2.3.3 Field Initialization 17
2.3.4 Abstract Fields 19

2.4 Encapsulation 19
2.4.1 Granting Privileged Access 20
2.4.2 Private Multi-Methods 22
2.4.3 Other Issues with Encapsulation 22
2.4.4 Comparison with Other Languages 24

2.5 Method Lookup 25
2.5.1 Philosophy 25
2.5.2 Semantics 26
2.5.3 Examples 27
2.5.4 Strengths and Limitations 28
2.5.5 Method Lookup and Encapsulation 29
2.5.6 Multiple Inheritance of Fields 29
2.5.7 Method Lookup and Lexical Scoping 30
2.5.8 Method Invocation 31

2.6 Resends 31

2.7 Predicate Objects 33

3 Static Types. 34

3.1 Goals 34

3.2 Types and Signatures 35

3.3 Type Declarations 36

iv

3.4 Extracting Types and Signatures 37
3.4.1 Extracting Types from Object Declarations 38
3.4.2 Extracting Signatures from Method Declarations 39
3.4.3 Discussion 39

3.5 Special Types and Type Constructors 40

3.6 Object Role Annotations 41

3.7 Type Checking Messages 43
3.7.1 Checking Messages Against Signatures 43
3.7.2 Checking Signatures Against Methods 44
3.7.3 Comparison with Type Systems for Singly-Dispatched Languages 45
3.7.4 Comparison with Type Systems for Multiply-Dispatched Languages 46

3.8 Type Checking Expressions, Statements, and Declarations 47

3.9 Type Checking Subtyping Declarations 51

3.10 Type Checking Encapsulation 51

3.11 Parameterized Objects, Types, and Methods 53
3.11.1 Explicit Parameterization 53
3.11.2 Implicit Parameterization 54
3.11.3 Instantiating Implicit Type Parameters 56
3.11.4 Method Lookup 59
3.11.5 Parameterized Types and Signatures 59

3.12 Mixed Statically- and Dynamically-Typed Code 61

3.13 Open Issues and Future Work 62
3.13.1 Efficient Implementation of Type Checking 62
3.13.2 Incremental Type Checking and Modules 63
3.13.3 Dynamic Inheritance 63
3.13.4 F-Bounded Polymorphism 64

4 Related Work. 66

5 Conclusion . 69

References . 70

Appendix A Annotated Cecil Syntax . 74

A.1 Grammar 74

A.2 Tokens 76

A.3 White Space 77

1

1 Introduction

This document describes the initial design of Cecil, an object-oriented language intended to
support the rapid construction of high-quality, reusable, extensible software systems [Chambers
92b]. Cecil is unusual in combining a pure, classless (prototype-based) object model, multiple
dispatching (multi-methods), and mixed static and dynamic type checking. Cecil was inspired
primarily by SELF [Ungar & Smith 87, Hölzleet al. 91a], CLOS [Bobrowet al. 88, Gabrielet al.
91], and Trellis [Schaffertet al. 85, Schaffertet al. 86].

1.1 Design Goals and Major Features

Cecil’s design results from several goals:

• Maximize the programmer’s ability to develop software quickly and to reuse and modify
existing software easily.

In response to this goal, Cecil is based on a pure object model: all data are objects and objects
are manipulated solely by passing messages. A pure object model ensures that the power of
object-oriented programming is uniformly available for all data and all parts of programs. The
run-time performance disadvantage traditionally associated with pure object-oriented
languages shows signs of diminishing [Chamberset al. 89, Chambers & Ungar 91, Hölzleet
al. 91b, Chambers 92a].

Our experience also leads us to develop a classless (prototype-based) object model for Cecil.
We feel that a classless object model is simpler and more powerful than traditional class-based
object models. Cecil’s object model is somewhat more restricted than those in other prototype-
based languages [Borning 86, Lieberman 86, LaLondeet al. 86, Ungar & Smith 87, Lieberman
et al. 87], in response to other design goals.

Since message passing is the cornerstone of the power of object-oriented systems, Cecil
includes a fairly general form of dynamic binding based on multiple dispatching. Multi-
methods affect many aspects of the rest of the language design, and much of the research on
Cecil aims to combing multi-methods with traditional object-oriented language concepts, such
as encapsulation and static type checking, not found in other multiple dispatching languages.

• Support production of high-quality, reliable software.

To help in the construction of high-quality programs, programmers can add statically-
checkable declarations and assertions to Cecil programs. One important kind of static
declaration specifies the types of (i.e. the interfaces to) objects and methods. Cecil allows
programmers to specify the types of method arguments, results, and local variables, and Cecil
performs type checking statically when a statically-typed expression is assigned to a statically-
typed variable or formal argument. The types specified by programmers describe the minimal
interfaces required of legal objects, not theirrepresentationsor implementations, to support
maximum reuse of typed code. In Cecil, the subtype graph is distinguished from the code
inheritance graph, since type checking has different goals and requirements than have code
reuse and module extension [Snyder 86, Halbert & O’Brien 86, Cooket al. 90].

Another important kind of static declaration distinguishes the external interface of an object
from its internal implementation. Cecil includes a mechanism for encapsulating internal details
of objects and enforcing this boundary. This encapsulation mechanism works despite Cecil’s

2

multiple dispatching base; we are not aware of any other language combining object-based
encapsulation and multiple dispatching.

Cecil includes other kinds of static declarations. An object can be annotated as an abstract
object (providing shared behavior but not manipulable by programs), as a template object
(providing behavior suitable for direct instantiation but otherwise not manipulable by the
program), or as a concrete object (fully manipulable as is). Object annotations inform the type
checker how the programmer intends to use objects, enabling the type checker to be more
flexible for objects whose intended uses are more restrictive.

Finally, Cecil does not include certain complex language features that often have the effect of
masking programming errors. For example, in Cecil, multiple dispatching and multiple
inheritance are bothunbiased with respect to argument order and parent order; any resulting
ambiguities are reported back to the programmer as potential errors. This design decision is
squarely at odds with the decision in CLOS and related languages. Additionally, subtyping in
Cecil is explicit rather than implicit, so that the behavioral specification information implied by
types can be incorporated into the decision about whether one type is a behavioral subtype of
another.

• Support both exploratory programming and production programming and enable smooth
migration of parts of programs from one style to the other.

Central to achieving this goal in Cecil is the ability to omit type declarations and other
annotations in initial exploratory versions of a subsystem and incrementally add annotations as
the subsystem matures to production quality. Cecil’s type system is intended to be flexible and
expressive, so that type declarations can be added to an existing dynamically-typed program
and achieve static type correctness without major reorganization of the program. In particular,
objects, types, and methods may be explicitly parameterized by types, method argument and
result types may be declared as or parameterized by implicitly-bound type variables to achieve
polymorphic function definitions, and (as mentioned above) the subtype graph can differ from
the inheritance graph. The presence of multiple dispatching relieves some of the type system’s
burden, since multiple dispatching supports in a type-safe manner what would be considered
covariant method redefinition in a single-dispatching language.

Additionally, the environment can infer on demand some parts of programs that otherwise must
be explicitly declared, such as the list of supertypes of an object or the set of legal abstract
methods of an object, so that one language can support both exploratory programmers (who use
the inferencer) and production programmers (who explicitly specify what they want). This
approach resolves some of the tension between language features in support of exploratory
programming and features in support of production programming. In some cases, the language
supports the more explicit production-oriented feature directly, with the environment providing
additional support for the exploratory-oriented feature.

• Avoid unnecessary redundancy in programs.

To avoid requiring the programmer to repeat specifying the interface of an object or method,
Cecil allows a single object declaration to define both an implementation and a type (an
interface). Similarly, where the subtype hierarchy coincides with the code inheritance
hierarchy, a single declaration will establish both relations. This approach greatly reduces the
amount of code that otherwise would be required in a system that distinguished subtyping and

3

code inheritance. Without this degree of conciseness, we believe separating subtyping from
code inheritance would be impracticably verbose.

Similarly, Cecil’s classless object model is designed so that a single object declaration can
define an entire data type. This contrasts with the situation in SELF, where two objects are
needed to define most data types [Ungaret al. 91]. Similarly, Cecil’s object model supports
both concise inheritance of representation and concise overriding of representation, unlike
most class-based object-oriented languages which only support the former and most classless
object-oriented languages which only conveniently support the latter.

Finally, Cecil avoids requiring annotations for exploratory programming. Annotations such as
type declarations and privacy declarations are simply omitted when programming in
exploratory mode. If this were not the case, the language would likely be too verbose for rapid
exploratory programming.

• Be “as simple as possible but no simpler.”

Cecil attempts to provide the smallest set of features that meet its design goals. For example,
the object model is pure and classless, thus simplifying the language without sacrificing
expressive power. However, some features are included in Cecil that make it more complex,
such as supporting multiple dispatching or distinguishing between subtyping and
implementation inheritance. Given no other alternative, our preference is for a more powerful
language which is more complex over a simpler but less powerful language. Simplicity is
important but should not override other language goals.

Cecil’s design includes a number of other features that have proven their worth in other systems.
These include multiple inheritance of both implementation and interface, closures to implement
user-defined control structures and exceptions, support for generic arithmetic, a robust
implementation with mandatory error checking for messages and primitives, and, of course,
automatic storage reclamation.

1.2 Overview

This document attempts to provide a fairly detailed specification of the Cecil language, together
with discussion of the various design decisions. The next section of this document describes the
basic object and message passing model in Cecil. Section 3 extends this dynamically-typed core
language with a static type system and describes a type checking algorithm. Section 4 discusses
some related work. Appendix A summarizes the complete syntax for Cecil.

4

2 Dynamically-Typed Core

Cecil is a pure object-oriented language. All data are objects, and message passing is the only way
to manipulate objects. Even instance variables are accessed solely using message passing. This
purity offers the maximum benefit of object-oriented programming, allowing code to manipulate
objects with no knowledge of their underlying representations or implementations.

At the top level, a Cecil program is a collection of object, method, field, and variable declarations
and an expression to evaluate to run the program. The syntax of the overall structure is as follows:

program ::= [decl_block] expr [“;”]

decl_block ::= decl { decl }

decl ::= object_decl | obj_extension |
method_decl | field_decl | var_decl

The next three subsections describe objects, methods, and fields. Subsection 2.4 describes
encapsulation. Subsections 2.5 and 2.6 detail the semantics of message passing in Cecil.

2.1 Objects and Inheritance

The basic features of objects in Cecil are illustrated by the following declarations, which define a
simple hierarchy for integers. Comments in Cecil either begin with “-- ” and extend to the end of
the line or are bracketed between “(-- ” and “--) ” and can be nested.

object number;
-- generic number operations here

object int inherits number; -- behavior for integers
-- integer operations here

object small_int inherits int, prim_int; -- fixed-precision integers
-- fixed-precision operations here

object big_int inherits int; -- arbitrary-precision integers
-- arbitrary-precision operations here

object zero inherits int; -- special zero object behavior
-- zero operations here

The syntax of an object declaration, excluding features relating to static type checking, is as
follows:

object_decl ::= “object” name { relation } [field_inits]

relation ::= “inherits” parents

parents ::= object { “,” object }

object ::= name

Cecil has a classless (prototype-based) object model: self-sufficient objects implement data
abstractions, and objects inherit directly from other objects to share code. Cecil uses a classless
model primarily because of its elegance and simplicity but also to avoid introducing a meta-
hierarchy. Additionally, section 2.2 shows how treating “instance” objects and “class” objects
uniformly enables CLOS-styleeql specializers to be supported with no extra mechanism. Section
2.3 describes field initializers.

Objects can inherit from other objects. Informally, this means that the operations defined for parent
objects will also apply to child objects. Inheritance in Cecil may be multiple, simply by listing more

5

than one parent object; any ambiguities among methods and/or fields defined on these parents will
be reported to the programmer. Inheriting from the same ancestor more than once, either directly
or indirectly, has no effect other than to place the ancestor in relation to other ancestors; Cecil has
no repeated inheritance as in Eiffel [Meyer 88, Meyer 92]. An object need not have any parents.
The inheritance graph must be acyclic.

Like most object-oriented languages, in Cecil the inheritance graph is static. An object cannot
change its ancestry after it has been created, other than as described below with object extension
declarations, nor can an object inherit from another anonymous object created at run-time. Each of
an object’s parents must be an object declared and named using an object declaration (not an object
constructor expression). These restrictions unfortunately preclude some interesting language
features traditionally associated with prototype-based languages, such as dynamic inheritance as
in SELF and delegation to run-time objects as in Actra [Lieberman 86], but it simplifies other parts
of the language such as the type system and guarantees a certain amount of program structure to
readers of a program.

The inheritance structure of an object may be augmented after the object is created through an
object extension declaration:

obj_extension ::= name { relation } “;”

In Cecil, object extension declarations, in conjunction with field and method declarations, enable
programmers to extend previously-existing objects. This ability can be important when reusing and
integrating groups of objects implemented by other programmers. For example, predefined objects
such asint , array , andclosure are given additional behavior and ancestry through separate
user code. Similarly, particular applications may need to add application-specific behavior to
objects defined as part of other applications. For example, an application may need specialized tab-
to-space conversion to be provided by strings and other collections of characters. Other object-
oriented languages such as C++ [Stroustrup 86, Ellis & Stroustrup 90] and Eiffel do not allow
programmers to add behavior to existing classes without modifying the source code of the existing
classes, and completely disallow adding behavior to built-in classes like strings. Section 3 explains
how object extensions are particularly useful to declare that two objects, provided by two
independent vendors, are subtypes of some third abstract type.

Inheritance in Cecil requires a child to accept all of the fields and methods defined in the parents.
These fields and methods may be overridden in the child, but facilities such as excluding fields or
methods from the parents or renaming them as part of the inheritance, as found in Eiffel, are not
present in Cecil. In the initial version of Cecil we are using a relatively simple inheritance
semantics, but we will consider Eiffel-like extensions after gaining experience with Cecil.

Finally, it is important to note that inheritance of code is distinct fromsubtyping (inheritance of
interface or of specification). Section 3 explains Cecil’s support for subtyping and static type
checking.

2.2 Methods

The following definitions expand the earlier numeric hierarchy with some methods:

6

object int inherits number; -- behavior for integers

method is_zero(x@int) { x = 0 }

method factorial(x@int) {
-- if invokes a user-defined method, with different definitions for thetrue and thefalse unique objects
if(x <= 1,

 { 1 },
 { x * factorial(x - 1) }) }

method for(from@int, to@int, block) {
var i := from; -- declare and initialize a new local variable
while({ i <= to }, {

eval(block, i); -- invoke the block with an argument
i := i + 1; });

}

method +(@int, @int) { abstract } -- all concrete children must provide an implementation for+

object small_int inherits int, prim_int; -- fixed-precision integers
-- prim_int provides primitive integer arithmetic operations

method +(x@small_int, y@small_int) {
-- prim_add performs primitive arithmetic of (children of)prim_int
-- prim_add takes a failure block which is invoked if an error (e.g., overflow) occurs
prim_add(x, y, &(error_code){ (-- code to handle failure (e.g., retry as big_ints) --) }) }

method +(x@small_int, y@big_int) { as_big_int(x) + y }

method as_big_int(x@small_int) {
(-- code to create an arbitrary-precision integer from a fixed-precision integer --) }

object big_int inherits int; -- arbitrary-precision integers

method +(x@big_int, y@big_int) { (-- code to add arbitrary-precision integers --) }

method +(x@big_int, y@small_int) { x + as_big_int(y) }

object zero inherits int; -- special zero object behavior

method +(@zero, x) { x } -- zero plus anything is that thing

method +(x, @zero) { x }

method +(z@zero, @zero) { z } -- resolve the ambiguity between the previous two methods

method is_zero(@zero) { true }

The syntax for method declarations (again, excluding aspects relating to static typing) is as follows:

method_decl ::= [privacy] “method” method_name function [“;”]
method_name ::= name | infix_name
function ::= “(” [formals] “)” function_body
formals ::= formal { “,” formal }
formal ::= [name] specializer
specializer ::= [location]
location ::= “@” object
function_body ::= “{” body “}”

| “{” “abstract” [“;”] “}”

Encapsulation and privacy declarations are discussed in section 2.4.

2.2.1 Argument Specializers and Multi-Methods

In Cecil, a method specifies the kinds of arguments for which its code is designed to work. For each
formal argument of a method, the programmer may specify that the method is applicable only to

7

actual arguments that are implemented or represented in a particular way, i.e., that are equal to or
inherit from a particular object. These specifications are calledargument specializers, and
arguments with such restrictions are calledspecialized arguments. Thex@int notation specializes
thex formal argument on theint object, implying that the method is intended to work correctly
with any actual argument object that is equal to or a descendant of theint object as thex formal.
An unspecialized formal argument (one lacking a@... suffix) is treated as being specialized on a
top object that is implicitly an ancestor of all other objects; consequently an unspecialized formal
can accept any argument object.

Argument specializers are distinct from type declarations. Argument specializers restrict the
allowed implementations of actual arguments and are used as part of method lookup to locate a
suitable method to handle a message send. Type declarations require that certain operations be
supported by argument objects, but places no constraints on how those operations are
implemented. Type declarations have no effect on method lookup.

Zero, one, or several of a method’s arguments may be (explicitly) specialized, thus enabling Cecil
methods to emulate normal undispatched functions, singly-dispatched methods, and true multi-
methods, respectively. Callers which send a particular message to a group of arguments need not
be aware of the collection of methods that might handle the message or which arguments of the
methods are specialized, if any; these are internal implementation decisions that should not affect
callers.

The name of a formal may be omitted if it is not needed in the method’s body, as in the+ methods
for zero above. Unlike singly-dispatched languages, there is no implicitself formal in Cecil;
all formals are listed explicitly.

Methods may be overloaded, i.e., there may be many methods with the same name, as long as the
methods with the same name and number of arguments differ in their argument specializers.
Methods with different numbers of arguments are independent; the system considers the number
of arguments to be part of the method’s name, in some sense. When sending a message of a
particular name with a certain number of arguments, the method lookup system (described in
section 2.5) will resolve the overloaded methods to a single most appropriate method based on the
dynamic values of the actual argument objects and the corresponding formal argument specializers
of the methods. Cecil multi-methods can simulate normal undispatched functions (by leaving all
formals unspecialized) and singly-dispatched methods (by specializing only the first argument).
Statically-overloaded functions and functions declared via certain kinds of pattern-matching also
are subsumed by multi-methods.

Cecil’s classless object model combines with its definition of argument specializers to support
something similar to CLOS’seql specializers. In CLOS, an argument to a multi-method in a
generic function may be restricted to apply only to a particularobject by annotating the argument
specializer with theeql keyword. Cecil needs no extra language mechanism to achieve a similar
effect, since methods already are specialized on particular objects. Cecil’s and CLOS’s
mechanisms differ in that in Cecil such a method also will apply to any children of the specializing
object, while in CLOS the method will apply only for that object.

8

As mentioned in the previous section, methods can be added to existing objects without needing to
modify those existing objects. This facility, lacking in most object-oriented languages, can make
reusing existing components easier since they can be adapted to new uses by adding methods,
fields, and even parents to them.

2.2.2 Statements and Expressions

The syntax of the body of a method is as follows:

body ::= {stmt} result
result ::= empty | expr | “^” [“;”] | “^” expr
stmt ::= decl_block

| assignment “;”
| effect_expr “;”

assignment ::= name “:=” expr
| expr “.” name “:=” expr
| expr infix_name expr “:=” expr

expr ::= literal | simple_expr | effect_expr
literal ::= integer | float | character | string
simple_expr ::= name | object | object_expr | array_expr | closure_expr
effect_expr ::= message | resend | “(” body “)”

The body of a method is a (possibly empty) sequence of statements and an optional result
expression. With the possible exception of method declarations, every statement is terminated by
a semicolon. A statement is a declaration block, an assignment to an assignable variable, or an
expression that may have side-effects. The bodies of local methods are lexically-scoped within the
containing scope. The interactions among nested scopes, method lookup, and other language
features is described in more detail in section 2.5.7.

An expression is either a literal, a reference to a variable or a named object, an object constructor
expression, an array constructor expression, a closure constructor expression, a message, a resend,
or a parenthetical subexpression. The parenthesized “subexpression” has the same syntax as the
body of a method; in particular, it introduces a new nested scope and may contain statements and
local declarations.

A declaration block is an unbroken sequence of declarations. Names introduced as part of the
declarations in the declaration block are visible throughout the declaration block and also for the
remainder of the scope containing the declaration block; the names go out of scope once the scope
exits. Because the name of an object is visible throughout its declaration block, objects can inherit
from objects defined later within the declaration block and methods can be specialized on objects
defined later in the declaration block. In environments where the top-level declaration comprising
the program is spread across multiple files, the ability to attach methods to objects defined in some
other file is important.

Variable declarations have the following syntax:

var_decl ::= “var” name initializer “;”
initializer ::= “=” expr | “:=” expr

If the variable is initialized using the= symbol, then it is a constant binding. If the:= symbol is
used, then the variable may be assigned a new value using an assignment statement.* Formal

9

parameters are treated as constant variable bindings and so are not assignable. The initializing
expression is evaluated in a context where the name of the variable being declared and any later
variables within the same declaration block are considered undefined.* This avoids potential
misunderstandings about the meaning of apparently self-referential or mutually recursive
initializers, supporting a kind oflet* [Steele 84] variable binding sequence.

Variable declarations may appear at the top level as well as inside a method. However, the ordering
of variable declarations at the top level is less well defined. At present, the existing textual ordering
of variable declarations is used to define an ordering for evaluating variable initializers. We would
prefer a semantics which was independent of the “order” of variable declarations at the top level.
Possible alternative semantics under consideration that have this property are to restrict variable
initialization expressions to beliteral or simple_expr expressions without side-effects
(thereby making the issue of evaluation order unimportant) or to eliminate variable declarations at
the top level entirely.

The syntax of a message send is as follows:

message ::= name “(” [exprs] “)”
| expr infix_name expr
| expr “.” name

exprs ::= expr { “,” expr }

A message is written either in prefix form, with the name of the message followed by a
parenthesized list of expressions (again, all arguments to the message must be listed explicitly) or
in infix form, with the message name in between a pair of argument subexpressions. A message
with a name beginning with a letter must be written in prefix form, while a message with a name
beginning with a punctuation symbol or an underscore must be written in infix form.† Syntactic
sugar exists for three common cases:

• p. x is syntactic sugar forx(p) , for any expressionp and prefix namex,

• p. x := q is sugar forset_ x(p, q) , for any expressionsp andq and prefix namex, and

• p * q := r is sugar forset_ * (p, q, r) , for any expressionsp, q, andr and infix name* .

The latter two sugars are instances of theassignment statement form. The semantics of method
lookup is described in section 2.5. Resends, a special kind of message send, are described in section
2.6.

At present, the precedence and associativities of infix messages is unspecified. Combinations of
infix operators must be explicitly parenthesized. A mechanism that would allow programmers to
declare the relative precedences and associativities of infix operators has been designed but not yet
incorporated into the language.

* It might be preferable to use a different leading keyword, such asconst , for constant declarations instead of
depending on the subtle distinction between= and:= .

* Variables thus constitute an exception to the rule that names introduced in a declaration block are visible throughout
the declaration block. It would be nice to develop a more consistent scoping rule that works at the top-level as well
as within a method.

†As described above, prefix form is always used for method declarations.

10

New objects are created either through object declarations (as described in section 2.1) or by
evaluating object constructor expressions. The syntax of an object constructor expression is as
follows:

object_expr ::= “object” {relation} [field_inits]

This syntax is the same as for an object declaration except that no object name is specified. Object
constructor expressions are analogous to object instantiation operations found in class-based
languages.

An array constructor is written as follows:

array_expr ::= “[” [exprs] “]”

The result of evaluating an array constructor is a new object that inherits from the predefined
array object and is initialized with the corresponding elements.

The syntax of a closure object constructor is as follows:

closure_expr ::= “&” function | function_body

This syntax is identical to that of a method declaration, except that themethod keyword and
message name are replaced with the& symbol (intended to be suggestive of theλ symbol). If the
closure takes no arguments, then the&() prefix may be omitted. When evaluated, a closure
constructor produces two things:

• a new closure object that inherits from the predefinedclosure object, which is returned as
the result of the closure constructor expression, and

• a method namedeval whose implicit first argument is specialized on the newly-created
closure object and whose remaining arguments are those listed as formal parameters in the
closure constructor expression.

As with other nested method declarations, the body of a closure’seval method is lexically-scoped
within the scope that was active when the closure was created. However, unlike nested method
declarations, theeval method is globally visible (as long as the connected closure object is
reachable). Closures may be invoked after their lexically-enclosing scopes have returned. All
control structures in Cecil are implemented at user level using messages and closures, with the sole
exception of theloop primitive method described in section 2.2.5.

2.2.3 Method and Closure Results

A method or closure produces a result if and only if a final result expression is present; the result
produced is the result of this expression. If absent, the method or closure does not return a usable
result; the method or closure can be thought of as returning the specialvoid object. The system
will report an error if such a method or closure is invoked in a context that expects a result, i.e., if
void is stored in a variable or is passed as an argument to another method. It is not an error to
return a result in a context where none is needed. Note that the presence or absence of a terminating
semicolon is significant: the body of a method or closure that does not return a result must either
be empty or be terminated with a semicolon, while the body of a method or closure that returns a
result must not end in a semicolon. Whether this syntactic distinction is too subtle remains an open
issue.

11

A closureeval method may force anon-local return by prefixing the result expression with the
^ symbol. A non-local return returns to the caller of the closest lexically-enclosing non-closure
method rather than to the caller of theeval method, just like a non-local return in Smalltalk-80*

[Goldberg & Robson 83] or SELF and similar to areturn statement in C. The language currently
prohibits invoking a non-local return after the lexically-enclosing scope of a closure has returned;
first-class continuations are not supported.

In Cecil, a method specifies explicitly whether or not it returns a result. In some other languages,
including Smalltalk, SELF, Lisp, and most expression-oriented languages, methods (functions)
always return results. In cases where a method does not have an obvious result, some conventional
value, such asself or the value of a particular argument, is returned instead. However, programs
which rely on these conventions can break if the conventions are not always observed, and the
system frequently cannot check whether the conventions are followed. In Cecil, a method can
explicitly elect not return a result, and the system can verify that no caller expects a result, thereby
avoiding any possible confusion for methods whose result is not obvious.

Distinguishing function-like methods from procedure-like methods is an experiment. While it
seems to solve a problem observed with some other languages, it may be the case that static type
checking would solve the problem just as well; each of the languages mentioned above is
dynamically-typed. Alternatively, thevoid object could be promoted to first-class status, so that
methods that do not return a result would explicitly return thevoid object instead. This approach
may be preferable for some methods, such as theif method, that can either return a result or not,
depending on whether some argument closure returns a result or not.

2.2.4 Abstract Methods

Normally, a method specifies a sequence of Cecil statements and expressions to execute to
implement the corresponding message for certain argument representations. Alternatively, a
method may be implemented primitively (as described in section 2.2.5), may provide access to an
instance variable (as described in section 2.3), or may simply be marked asabstract . An
abstract method documents that the associated argument specializers expect such a method to be
implemented for arguments that inherit from the specializers, but that a default implementation
cannot or should not be specified with the specializing objects. An abstract method cannot be
invoked but instead must be overridden with a real method implementation. Abstract methods are
important when deriving a type from an object as described in section 3.4, and when guaranteeing
privileged access to methods implemented in children as described in section 2.4. As described in
section 3.7, the static type checker can ensure that no abstract method is invoked at run-time.

2.2.5 Primitive Objects and Methods

Some objects are predefined at system start-up. These include objects that are the shared parents of
integer, float, character, string, array, and closure objects. Low-level functionality is provided
through special predefined primitively-implemented methods defined on the primitive objects,
such as theprim_add method defined on theprim_int object in the earlier number example.

* Smalltalk-80 is a trademark of ParcPlace Systems.

12

These primitive methods exploit multiple dispatching to perform type checking of arguments
through appropriate argument specializers. For example, theprim_add method specializes its
first two arguments on theprim_int object (its third argument is a closure that is invoked to
handle failures such as overflow, thereby providing the necessary hooks to support generic
arithmetic at user level). To gain access to primitive behavior, some user-defined object must
inherit from the primitive object, as does thesmall_int object in the example, and implement
“wrapper” functions that provide a convenient external interface to the primitive behavior, such as
the + method insmall_int . Any state needed by these primitive methods, such as the actual
integer value inprim_int or the elements of the array in theprim_array primitive object, is
defined internally to the primitive object and automatically copied-down to inheriting user-level
objects. This enables any object to inherit sensibly from a primitive object, including such low-
level objects asprim_int andprim_array , unlike other object-oriented languages which do
not allow certain low-level classes to be subclassed.

Looping primitive behavior is provided by theloop primitive method specialized on the
closure predefined object. This method repeatedly invokes its argument closure until some
closure performs a non-local return to break out of the loop. Other languages such as Scheme [Rees
& Clinger 86] avoid the need for such a primitive by relying instead on user-level tail recursion and
implementation-provided tail-recursion elimination. However, tail-recursion elimination
precludes complete source-level debugging [Chambers 92a, Hölzleet al. 92] and consequently is
undesirable in general. The primitiveloop method may be viewed as a simple tail-recursive
method for which the implementation has been informed to perform tail-recursion elimination.

2.2.6 Programming Environment Support

Cecil supports multi-methods because they are more expressive than traditional singly-dispatched
receiver-based methods. Multiple dispatching automates much of the machinery normally
implemented by hand using double-dispatching [Ingalls 86]. However, multiple dispatching can
alter the normal programming style from a data-abstraction-oriented style to a function-oriented
style [Chambers 92b]. With Cecil, we rely on language and programming environment support and
tutorial documentation of the intended programming methodology to foster a data-abstraction-
oriented view of multi-methods.

Methods and objects are connected through the methods’ argument specializers. The methods in
the system with the same name have no explicit connection or relationship beyond the
programmer’s intentions. This contrasts sharply with the traditional approach of linking all multi-
methods with the same name into a single generic function object. In Cecil, methods are closely
associated with their specializing objects (i.e., the objects whose implementations include the
methods), and only weakly associated with each other.

This approach to multi-methods allows programmers to view objects and their connected methods
as a unit which implements a data abstraction; the methods defined for a particular object are
always directly accessible from the object. This mental image depends heavily on non-hierarchical
relationships among objects and methods. Traditional programming environments are text-based,
and text is particularly bad at showing non-hierarchical relationships. Consequently, Cecil and
similar languages require a graphical interactive programming environment that can display

13

directly non-hierarchical relationships and dynamically-varying views of the relationships. We
imagine this environment to show objects on the screen, with their associated multi-methods
“contained” within the objects. The user could view the same multi-method from each of its
specializing objects; the identity of the multi-method would be illustrated graphically by showing
the various “views” of the multi-method as linked to the same object. This interface might look
something like the following:

Programmers would design, code, and debug Cecil programs entirely within such an environment;
programmers would never need to look at a flat textual form of a Cecil program. The prototype
SELF user interface [Chang & Ungar 90] could provide a good starting point for the design of the
Cecil user interface, since it is graphical, interactive, and good at displaying non-hierarchical
relationships among objects and at reflecting the identity of shared objects.

Of course, the data-abstraction-oriented view of the program is not the only view that may be of
interest to the programmer. The programming environment also should be able to present an
alternative view of the program in which all methods that together implement some algorithm are
displayed simultaneously on the screen (thus capturing some of the programmer’s intentions that
link methods). This algorithm-oriented view is more general than the generic function view, since
related methods with different names may be displayed simultaneously and unrelated methods that
happen to have the same name won’t be displayed.

In many high-productivity programming environments, a single user manipulates a program,
frequently using normal object editing operations to edit a heap-based representation of the
program. While these environments are powerful, they have historically been difficult to use to
manage multi-person cooperative programming. For example, in Smalltalk-80, the primary

int

small_int + small_int
small_int + big_int
big_int + small_int

as_big_int(small_int)

small_int

small_int + big_int
big_int + small_int
big_int + big_int

big_int
x@small_int + y@big_int

as_big_int(x) + y

x@big_int + y@small_int
x + as_big_int(y)

x@big_int + y@big_int
...

x@small_int + y@small_int
prim_add(x, y, {...})

as_big_int(x@small_int)
...

zero + ?
? + zero

zero

inherits

specialized on

is_zero(int)
factorial(int)
for(int, int, ?)

zero + zero

. . .

. . .

. . .
int + int . . .

14

representation of the program is as objects in the Smalltalk-80 heap [Goldberg 84]. Sharing a
program with another programmer requires saving part of this heap to a text file and then loading
this text file into the other programmer’s system. This process may fail, for example because the
two programmers have incompatible naming choices or other local customizations to their
systems, or perhaps because the first programmer did not save enough of his extensions to the text
file and so the other programmer did not get a complete and consistent update. The SELF system
currently relies on text files as the primary representation of SELF programs, but these files can get
out of synch with the duplicate representation of the program as objects in the SELF heap if edits
are made to the heap-based program without reflecting the change to the backing text files.

Cecil is intended to support multi-person closely-cooperative programming teams as well as single
programmers. The primary representation of a Cecil program is a web of interconnected objects
and methods, possibly extended with past and future versions of objects and methods. All
cooperating programmers see the same program structure, independent of the effect of individual
executions of the program; execution cannot change the program. Object and method definitions
are declarative statements about the existence of part of the shared object/method web. We believe
that high-productivity exploratory programming environments do not require the program to be
able to edit itself in a way that would be incompatible with this declarative view, and therefore that
this design will continue to support single-user exploratory programming. We also believe that this
design will additionally support high-productivity collaborative production programming
environments.

2.3 Fields

Mutable state, such as instance variables and class variables, is supported in Cecil throughfields
and associatedaccessor methods. To define an instance variablex for a particular objectobj , the
programmer can declare afield of the following form:

field x(@obj);

This declaration allocates space for an object reference in theobj object and constructs two real
methods attached to theobj object which provide the only access to the variable:

method x(v@obj) { <v.x> } -- the get accessor method
method set_x(v@obj, value) { <v.x> := value; } -- the set accessor method

The get accessor method returns the contents of the hidden variable. The set accessor method
mutates the contents of the hidden variable to refer to a new object; it does not return a result.
Accessor methods are specialized on the object containing the variable, thus establishing the link
between the accessor methods and the object. For example, sending thex message to theobj
object will find and invoke the get accessor method and return the contents of the hidden variable,
thus acting like a reference toobj ’s x instance variable. (Section 2.4 describes how these accessor
methods can be encapsulated within the data abstraction implementation and protected from
external manipulation.)

To illustrate, the following declarations define a standard list inheritance hierarchy:

object list inherits ordered_collection;

method is_empty(l@list) { l.length = 0 }

15

method length(@list) { abstract } -- length must be defined in all concrete children

method prepend(x, l@list) { -- dispatch onsecond argument
object inherits cons { head := x, tail := l } }

object nil inherits list; -- empty list

method length(@nil) { 0 }

method do(@nil,) {} -- iterating over all elements of the empty list: do nothing

method pair_do(@nil, ,) {}

method pair_do(, @nil,) {}

method pair_do(@nil, @nil,) {}

object cons inherits list; -- non-empty lists

field head(@cons); -- defineshead(@cons) andset_head(@cons,) accessor methods

field tail(@cons); -- definestail(@cons) andset_tail(@cons,) accessor methods

method length(c@cons) { 1 + c.tail.length }

method do(c@cons, block) {
eval(block, c.head); -- call block on head of list
do(c.tail, block); } -- recur down tail of list

method pair_do(c1@cons, c2@cons, block) {
eval(block, c1.head, c2.head);
pair_do(c1.tail, c2.tail, block); }

The cons object has two fields, only accessible through the automatically-generated accessor
methods.

The full syntax of field declarations, excluding static typing aspects, is as follows:

field_decl ::= [field_privacy] field_kind “field” name “(” formal “)”
 field_body

field_kind ::= empty | “shared” | “read_only” | “init_only”

field_body ::= [initializer] “;” | “{” “abstract” “}” [“;”]

Encapsulation and field privacy is explained in section 2.4. The remaining parts of a field
declaration are explained below.

2.3.1 Fields and Methods

Accessing variables solely through automatically-generated wrapper methods has a number of
advantages over the traditional mechanism of direct variable access common in most object-
oriented languages. Since instance variables can only be accessed through messages, all code
becomes representation-independent to a certain degree. Instance variables can be overridden by
methods, and vice versa, allowing code to be reused even if the representation assumed by the
parent implementation is different in the child implementation. For example, in the following code,
therectangle abstraction can inherit from thepolygon abstraction but alter the representation
to something more appropriate for rectangles:

object polygon;

field vertices(@polygon);

method draw(p@polygon, d@output_device) {
(-- draw the polygon on an output device, accessingvertices --) }

16

object rectangle inherits polygon;

field top(@rectangle);

field bottom(@rectangle);

field left(@rectangle);

field right(@rectangle);

method vectices(r@rectangle) {
-- ** is a binary operator, here creating a new point object
[r.top ** r.left, r.top ** r.right,

r.bottom ** r.right, r.bottom ** r.left] }

method set_vertices(r@rectangle, vs) { (-- set corners of rectangle fromvs list, if possible --) }

Even within a single abstraction, programmers can change their minds about what is stored and
what is computed without rewriting lots of code. Syntactically, a simple message send that accesses
an accessor method is just as concise as would be a variable access (using thep.x syntactic sugar),
thus imposing no burden on the programmer for the extra expressiveness. Other object-oriented
languages such as SELF and Trellis have shown the advantages of accessing instance variables
solely through special get and set accessor methods. CLOS enables get and/or set accessor methods
to be defined automatically as part of thedefclass form, but CLOS also provides a lower-level
slot-value primitive that can read and write any slot directly. Dylan [Apple 92], a descendant
of CLOS, joins SELF and Trellis in accessing instance variables solely through accessor methods.

An object may define or inherit several fields with the same name. Just as with overloaded methods,
this is legal as long as two methods, accessor or otherwise, do not have the same name, number of
arguments, and argument specializers. A method may override a field accessor method without
removing the field’s memory location from the object, since a resend within the overriding method
may invoke the field accessor method. Implementations may optimize away the storage for a field
in an object if it cannot be accessed, as with thevertices field in therectangle object.

2.3.2 Copy-Down vs. Shared Fields

By default, each object inheriting a field declaration receives its own space for the variable, and the
field’s accessor methods access the variable associated with their first argument. Such a “copy-
down” field acts much like an instance variable declaration in a class-based language, since each
object gets its own copy of the memory location. Alternatively, a field declaration may be prefixed
with the shared keyword, implying that all inheriting objects should share a single memory
location. A shared field thus acts like a class variable.

Supporting both copy-down and shared fields addresses weaknesses in some other prototype-based
object-oriented languages relative to class-based languages. In class-based languages, instance
variables declared in a superclass are automatically copied down into subclasses; thedeclaration
is inherited, not the variable’scontents. Class variables, on the other hand, are shared among the
class, its instances, and its subclasses. In some prototype-based languages, including SELF and
Actra, instance variables of one object are not copied down into inheriting objects; rather, these
variables are shared, much like class variables in a class-based language. In SELF, to get the effect
of object-specific state, most data types are actually defined with two objects: one object, the
prototype, includes all the instance-specific variables that objects of the data type need, while the
other object, thetraits object, is inherited by the prototype and holds the methods and shared state

17

of the data type [Ungaret al. 91]. New SELF objects are created by cloning (shallow-copying) a
prototype, thus giving new objects their own instance variables while sharing the parent traits
object and its methods and state. Defining a data type in two pieces can be awkward, especially
since it separates the declarations of instance variables from the definitions of the methods that
access them. Furthermore, inheriting the instance variable part of the implementation of one data
type into another is more difficult in SELF than in class-based languages, relying on complex
inheritance rules and dynamic inheritance [Chamberset al. 91]. Copy-down fields in Cecil solve
these problems in SELF without sacrificing the simple classless object model. In Cecil, only one
object needs to be defined for a given data type, and the field declarations can be in the same place
as the method declarations which access them. This design increases both conciseness and
readability, at the cost of some additional language mechanism.

Cecil objects are created only through object declarations and object constructor expressions; these
two expressions have similar run-time effects, with the former additionally binding statically-
known names to the created objects enabling methods and fields to be associated with them and
enabling other objects to inherit from them. Cecil needs no other primitive mechanism to create or
copy objects as do other languages. SELF provides a shallow-copy (clone) primitive in addition to
object literal syntax (analogous to Cecil’s object constructor expressions), in part because there are
no “copy-down” data slots in SELF. Class-based languages typically include several mechanisms
for creating instances and classes and relations among them. On the other hand, creating an object
by inheriting from an existing object may not be as natural as creating an object by copying an
existing object.

2.3.3 Field Initialization

Cecil allows a field to be given an initial value when it is declared by suffixing the field declaration
with the:= or = symbol and an initializing expression. Additionally, when an object is created, an
object-specific initial value may be specified for an inherited copy-down field. The syntax of field
initializers is as follows:

field_inits ::= “{” field_init { “,” field_init } “}”

field_init ::= name [location] initializer

For example, the following method produces a new list object with particular values for its
inherited fields:

method prepend(e, l@list) { object inherits cons { head := e, tail := l } }

For a field initialization of the formname := expr , the field to be initialized is found by
performing a lookup akin to message lookup to find a field declaration namedname, starting with
the object being created. Method lookup itself cannot be used directly, since the field to be
initialized may have been overridden with a method of the same name. Instead, a form of lookup
that ignores all methods is used. If this lookup succeeds in finding a single most specific matching
field declaration, then that field is the one given an initial value; the matching field should not be a
shared field. If no matching field or more than one matching field is found, then a “field initializer
not understood” or an “ambiguous field initializer” error is reported. To resolve ambiguities and to
initialize fields otherwise overridden by other fields, an extended name for the field of the form
name@obj := expr may be used instead. For these kind of initializers, lookup for a matching

18

field begins with the object namedobj rather than the object being created. Theobj object must
be an ancestor of the object being created. Extended field names are analogous to a similar
mechanism related to directed resends, described in section 2.6.

Fields may be declared to be immutable. A field declaration may be prefixed with theread_only
keyword, indicating that no set accessor method is to be generated; a read-only field thus acts like
a constant. An initializing expression for a read-only field must be supplied, and no object-specific
initialization of a read-only field is allowed. Theshared annotation on a read-only field would
be redundant and is disallowed. Alternatively, a copy-down field declaration may be prefixed with
the init_only keyword, also indicating that no set accessor method is to be generated but
allowing new object-specific values to be specified for the field when a child object is created that
inherits the field. Theshared annotation conflicts with object-specific values, and so is
disallowed for initialize-only fields. It is intended that the:= symbol be used to initialize a read/
write field and the= symbol be used to initialize an immutable field, but this convention is not
enforced by the language.

Many languages, including SELF and Eiffel, support distinguishing between assignable and
constant variables, but few other imperative languages support initialize-only variables. Our
experience with SELF leads us to believe that initialize-only fields would be quite useful; their
documentation aspects alone will make programs clearer. Initialize-only fields support a functional
(i.e., side-effect-free) programming style as well. CLOS can define initialize-only variables in the
sense that a slot can be initialized at object-creation time without a set accessor method being
defined, but in CLOS theslot-value function can always modify a slot even if the set accessor
is not generated.

To avoid pesky problems with uninitialized variables, all fields must be initialized before being
accessed, either by providing an initial value as part of the field declaration, by providing an object-
specific value as part of the object declaration or object constructor expression, or by assigning to
the field before reading from it. The static type checker warns when it cannot prove that at least one
of the first two options is taken for each field inherited by an object, as described in section 3.8.

In Cecil, a field initialization expression is not evaluated until the field is first accessed. This
supports functionality similar toonce functions in Eiffel and other languages. It also avoids the
need to specify some arbitrary ordering over field declarations or to resort to an unhelpful
“unspecified” or “implementation-dependent” rule. It is illegal to try to read the value of a field
during execution of the field’s initializer, i.e., no cyclic dependencies among field initializers are
allowed.

Unfortunately, copy-down fields interact in some undesirable ways with lazily-evaluated field
initializers. The current Cecil semantics is that the field initialization expression is evaluated at
most once, with any inheriting objects sharing the same initial value. Since field initializers are
evaluated lazily on demand, any inheriting object accessing the initial value of the field causes the
initializer to be evaluated, and all other objects that have the default field value then use the
initializer’s result expression. This semantics is similar to CLOS’s:init-value specifier. An
alternative semantics under consideration would evaluate the initializing expression for each
inheriting object; this would correspond roughly to CLOS’s:init-function specifier. A third

19

alternative would use the current field value of the parent object(s) rather than the expression
specified as part of the field declaration as the default initial value of the field in a child. Conflicts
of field values from multiple parents could be reported. It is not clear, however, how to combine
this semantics with lazy field initializer evaluation. For example, if two parents have field initializer
expressions, when are they evaluated to detect whether they conflict? The exact semantics of field
initialization is still being investigated and refined.

2.3.4 Abstract Fields

A field whose body is marked abstract is an abstract field. An abstract field is merely syntactic
sugar for one or two (depending on whether or not the field is declared read-only or initialize-only)
abstract method declarations corresponding to the field’s get and set accessors. A concrete child
object may implement an abstract field with a real field, one or two real methods, or some
combination of the two. Theshared annotation on an abstract field has no effect.

2.4 Encapsulation

To support the implementation of abstract data types, many languages include some mechanism
whereby the external interface to an abstraction can be clearly defined and other internal
implementation details can be hidden behind the abstraction boundary. This kind of encapsulation
provides important benefits:

• Programmers can identify easily which operations are intended to be invoked by external
clients. Encapsulation is a form of machine-checkable documentation.

• Implementors of an abstraction can isolate implementation choices that might change later,
hiding these choices behind the abstraction boundary and thereby ensuring that the choices can
be changed without affecting external clients. The implementor can easily identify those
methods that might depend on the internal details and so may need to change.

Cecil allows fields and methods optionally to be prefixed with a privacy declaration of the
following form:

privacy ::= “public” | “private”

Those fields and methods forming the external interface of the abstraction can be identified by
prefixing their declarations with thepublic keyword, while the internal implementation details
of an abstraction can be hidden by prefixing internal fields and methods with theprivate
keyword. Unannotated fields methods are treated by method lookup as if they were public, but with
the caveat that the programmer has not made a commitment to continue to support the operation.
Unannotated fields and methods would likely be common during exploratory programming, with
privacy declarations added incrementally as the external interface to an abstraction becomes more
refined. SELF pioneered this three-valued encapsulation mechanism.

Intuitively, a private method is internal to the data abstraction implementation(s) of which it is a
part, and only other methods also within the same implementation(s) can invoke the private method
(more precise semantics will be presented in the following subsections). For example, the earlier
non-empty list abstraction might be rewritten to encapsulate its representation:

object cons inherits list;

20

private field head(@cons);

private field tail(@cons);

public method length(c@cons) { 1 + length(c.tail) }

public method do(c@cons, block) {
eval(block, c.head);
do(c.tail, block); }

public method pair_do(c1@cons, c2@cons, block) {
eval(block, c1.head, c2.head);
pair_do(c1.tail, c2.tail, block); }

Thehead , set_head , tail , andset_tail accessor methods would be hidden from public
view. These four methods are internal to thecons implementation, and so only other methods that
also are part of thecons implementation could access these private operations.

For mutable fields which have two accessor methods, Cecil allows each accessor method to be
given a different visibility, just as in SELF and Trellis, using the following extended syntax:

field_privacy ::= privacy [(“get” | “put”) [privacy (“get” | “put”)]]

For example, if thehead andtail operations were to be publicly-accessible but theset_head
and set_tail operations were to be protected, the programmer could write those two field
declarations as follows:

public get private put field head(@cons);

public get private put field tail(@cons);

Since this notation is somewhat cumbersome and verbose, alternative more concise notations are
being explored. SELF certainly has a concise notation (the above privacy status would be described
using thê _ combination), but some find it too obscure. Some happy medium would be nice.

Note that a public field accessor method does not reveal that it is implemented as a field, nor does
a public method reveal that it is implemented as a method. The programmer may always
reimplement a public operation using an alternative implementation strategy without affecting
clients. This is in contrast to some languages such as C++ where public data members reveal their
implementation.

2.4.1 Granting Privileged Access

A sending methodS is granted access to a private methodM only if S is considered part of the
implementation of whichM is also a part. To specify the semantics of this rule precisely, the notion
of “part of an implementation” must be defined. A method is considered part of the implementation
of an object if at least one of its formals is specialized on the object. Additionally, since children
should be allowed to invoke private methods which they inherit from their ancestors, a method is
considered part of the implementation of an object if at least one of its formals is specialized on an
ancestor of the object. A more subtle situation involves a child that needs to override a private
method inherited from an ancestor while still allowing other methods inherited from the ancestor
to invoke the overridden private method. To support this case, a method is considered part of the
implementation of an object if at least one of its formals is specialized on a descendant of the
object. In no other case is a method considered part of the implementation of an object. To

21

summarize, a method is considered part of the implementation of an object if and only if the object
is equal to, a descendant of, or an ancestor of one of the method’s argument specializers.

The third case above may appear to grant nearly unlimited access to methods defined at the roots
of the inheritance graph, thus greatly weakening encapsulation. However, in the presence of static
type checking, methods defined near the roots of the inheritance graph will be limited to the set of
messages that have been defined at the roots of the hierarchy, at least as abstract methods. Thus
such methods will have a large number of objects to which they receive privileged access, but there
won’t be many messages that they will legally be able to send to these objects. During exploratory
mode, no such controls are in place. If this becomes a problem, the encapsulation rule could be
strengthened to verify that whenever a private method defined in a descendant is invoked from a
method defined in an object, that the descendant’s private method is overriding a private method
defined in the object or one of its ancestors. This extra check would be compatible with the static
type check and would correspond to the original reason privileged access is granted to children.

A method that dispatches on more than one argument is considered part of the implementation of
all dispatched arguments, and so is granted privileged access to each of them. Granting privileged
access to each of a method’s dispatched arguments is often necessary from a practical standpoint.
When writing a multi-method that is intended for arguments implemented in certain ways
(indicated by the formal arguments’ specializers), it is natural and often required to invoke
operations internal to those arguments’ implementations. For example, thepair_do method
introduced earlier needs privileged access to its first two arguments in order to iterate through them
in parallel:

public method pair_do(c1@cons, c2@cons, block) {
eval(block, c1.head, c2.head);
pair_do(c1.tail, c2.tail, block); }

Granting privileged access to operations that dispatch on the object also is reasonable from the
standpoint of an implementor of an abstract data type. Encapsulation is useful in part to limit the
potential dependencies on internal implementation details which might change, so that these
potential dependencies can be found and updated whenever the implementation changes. Multi-
methods with argument specializers can be just as easy to locate as are normal singly-dispatched
methods, particularly in conjunction with programming environments that link multi-methods
closely to their argument specializers. In the above list example, if the representation of non-empty
lists is to be changed, it would be an easy matter to identify those methods that might need to be
updated.

Encapsulation should be a static property verifiable from the program text, not a property verified
dynamically as the program runs. This is to ensure that encapsulation will help in statically
identifying those methods that might need to be updated as a result of a change to an internal
implementation feature. Consequently, a sending methodS is granted access to a private method
M only if the specialized formals that enable privileged access are passed as arguments to the
message; the actual names of the formals must be used, not just expressions that evaluate to the
arguments. Thus, the collection of objects that the sending method is considered a part of is
restricted by a particular message send to only those objects that the sender can be statically
guaranteed to share with the invoked private method, namely specialized formal arguments. For

22

example, the following method would be denied access to theset_head method even ifx
evaluates at run-time to another cons cell:

method copy_head(c@cons, x) {
set_head(x, c.head); }

The restriction of allowing privileged access only to specialized formal parameters is checked by
the static type system. It may turn out to be inappropriate in the dynamically-typed core, however,
in which case the encapsulation rules may be weakened.

2.4.2 Private Multi-Methods

If a multi-method is marked private, then only callers who are part of the implementations ofall of
the private multi-method’s argument specializers can access it. For example, the implementation
of display for filled polygons on a fancy graphics device might rely on an internal private
method:

public method display(shape@filled_polygon,
device@fancy_graphics_hardware) {

set_up_display(shape, device);
(-- rest of code --) }

private method set_up_display(shape@filled_polygon,
device@fancy_graphics_hardware) {

(-- initialize graphics hardware for filled polygon displays --) }

Theset_up_display method for filled polygons and fancy hardware is declared private, but
thedisplay method for filled polygons and fancy graphics hardware is granted access since it is
a part of both the filled polygon implementation and the fancy hardware implementation. However,
some other programmer might write the following method:

public method draw(shape@filled_polygon) {
set_up_display(shape, standard_output());
(-- more code --) }

This second method will be denied access, since thedraw method is part of only one of the
implementations that theset_up_display method belongs to. Since access privilege is
determined statically, thedraw method will be denied access even if at run-time
standard_output() returns a child offancy_graphics_hardware .

An alternative strategy would grant privileged access to a multi-method as long as the calling
method and the called method had at least one argument specializer object in common. We have
rejected this looser version of encapsulation since it would grant access too freely for our tastes.
Since we are not aware of any other multiple dispatching language that attempts to support
encapsulation of objects in this way, this encapsulation design should be considered an experiment
whose outcome depends on experience gained from writing programs under this encapsulation
model.

2.4.3 Other Issues with Encapsulation

With Cecil’s current encapsulation rules, it is possible for an external client to gain privileged
access to an object simply by defining a new multi-method, one of whose formal arguments is
specialized on the target object. The new method would be considered part of the specializing

23

object’s implementation and so receive privileged access. If this “open-endedness” of objects turns
out to be a problem, we may extend Cecil to allow an object declaration to specify those multi-
methods which are granted privileged access. Other multi-methods would be allowed to dispatch
on the object, but would not be able to access its private operations.

Alternatively, some methods which do not dispatch on an object may need to be granted private
access. For example, an object creation method might need to allocate a new object and then invoke
some sort of private initialization functions on the new object (field initialization as part of object
creation may not always be sufficient or convenient for properly initializing the created object).
The creation method should be granted privileged access even though it does not take an argument
specialized on the necessary object. Conversely, an object may wish to require that all child objects
are created by invoking one of the object’s designated creation methods, making it illegal for
unprivileged clients to create new children through object constructor expressions. Neither of these
facilities is presently available in Cecil.

In Cecil, a public method cannot be overridden with a private method. Doing so might cause
privilege violation errors for messages that appear to have an applicable public method. SELF uses
an alternative rule which allows a private method to override a public method. A send which does
not have privileged access simply ignores the private method, invoking the public method instead.
While at first this semantics appears reasonable (inaccessible private methods are treated simply as
being invisible to the caller), our experience has been that the difference between an accessible and
an inaccessible send is too fine and too easy to change accidentally, leading to mysterious andsilent
changes in behavior as the target method of the send changes. C++ uses a rule similar to Cecil’s,
checking privilege after method lookup is complete.

Ideally, a private method should be able to override another private method. In particular, the
child’s private method should be allowed to dispatch on more arguments than the ancestor’s private
method. However, given the rules stated before, it must be possible to guarantee privileged access
based on the static form of the message, using only the positions of specialized formals in the
caller’s argument list to verify that the message should be granted access to the private method.
This static check rule could disallow privileged access to the overriding private method (since it
could be private to a more restricted group of arguments than the caller is a part of), while the caller
could have access to the overridden private method (since it could have fewer specialized formals).
Consequently, the current combination of encapsulation rules appears to disallow a private method
to override another private method with fewer specialized arguments. Clearly, this is undesirable.
We are exploring several alternatives, such as relaxing the static checking part of encapsulation to
determine access privileges dynamically or modifying the static checking rule to allow access to
child private methods as long as access would be granted to an overridden private method, and we
are likely to modify Cecil’s encapsulation rules in some way in the future.

At present, one large global name space holds all object, method, and field declarations that are not
nested within a method. In the future, Cecil will be extended with some sort of module system to
divide up the single global name space. Modules might end up subsuming Cecil’s existing
encapsulation mechanism, resolving many of these outstanding issues in the process. We are
actively exploring module designs.

24

2.4.4 Comparison with Other Languages

Cecil’s encapsulation design was derived by extending the encapsulation rules common in single-
dispatching object-oriented languages to handle multiple dispatching. For example, most single-
dispatching languages grant privileged access only to messages sent toself . In Cecil
terminology, a singly-dispatched method is one where the first formal argument, namedself , is
specialized on the object containing the method definition, and the traditional encapsulation rule
then can be expressed as granting a message privileged access to a private method if the first
argument to the message is the specialized formal argument of the sending message. Since in full
Cecil any of the formal arguments may be specialized, i.e., there may be multipleself -like formal
arguments, a multi-method is granted access to a private method if the message includes aself -
like argument for each specialized formal parameter of the called private method.

Cecil’s encapsulation rules are simpler in some ways than the corresponding rules for SELF

[Chamberset al. 91]. Unlike Cecil, SELF grants privileged access to an object as long as the
sending method is in an ancestor of the receiving object, with this relationship determined
dynamically each time the message is sent. SELF’s mechanism is intended to support module-based
encapsulation in a classless language, where a method in a “class” (a traits object in SELF) has
privileged access to all of its instances simultaneously, independent of which of its instances is
currently the receiver. Cecil, like Trellis and Eiffel, supports a more restricted object-based
encapsulation model, where a method has privileged access only toself -like arguments. For
example, in SELF, a method in a traits object can access the private operations of an argument, as
long as the argument turns out to inherit from the same traits object. This is particularly useful for
methods like= which want to compare the private components of the receiver and the argument.
Of course, should the argument turn out not to inherit from the traits object, some sort of run-time
error is likely to result. In Cecil, the programmer instead exploits multiple dispatching to grant a
method privileged access to multiple arguments in a safe way. In SELF, a copy method can assign
to the private instance variables of the result of theclone message sent toself , since the clone
will inherit from the traits object containing the copy method. Cecil supports direct initialization
of fields as part of object constructor expressions.

Other languages support alternative encapsulation mechanisms. Several languages, including C++
and Trellis, distinguish betweenprivate , meaning access restricted to methods in the same class,
andprotected or subtype_visible , meaning also accessible to subclasses. Additionally,
C++ supports the concept of afriend class or method which can be granted privileged access
independent of its relation to the called method in the inheritance graph. The current Cecil design
supports only protected-style encapsulation (called private in Cecil): parents are not encapsulated
from their children, and subgroups of objects cannot form their own encapsulation module. This
area merits further investigation.

Other languages supporting multiple dispatching do not appear to provide any encapsulation at the
object or class level. CLOS provides packages, but these primarily organize the program’s name
space and are coarser and more limited than object-level encapsulation as in Cecil. For example, it
is impossible (or at least awkward) in CLOS to define a private generic function and then write

25

several multi-method versions of this generic function, where each version is placed in the file
where the rest of the appropriate abstract data type implementation is written.

2.5 Method Lookup

This section details the semantics of multi-method lookup, beginning with a discussion of the
motivations and assumptions that led to the semantics.

2.5.1 Philosophy

All computation in Cecil is accomplished by sending messages to objects. The lion’s share of the
semantics of message passing specifies method lookup, and these method lookup rules typically
reduce to defining a search of the inheritance graph. In single inheritance languages, method
lookup is straightforward. Most object-oriented languages today, including Cecil, support multiple
inheritance to allow more flexible forms of code inheritance and/or subtyping. However, multiple
inheritance introduces the possibility of ambiguity during method lookup: two methods with the
same name may be inherited along different paths, thus forcing either the system or the
programmer to determine which method to run or how to run the two methods in combination.
Multiple dispatching introduces a similar potential ambiguity even in the absence of multiple
inheritance, since two methods with differing argument specializers could both be applicable but
neither be uniformly more specific than the other. Consequently, the key distinguishing
characteristic of method lookup in a language with multiple inheritance and/or multiple
dispatching is how exactly this ambiguity problem is resolved.

Some languages resolve all ambiguities automatically. For example, Flavors [Moon 86] linearizes
the class hierarchy, producing a total ordering on classes, derived from each class’ local left-to-
right ordering of superclasses, that can be searched without ambiguity just as in the single
inheritance case. However, linearization can produce unexpected method lookup results, especially
if the program contains errors [Snyder 86]. CommonLoops [Bobrowet al. 86] and CLOS extend this
linearization approach to multi-methods, totally ordering multi-methods by prioritizing argument
position, with earlier argument positions completely dominating later argument positions. Again,
this removes the possibility of run-time ambiguities, at the cost of automatically resolving
ambiguities that may be the result of programming errors.

Cecil takes a different view on ambiguity, motivated by several assumptions:

• We expect programmers will sometimes make mistakes during program development. The
language should help identify these mistakes rather than mask or misinterpret them.

• Our experience with SELF leads us to believe that programming errors that are hidden by such
automatic language mechanisms are some of the most difficult and time-consuming to find.

• Our experience with SELF also encourages us to strive for the simplest possible inheritance
rules that are adequate. Even apparently straightforward extensions can have subtle
interactions that make the extensions difficult to understand and use [Chamberset al. 91].

• Complex inheritance patterns can hinder future program evolution, since method lookup can
depend on program details such as parent ordering and argument ordering, and it usually is
unclear from the program text which details are important for a particular application.

26

Accordingly, we have striven for a very simple system of multiple inheritance and multiple
dispatching for Cecil.

2.5.2 Semantics

Method lookup in Cecil uses a form of Touretzky’s inferential distance heuristic [Touretzky 86],
where children override parents. The method lookup rules interpret a program’s inheritance graph
as a partial ordering on objects, where being less in the partial order corresponds to being more
specific: an object is less than (more specific than) another in the partial order if and only if the first
object is a proper descendant of the second object. This ordering on objects in turn induces an
analogous ordering on the set of methods specialized on the objects, reflecting which methods
override which other methods. In the partial ordering on methods with a particular name and
number of arguments, one method is less than (more specific than) another if and only if each of
the argument specializers of the first method is equal to or less than (more specific than) the
corresponding argument specializer of the second method. Since two methods cannot have the
same argument specializers, at least one argument specializer of the first method must be strictly
less than (more specific than) the corresponding specializer of the second method. For the purposes
of this rule, an unspecialized argument is considered specialized on the “top” object which is an
ancestor of all other objects; a specialized argument therefore is strictly less than (more specific
than) an unspecialized argument. The ordering on methods is only partial since ambiguities are
possible.

Given the partial ordering on methods, method lookup is straightforward. For a particular message
send, the system constructs the partial ordering of methods with the same name and number of
arguments as the message. Abstract methods are ignored when constructing this partial ordering.
The system then throws out of the ordering any method that has an argument specializer that is not
equal to or an ancestor of the corresponding actual argument passed in the message; such a method
is not applicable to the actual call. Finally, the system attempts to locate the single most specific
method remaining, i.e., the method that is least in the partial order. If no methods are left in the
partial order, then the system reports a “message not understood” error. If more than one method
remains in the partial order, but there is no single method that overrides all others, then the system
reports a “message ambiguous” error. Otherwise, there is exactly one method in the partial order
that is strictly more specific than all other methods, and this method is returned as the result of the
message lookup.

27

2.5.3 Examples

For example, consider the following inheritance graph (containing only singly-dispatched methods
for the moment):

The partial ordering on objects in this graph definesABC to be more specific than eitherAB or AC,
and bothAB andAC are more specific thanA. Thus, methods defined forABC will be more specific
(will override) methods defined inA, AB, or AC, and methods defined in eitherAB or AC will be
more specific (will override) methods defined inA. TheAB andAC objects are mutually unordered,
and so any methods defined for bothAB andAC will be unordered and ambiguous.

If the messagem1 is sent to theABC object, both the implementation ofm1 whose formal argument
is specialized on theABC object and the implementation ofm1 specialized onA will apply, but the
method specialized onABC will be more specific than the one specialized onA (sinceABC is more
specific thanA), and soABC’s m1 will be chosen. If instead them1 message were sent to theAB

object, then the version ofm1 specialized on theA object would be chosen; the version ofm1

specialized onABC would be too specific and so not apply.

If them2 message is sent toABC, then both the version ofm2 whose formal argument is specialized
on A and the one whose formal is specialized onAC apply. But the partial ordering places theAC

object ahead of theA object, and soAC’s version ofm2 is selected.

If the m3 message is sent toABC, then bothAB’s andAC’s versions ofm3 apply. NeitherAB nor
AC is the single most specific object, however; the two objects are mutually incomparable. Since
the system cannot select an implementation ofm3 automatically without having a good chance of
being wrong and so introducing a subtle bug, the system therefore reports an ambiguous message
error. The programmer then is responsible for resolving the ambiguity explicitly, typically by
writing a method in the child object which resends the message to a particular ancestor; resends are
described in section 2.6. Sends ofm3 to eitherAB or AC would be unambiguous, since the other
method would not apply.

m1(i@A)
m2(j@A)

m3(k@AC)
m3(k@AB) m2(j@AC)

m1(i@ABC)

A

AB

ABC

AC

28

To illustrate these rules in the presence of multi-methods, consider the following inheritance graph
(methods dispatched on two arguments are shown twice in this picture):

Methodsm1 in A andm3 in AB illustrate that multiple methods with the same name and number of
arguments may be associated with (specialized on) the same object, as long as some other
arguments are specialized differently. The following table reports the results of several message
sends using this inheritance graph.

2.5.4 Strengths and Limitations

The partial ordering view of multiple inheritance has several desirable properties:

• It is simple. It implements the intuitive rule that children override their parents (they are lesser
in the partial ordering), but does not otherwise order parents or count inheritance links or
invoke other sorts of complicated rules.

• Ambiguities are not masked. These ambiguities are reported back to the programmer at
message lookup time before the error can get hidden. If the programmer has added enough

message invoked method or error explanation

m1(ABC, XYZ) m1(i@A, j@XZ) XZ overrides X

m2(ABC, XYZ) m2(j@AB, k) AB overrides A

m3(ABC, XYZ) m3(j@AB, k@XY) XY overrides unspecialized

m4(AB, XY) “message not understood”ABC too specific for AB⇒ no applicable method

m5(ABC, XYZ) “message ambiguous” AB overrides A but XZ overrides X⇒
no single most specific applicable method

m6(ABC, XYZ) “message ambiguous” AC overrides unspecialized but XYZ overrides
unspecialized⇒ no single most specific method

m1(i@A, j@X)
m1(i@A, j@XZ)

m2(j@AB, k) m6(i@AC, j)

m4(k@ABC, l@X)

A

AB

ABC

AC

m1(i@A, j@X)
m4(k@ABC, l@X)

m5(n@A, p@XZ)
m3(j@AB, k@XY) m1(i@A, j@XZ)

m6(i, j@XYZ)

X

XY

XYZ

XZ

m2(j@A, k)
m5(n@A, p@XZ)

m3(j@AB, k)
m3(j@AB, k@XY)
m5(n@AB, p@X)

m5(n@AB, p@X)

29

static type declarations to enable the system to detect the ambiguity at definition-time, then the
warning will be delivered even earlier.

• This form of multiple inheritance is robust under programming changes. Programmers can
change programs fairly easily, and the system will report any ambiguities which may arise
because of programming errors. More complex inheritance rules tend to be more brittle,
possibly hindering changes to programs that exploit the intricacies of the inheritance rules and
hiding ambiguities that reflect programming errors.

• Cecil’s partial ordering view of multiple inheritance does not transform the inheritance graph
prior to determining method lookup, as does linearization. This allows programmers to reason
about method lookup using the same inheritance graph that they use to write their programs.

Of course, there may be times when having a priority ordering over parents or over argument
positions would resolve an ambiguity automatically with no fuss. For these situations, it might be
nice to be able to inform the system about such preferences. SELF’s prioritized multiple inheritance
strategy can blend ordered and unordered inheritance, but it has some undesirable properties (such
as sometimes preferring a method in an ancestor to one in a child) and interacts poorly with resends
and dynamic inheritance. It may be that Cecil could support something akin to prioritized multiple
inheritance (and perhaps even a prioritized argument list), but use these preferences as a last resort
to resolving ambiguities; only if ambiguities remain after favoring children over parents would
preferences on parents or argument position be considered. Such as design appears to have fewer
drawbacks than SELF’s approach or CLOS’s approach while gaining most of the benefits.

2.5.5 Method Lookup and Encapsulation

Once method lookup has been performed, and a single target method selected, the system checks
whether privileged access is needed and granted. If the target method is private, then privileged
access is required to avoid an error. Access is granted if and only if for each specialized argument
of the target private method, the corresponding actual argument is a specialized formal of the
sending method, and the argument specializer of the formal in the sending method is equal to, an
ancestor of, or a descendant of the argument specializer of the private method. If the target method
is private but access is not granted, then the message results in a “message not privileged” error.

2.5.6 Multiple Inheritance of Fields

In other languages with multiple inheritance, in addition to the possibility of name clashes for
methods, the possibility exists for name clashes for instance variables. Some languages maintain
separate copies of instance variables inherited from different classes, while other languages merge
like-named instance variables together in the subclass. The situation is simpler in Cecil, since all
access to instance variables is through field accessor methods. An object (conceptually at least)
maintains space for each inherited copy-down fields, independently of their names (distinct fields
with the same name are not merged automatically). Accesses to these fields are mediated by their
accessor methods, and the normal multiple inheritance rules are used to resolve any ambiguities
among like-named field accessor methods. In particular, a method in the child with the same name
as a field accessor method could send directed resend messages (described later in section 2.6) to
access the contents of one or the other of the ambiguous fields.

30

2.5.7 Method Lookup and Lexical Scoping

Since methods may be declared both at the top level and nested inside of methods, method lookup
must take into account not only which methods are more specialized than which others but also
which methods are defined in more deeply-nested scopes. The interaction between lexical scoping
and inheritance will become more significant when some sort of module mechanism is added to
Cecil.

The view of lexically-nested methods in Cecil is that nested methods extend the inheritance graph
defined in the enclosing scope, rather than replace it. We call this “porous” lexical scoping of
methods, since the enclosing scope filters through into the nested scope. When performing method
lookup for a message within some nested scope, the set of methods under consideration are those
from the enclosing scope plus any methods defined in the local scope. If a local method has the
same name, number of arguments, and argument specializers as a method defined in an enclosing
scope, then the local method shadows (replaces) the method in the enclosing scope. Additionally,
any object declarations or object extension declarations in the local scope are added to those
declarations and extensions defined in enclosing scopes. Once this augmented inheritance graph is
constructed, method lookup proceeds as before without reference to the scope in which some
object or method is defined.

Other languages, such as BETA [Kristensenet al. 87], take the opposite approach, searching for a
matching method in one scope before proceeding to the enclosing scope. If a matching method is
found in one scope, it is selected even if a more specialized method is defined in an enclosing
scope. More experience is needed to judge which of these alternatives is preferable. Cecil’s
approach gets some advantage by distinguishing variable references, which always respect only the
lexical scope, from field references, which always are treated as message sends and respect
primarily inheritance links. BETA uses the same syntax to access both global variables and
inherited instance variables, making the semantics of the construct somewhat more complicated.

Nested methods can be used to achieve the effect of atypecase statement as found in other
languages, including Trellis and Modula-3 [Nelson 91, Harbison 92]. For example, to test the
implementation of an object, executing different code for each case, the programmer could write
something like the following:

method test(x) {
method typecase(z@obj1) { (-- code for case wherex inherits fromobj1 --) }
method typecase(z@obj2) { (-- code for case wherex inherits fromobj2 --) }
method typecase(z@obj3) { (-- code for case wherex inherits fromobj3 --) }
method typecase(z) { (-- code for default case --) }
typecase(x);

}

In the example,obj1 , obj2 , andobj3 may be related in the inheritance hierarchy, in which case
the most specific case will be chosen. If no case applies or no one case is most specific, then a
“message not understood” or an “ambiguous message” error will result. These results fall out of
the semantics of method lookup. By nesting thetypecase methods inside the calling method,
the method bodies can access other variables in the calling method through lexical scoping, plus

31

the scope of the temporarytypecase methods is limited to that particular method invocation.
Eiffel’s reverse assignment attempt and Modula-3’sNARROW operation can be handled similarly.

2.5.8 Method Invocation

If method lookup is successful in locating a single target method without error, the method is
invoked. A new activation record is created, actuals are assigned to formals, the statements within
the body of the method are executed in the context of this new activation record (or the primitive
method is executed, or the accessor method is executed), and the actual result of the method (if any)
is returned to the caller. If the method does not return a result, but the caller expects a result, then
the invocation terminates with a “result required” error.

2.6 Resends

Most existing object-oriented languages allow one method to override another method while
preserving the ability of the overriding method to invoke the overridden version: Smalltalk-80 has
super , CLOS hascall-next-method , C++ has qualified messages using the:: operator,
Trellis has qualified messages using the’ operator, and SELF has undirected and directedresend
(integrating unqualifiedsuper -like messages and qualified messages). Such a facility allows a
method to be defined as an incremental extension of an existing method by overriding it with a new
definition and invoking the overridden method as part of the implementation of the overriding
method. This same facility also allows ambiguities in message lookup to be resolved by explicitly
forwarding the message to a particular ancestor over another.

Cecil includes a construct for resending messages that adapts the SELF undirected and directed
resend model to the multiply-dispatched case. The syntax for a resend is as follows:

resend ::= “resend” [“(” resend_args “)”]
resend_args ::= resend_arg { “,” resend_arg }
resend_arg ::= expr | name “@” object

To invoke an overridden method, the normal message sending syntax is used but with the following
changes and restrictions:

• Syntactically, the name of the message is the keywordresend ; semantically, the name of the
message is implicitly the same as the name of the sending method.

• The number of arguments to the message must be the same as for the sending method.

• All specialized formal arguments of the resending method must be passed through unchanged
as the corresponding arguments to the resend.

As a syntactic convenience, if all formals are passed through as arguments to the resend unchanged,
then the simpleresend keyword without an argument list is sufficient.

The semantics of a resent message are similar to a normal message, except that only methods that
are less specific than the resending method in the partial order over methods are considered
possible matches; this has the effect of “searching upwards” in the inheritance graph to find the
single most specific method that the resending method overrides. The restrictions on the name, on
the number of arguments, and on passing specialized objects through unchanged ensures that the
methods considered as candidates are applicable to the name and arguments of the send. Single-

32

dispatching languages often have similar restrictions: Smalltalk-80 requires that the implicitself
argument be passed through unchanged with thesuper send, and CLOS’scall-next-
method uses the same name and arguments as the calling method.

For example, the following illustrates how resends may be used to provide incremental extensions
to existing methods:

object colored_rectangle inherits rectangle;

field color(@colored_rectangle);

method display(r@colored_rectangle, d@output_device) {
d.color := color; -- set the right color for this rectangle; sugar forset_color(d, color)
resend; } -- do the normal rectangle drawing; sugar forresend(r, d)

Resends may also be used to explicitly resolve ambiguities in the method lookup by filtering out
undesired methods. Any of the required arguments to a resend (those that are specialized formals
of the resending method) may be suffixed with the@ symbol and the name of an ancestor of the
corresponding argument specializer. This restricts methods considered in the resulting partial order
to be those whose corresponding argument specializers (if present) are equal to or ancestors of the
object named as part of the resend.

To illustrate, the following method resolves the ambiguity ofheight for vlsi_cell in favor
of therectangle version of height:*

object rectangle;

field height(@rectangle);

object tree_node;

method height(t@tree_node) { 1 + height(t.parent) }

object vlsi_cell inherits rectangle, tree_node;

method height(v@vlsi_cell) { resend(v@rectangle) }

This model of undirected and directed resends is a simplification of the current SELF rules,
extended to the multiple dispatching case. SELF’s rules additionally support prioritized multiple
inheritance and dynamic inheritance, neither of which is present in Cecil. SELF also allows the
name and number of arguments to be changed as part of the resend. In some cases, it appears to be
useful to be able to change the name of the message as part of the resend. For example, it might be
useful to be able to provide access to thetree_node version of theheight method under some
other name, but this currently is not possible in Cecil.

As demonstrated by SELF, supporting both undirected and directed resends is preferable to just
supporting directed resends as does C++ and Trellis, since the resending code does not need to be
changed if the local inheritance graph is adjusted. Since CLOS does not admit the possibility of
ambiguity, it need only support undirected resends (i.e.,call-next-method); there is no need
for directed resends.

* This example was adapted from Ungar and Smith’s original SELF paper [Ungar & Smith 87].

33

2.7 Predicate Objects

Cecil has been extended experimentally to supportpredicate objects [Chambers 93]. Predicate
objects are like normal objects except that they have an associated predicate expression. The
semantics of a predicate object is that if an object inherits from the parents of the predicate object
and also the predicate expression is true when evaluated on the child object, then the child is
considered to also inherit from the predicate object in addition to its explicitly-declared parents.
Since methods can be associated with predicate objects, and since predicate expressions can test
the value or state of a candidate object, predicate objects allow a form of state-based dynamic
classification of objects for better factoring of code. Also, predicate objects and multi-methods
allow a pattern-matching style to be used to implement cooperating methods.

34

3 Static Types

Cecil supports a static type system which is layered on top of the dynamically-typed core language.
The type system’s chief characteristics are the following:

• Type declarations specify the interface required of an object stored in a variable or returned
from a method, without placing any constraints on its representation or implementation.

• Argument specializers for method dispatching are separate from type declarations, enabling the
type system to contain as special cases type systems for traditional single-dispatching and non-
object-oriented languages.

• Code inheritance can be distinct from subtyping, but the common case where the two are
parallel requires only one set of declarations.

• Parameterized objects, types, and methods support flexible forms of parametric polymorphism,
complementing the inclusion polymorphism supported through subtyping.

• The type checker can detect statically when a message might be ambiguously defined as a result
of multiple inheritance or multiple dispatching. It does not rely on the absence of ambiguities
to be correct.

• The type system can check programs statically despite Cecil’s classless object model.

• Type declarations are optional, providing partial language support for mixed exploratory and
production programming.

This section describes Cecil’s static type system. Section 3.1 presents the major goals for the type
system. Section 3.2 presents the overall structure of the type system. Sections 3.3, 3.4, 3.5, and 3.6
describe the important kinds of declarations provided by programmers that extend the base
dynamically-typed core language described in section 2. Sections 3.7, 3.8, 3.9, and 3.10 describe
the type-checking algorithm for the language excluding parameterization, and section 3.11 extends
the previous description to handle parameterization. Section 3.12 describes how the language
supports mixed statically- and dynamically-typed code. Section 3.13 concludes with a discussion
of some open issues and future work.

3.1 Goals

Static type systems historically have addressed many concerns, ranging from program verification
to improved run-time efficiency. Often these goals conflict with other goals of the type system or
of the language, such as the conflict between type systems designed to improve efficiency and type
systems designed to allow full reusability of statically-typed code.

The Cecil type system is designed to provide the programmer with extra support in two areas:
machine-checkable documentation and early detection of some kinds of programming errors. The
first goal is addressed by allowing the programmer to annotate variable declarations, method
arguments, and method results with explicit type declarations. These declarations help to document
the interfaces to abstractions, and the system can ensure that the documentation does not become
out-of-date with respect to the code it is documenting. Type inference may be useful as a
programming environment tool for introducing explicit type declarations into untyped programs.

35

The Cecil type system also is intended to help detect programming errors at program definition
time rather than later at run-time. These statically-detected errors include “message not
understood,” “message ambiguous,” “abstract method invoked,” and “uninitialized field
accessed.” The type system is designed to verify that there is no possibility of any of the above
errors in programs, guaranteeing type safety but possibly reporting errors that are not actually a
problem for any particular execution of the program. To make work on incomplete or inconsistent
programs easier, type errors are considered warnings, and the programmer always is able to run a
program that contains type errors. Dynamic type checking at run-time is the final arbiter of type
safety.

Cecil’s type system is not designed to improve run-time efficiency. For object-oriented languages,
the goal of reusable code is often at odds with the goal of efficiency through static type
declarations; efficiency usually is gained by expressing additional representational constraints as
part of a type declaration that artificially limit the generality of the code. Cecil’s type system strives
for specification only of those properties of objects that affect program correctness, i.e., the
interfaces to objects, and not of how those properties are implemented. To achieve run-time
efficiency, Cecil will rely on advanced implementation techniques such as those used for the
dynamically-typed language SELF [Chambers & Ungar 91, Hölzleet al. 91b, Chambers 92a].

Finally, Cecil’s type system isdescriptive rather thanprescriptive. The semantics of a Cecil
program are determined completely by the dynamically-typed core of the program. Type
declarations serve only as documentation and partial redundancy checks, and they do not influence
the execution behavior of programs. This is in contrast to some type systems, such as Dylan’s,
where an argument type declaration can mean a run-time type check in some contexts and act as a
method lookup specializer in other contexts.

The design of the Cecil type system is strongly influenced by certain language features. Foremost
of these is multi-methods, which in Cecil are unbiased, in that no argument position is more
important than any other. Type systems for single dispatching languages are based on the first
argument of a message having control, consulting its static type to determine which operations are
legal. In Cecil, however, any subset of the arguments to a method may be specialized, leaving the
others unconstrained. This enables Cecil to easily model both procedure-based non-object-oriented
languages and singly-dispatched object-oriented languages as important special cases, but it also
requires the type system to treat specialized arguments differently than unspecialized arguments.

3.2 Types and Signatures

A type in Cecil is an abstraction of an object. A type represents a machine-checkable interface and
an implied but unchecked behavioral specification, and all objects whichconform to the type must
support the type’s interface and promise to satisfy the behavioral specification. One type may claim
to be asubtype of another, in which case all objects which conform to the subtype are guaranteed
also to conform to the supertype. The type checker verifies that the interface of the subtype
conforms to the interface of the supertype, but the system must accept the programmer’s promise
that the subtype satisfies the implied behavioral specification of the supertype. Subtyping is explicit
in Cecil just so that these implied behavior specifications can be indicated. A type may have

36

multiple direct supertypes, and in general the explicit subtyping relationships form a partial order.
As described below, additional type constructors plus a few special types expand the type graph to
a full lattice.

A signature in Cecil is an abstraction of a method, specifying both an interface (a name, a sequence
of argument types, and a result type) and an implied but uncheckable behavioral specification. A
set of signatures forms the interface of a type.

For example, the following types and signatures describe the interface to lists of integers (this
notation is not Cecil syntax, as indicated by the italicized keywords):

type list subtypes collection;

signature is_empty(list):bool;

signature length(list):int;

signature do(list, &(int):void):void;

signature pair_do(list, list, &(int,int):void):void ;

signature prepend(int, list):list;

Types and signatures represent a contract between clients and implementors that enable message
sends to be type-checked. The presence of a signature allows clients to send messages whose
argument types are subtypes of the corresponding argument types in the signature, and guarantees
that the type of the result of such a message will be a subtype of the result type appearing in the
signature. Any message not covered by some signature will produce a “message not understood”
error. Signatures also impose constraints on the implementations of methods, in order to make the
above guarantees to clients. The collection of methods implementing a signature must be both
complete andconsistent:

• Completeness implies that the methods must handle all possible argument types that might
appear at run-time as an argument to a message declared legal by the signature.

• Consistency implies that the methods must not be ambiguous for any combination of run-time
arguments.

Checking completeness and consistency is the subject of section 3.7.2.

In a singly-dispatched language, each type has an associated set of signatures that define the
interface to the type. This association relies on the asymmetry of message passing in such
languages, where only the receiver argument impacts method lookup. When type-checking a
singly-dispatched message, the type of the receiver determines the set of legal operations, i.e., the
set of associated signatures. If a matching signature is found, then the message will be understood
at run-time; the static types of the remaining message arguments is checked against the static
argument types listed in the signature. For Cecil, we wish to avoid the asymmetry of this sort of
type system. Consequently, we view a signature as associated with each of its argument types, not
just the first, much as a multi-method in Cecil is associated with each of its argument specializers.

3.3 Type Declarations

Variable declarations and formal arguments and results of methods, closures, and fields may be
annotated with type declarations, as in the following examples:

37

method is_empty(l@:list):bool { l.length = 0 }

method length(l@:list):int { abstract }

method do(l@:list, closure:&(int):void):void { abstract; }

method pair_do(l1@:list, l2@:list, closure:&(int,int):void):void {
abstract; }

method prepend(x:int, l@:list):list {
object inherits cons { head := x, tail := l } }

method copy_reverse(l:list):list {
var l2:list := nil;
do(l, &(x:int):void{ l2 := prepend(x, l2); };
l2 }

field head(@:cons):int;

field tail(@:cons):list;

The syntax for types, excluding features relating to parameterized types, is as follows:

type ::= name
| “&” “(” [types] “)” [type_decl]
| type “|” type
| type “&” type
| “(” type “)”

types ::= type { “,” type }

A type beginning with a& symbol is a closure type. Types created with the| or the& symbols are
least-upper-bound or greatest-lower-bound types, respectively. These three kinds of types are
described in more detail in subsection 3.5.

The following syntactic forms are extended to allow type declarations:

var_decl ::= “var” name [type_decl] initializer “;”

function ::= “(” [formals] “)” [type_decl] function_body

field_decl ::= [field_privacy] field_kind “field” name
“(” formal “)” [type_decl] field_body

specializer ::= [location] [type_decl]
| “@” “:” object

type_decl ::= “:” type

A type declaration on a variable or a formal restricts the contents of the variable or formal to objects
that conform to the specified type. If the formal parameter is both specialized to some object and
declared to be of some type, the specializing object must conform to the declared type. The notation
@:name is syntactic sugar for@name: name. A type declaration after the formal parameter list of
a method declaration or closure constructor expression restricts the result of the method or closure
to objects that conform to the specified type. A type declaration after the formal parameter list of
a field declaration restricts the contents of the field to objects that conform to the specified type; the
result of the generated get accessor method and the second argument of the generated set accessor
method are the same as the type of the field contents.

3.4 Extracting Types and Signatures

In most object-oriented languages, the code inheritance graph and the subtyping graph are joined:
a class is a subtype of another class if and only if it inherits from that other class. Sometimes this
constraint becomes awkward [Snyder 86], for example when a class supports the interface of some

38

other class or type, but does not wish to inherit any code. Other times, a class reusing another
class’s code cannot or should not be considered a subtype; covariant redefinition as commonly
occurs in Eiffel programs is one example of this case [Cook 89].

To increase flexibility and expressiveness, Cecil separates subtyping from code inheritance.
However, since in most cases the subtyping graphs and the inheritance graphs are parallel,
requiring programmers to define and maintain two separate hierarchies would become too onerous
to be practical. To simplify specification and maintenance of the two graphs, in Cecil the
programmer specifies both graphs simultaneously with a single set of object and method
declarations. An object declaration specifies both a new object in the object inheritance graph and
a new type in the type lattice. Similarly, a method implies the existence of a corresponding
signature. In this way we hope to provide the benefits of separating subtyping from code
inheritance when it is useful, without imposing additional costs when the separation is not needed.

3.4.1 Extracting Types from Object Declarations

The syntax of object declarations and object constructor expressions is extended to support
specification of the inheritance and the subtyping graphs as follows:

object_decl ::= [role] object_or_type name {relation} [field_inits] “;”

object_expr ::= [role] object_or_type {relation} [field_inits]

object_or_type ::= “object” | “type”

relation ::= “isa” parents
| “inherits” parents
| “subtypes” types

A single object declaration constructs both a node in the inheritance graph and a node in the type
graph. Both nodes have the same name, but no ambiguity is possible, since the variable name space
and the type name space are distinct and uses of a name reference a particular name space. The new
node in the inheritance graph is a direct child of the objects named in theinherits and theisa
clauses, if any. The new node in the type graph is a direct subtype of each of the types named in
thesubtypes andisa clauses. Finally, the new object is declared to conform to the new type.
Object constructor expressions similarly generate both objects and types, both of which are
anonymous. It is illegal to create a cycle in the subtyping graph. Subtyping is a reflexive and
transitive relation, and if an object conforms to a type then it conforms to all of the type’s
supertypes.

Each of the names included in theisa clause is interpreted as both an object (when constructing
the inheritance graph) and as a type (when constructing the type lattice), and so is syntactic sugar
for including each name in both theinherits clause and thesubtypes clause (with a small
caveat described below). Theisa sugar is designed to make it easy to specify the inheritance and
subtyping properties of an object/type pair for the common case that code inheritance and
subtyping are parallel. We expect that in most programs, onlyisa declarations will be used;
inherits andsubtypes declarations are intended for relatively rare cases where finer control
over inheritance and subtyping are required.

Some objects may not be intended to correspond to first-class types used in variable declarations
and the like. For example, neither thenil norcons objects should be considered types, but the

39

abstractlist object should. To support this distinction, an object declaration that is intended to
generate a first-class namable type should replace theobject keyword with thetype keyword.
The following declarations illustrate this distinction:

type list isa collection;
object nil isa list;
object cons isa list;

Only list may be used to declare the type of a variable.

Bothobject andtype declarations create both an object and a type, but the type created as part
of anobject declaration is an internal type that cannot normally be named by the program. All
references to types by name, such as in type declarations andsubtypes lists, must name types
created with thetype declaration. The exceptions to this rule are the type of a specialized formal
parameter, which may name an internal type to which the specializing object conforms, and names
included as part of anisa declaration, which may reference any named object whether or not the
object was declared with anobject or type declaration.

3.4.2 Extracting Signatures from Method Declarations

As described above, the formal parameters and results of method and field declarations may be
annotated with type declarations. In addition to specifying the operations required of legal
arguments and the operations provided by all results, these type declarations are used to extract
signatures automatically from method and field declarations. A method declaration of the form:

method name(x1@obj1: type1, ..., xN@objN: typeN): typeR { body }

where any of the@obji may be omitted or shortened to@:typei, implies a new signature of the form:

signature name(type1, ..., typeN): typeR;

A field declaration of the form:

field name(x1@obj: type): typeR ...;

implies new signatures of the form:

signature name(type): typeR;

signature set_ name(type, typeR):void;

where the second signature is omitted if the field is immutable.

3.4.3 Discussion

At present, Cecil does not provide programmers the ability to define types or signatures separately
from objects and methods. If only a type or signature is needed, then anabstract type object
declaration or anabstract method will suffice. Even with an abstract type, however, default
implementations for some of the operations are often convenient to provide along with the
definition of the type. These default implementations are easy to provide in Cecil by always
generating a corresponding object with the type and using the object as the repository for the
default implementations. In other languages, such as Axiom (formerly Scratchpad II) [Wattet al.,
Jenks & Sutor 92], default implementations are stored with the type (called thecategory in Axiom).

40

Subtyping and conformance in Cecil is explicit, in that the programmer must explicitly declare that
an object conforms to a type and that a type is a subtype of another type. These explicit declarations
are verified as part of type checking to ensure that they preserve the required properties of
conformance and subtyping. Explicit declarations are used in Cecil instead of implicit inference of
the subtyping relations (structural subtyping) for two reasons. One is to provide programmers with
error-checking of their assumptions about what objects conform to what types and what types are
subtypes of what other types. Another is to allow programmers to encode additional semantic
information in the use of a particular type in additional to the information implied by the type’s
purely syntactic interface. Both of these benefits are desirable as part of Cecil’s goal of supporting
production of high-quality software. To make exploratory programming easier, a programming
environment tool could infer the greatest possible subtype relationships (i.e., the implicit
“structural” subtyping relationships) for a particular object and add the appropriate explicit subtype
declarations automatically.

Separating subtyping from implementation inheritance increases the complexity of Cecil. A
simpler language might provide only subtyping, and restrict objects to inherit code only from their
supertypes; Trellis/Owl takes this approach, for example. However, there is merit in clearly
separating the two concepts, and allowing inheritance of code from objects which are not legal
supertypes. Studies have found this to be fairly common in dynamically-typed languages [Cook
92]. With the current Cecil design, the only way that an object might not be a legal subtype of an
object from which it inherits is if the child overrides a method of the parent and restricts at least
one argument type declaration, a relatively rare occurrence. However, Cecil may eventually
support filtering and transforming operations as part of inheritance, such as the ability to exclude
operations, to rename operations, or to systematically adjust the argument types of operations, and
so would create more situations in one object would inherit from another without being a subtype.

3.5 Special Types and Type Constructors

The Cecil type system includes four special pre-defined types:

• The typevoid is used as the result type of methods and closures that do not return a result. All
types are subtypes ofvoid , enabling a method that returns a result to be used in a context
where none is required. The typevoid may only be used when declaring the result type of a
method or closure.

• The typeany is implicitly a supertype of all types other thanvoid ; any may be used
whenever a method does not require any special operations of an object.

• The typeno_return is implicitly a subtype of all other types, thus defines the bottom of the
type lattice. It is the result type of closures with non-local returns, which never return to their
caller. It also is the type of the primitive loop method, which never returns normally. No object
has typeno_return , andno_return may only be used when declaring the result type of
a method or closure.

• The typedynamic is used where no other type is suitable. Wherever type declarations are
omitted,dynamic is implied. Thedynamic type selectively disables static type checking, in
support of exploratory programming, as described in section 3.12.

41

Additionally, Cecil include three type constructors:

• The type of a closure takingN arguments (in addition to the closure object itself) is notated as
&(type1, ..., typeN): typeR. This closure type would be extracted from a closure constructor
expression of the form&(x1: type1, ..., xN: typeN): typeR{ ...} . For each closure expression or
closure type appearing in the program, the system extracts a corresponding signature of the
form signature eval(&(type1, ..., typeN): typeR, type1, ..., typeN): typeR, abstracting
the closure’seval method. Closure types are related by implicit subtyping rules that reflect
standard contravariant subtyping: a closure type of the form&(t1, ..., tN): tR is a subtype of a
closure type of the form&(s1, ..., sN): sR if and only if eachti is a supertype of the
correspondingsi andtR is a subtype ofsR.

• The least upper bound of two types in the type lattice is notated astype1 | type2. Such a type
is a supertype of bothtype1 andtype2, and a subtype of all types that are supertypes of both
type1 andtype2. Least-upper-bound types are most useful in conjunction with parameterized
types, described later in section 3.11.

• The greatest lower bound of two types is notated astype1 & type2. Such a type is a subtype of
bothtype1 andtype2, and a supertype of all types that are subtypes of bothtype1 andtype2. The
greatest-lower-bound type constructor has higher precedence than the least-upper-bound type
constructor.

These special types and type constructors extend the explicitly-declared type partial order
generated from object declarations to a full lattice.

Unlike most other languages, including C++ and Eiffel, Cecil has no built-innil object that can
be used in place of any object. Such a nil object would introduce the potential for nil pointer
dereferences. Instead, programmers can define their own application-specific “nils” with
appropriate behavior and fitting into the application’s type hierarchy. Thenil object defined
above as part of thelist abstraction is an example of an application-specific nil object.
Accordingly, no special subtyping rules are needed to handle a built-innil object.

3.6 Object Role Annotations

Because Cecil is classless, objects are used both as run-time entities and as static, program structure
entities. Some objects, such asnil and objects created at run-time, are manipulated at run-time
and can appear as arguments to messages at run-time. In contrast, other objects, such ascons and
list , are not directly manipulated at run-time. Instead, they help organize programs, providing
repositories for shared methods and defining locations in the type lattice. The part played by an
object can be documented by prefixing an object declaration or object constructor expression with
an object role annotation:

role ::= “abstract” | “template” | “concrete”

Each of these role annotations appears in the list hierarchy:

abstract type list isa collection;

concrete object nil isa list;

template object cons isa list;

42

Abstract objects are potentially incomplete objects designed to be inherited from and fleshed out
by other objects. Abstract objects can have abstract methods associated with them and can have
uninitialized fields. In return, abstract objects cannot be manipulated at run-time nor inherited from
directly in an object constructor expression. The type checker verifies that any objects referenced
in an expression or listed as a parent in an object constructor expression are not abstract objects.
Abstract objects are analogous to abstract classes in class-based languages.

Template objects are complete objects suitable for direct “instantiation” by object constructor
expressions. Any abstract methods inherited by a template object must be overridden by concrete
implementations, but fields may remain uninitialized. In return, template objects cannot be named
in an expression, but they can be listed as a parent in an object constructor expression. Template
objects are analogous to concrete classes in class-based languages.

Concrete objects are complete, initialized objects that can be manipulated at run-time.
Accordingly, no abstract methods can remain for a concrete object and all fields inherited by the
object must have been initialized, either at the point of declaration or as part of a field initialization
expression. Like other objects, named concrete objects can be inherited from as well.

If the object role annotation is omitted, the object is considered fully manipulable by programs but
no checks for abstract methods or uninitialized fields are performed. Unannotated objects might be
common in exploratory code.

Since object constructor expressions create objects to be used at run-time, neitherabstract nor
template annotations are allowed on object constructor expressions.

Object role annotations express the degree of completeness of the object. To be manipulated at run-
time, an object must be fully complete, with no abstract methods and no uninitialized fields. Since
these requirements may be too restrictive for objects used solely as part of the program structure,
abstract and template annotations mark objects as potentially incomplete. The eased restrictions on
completeness comes at the cost of increased restrictions on how the object can be used.

Object role annotations help document explicitly the programmer’s intended uses of objects. Other
languages provide similar support. C++ indirectly supports differentiating abstract from concrete
classes through the use of pure virtual functions and private constructors. Eiffel supports a similar
mechanism through its deferred features and classes mechanism. Cecil’sabstract annotation is
somewhat more flexible than these approaches, since an object can be labeledabstract
explicitly, even if it has no abstract methods. (Abstract methods are described in section 2.2.4).

In an earlier version of Cecil, a fourth annotation,unique , could be used to document the fact that
an object was unique. For example,nil , true , andfalse all were annotated as unique objects.
While the exact semantics ofunique was unclear, a plausible interpretation could be that a unique
object is like concrete except that it could not be used as a parent in an object constructor
expression (i.e., it could not be “instantiated” or “copied”). Unique objects could still be inherited
from in object declarations, since they might have useful code or interfaces to be inherited. Unique
objects were removed because it was felt that the extra language mechanism was not worthwhile.
Similarly, thetemplate annotation may be removed for a similar reason, since it is not strictly

43

necessary for the type checker. The distinction between abstract objects and concrete objects,
however, is crucial to be able to write realistic Cecil code.

3.7 Type Checking Messages

This section describes Cecil’s type checking rules for message sends. Section 3.8 describes type
checking for other kinds of expressions. Parameterized types are described in subsection 3.11.

In Cecil, all control structures, instance variable accesses, and basic operators are implemented via
message passing, so messages is the primary kind of expression to type check. For a message to be
type-correct, there must be a single most specific applicable non-abstract method defined for all
possible argument objects that might be used as an argument to the message. However, instead of
directly checking each message occurring in the program against the methods in the program, in
Cecil we check messages against the set of signatures defined for the argument types of the
message, and then check that each signature in the program is implemented completely and
consistently by some group of methods.

Using signatures as an intermediary for type checking has three important advantages. First, the
type-checking problem is simplified by dividing it into two separable pieces. Second, checking
signatures enables all interfaces to be checked for completeness and consistency independent of
whether enough messages exist in the program to exercise all possible argument types. Finally,
signatures enable the type checker to assign blame for a mismatch between implementor and client.
If some message is not implemented completely, the error is either “message not understood” or
“message not implemented correctly.” If the signature is absent, it is the former, otherwise the
latter. Signatures inform the type checker (and the programmer) of the intended interfaces of
abstractions, so that it may report more informative error messages.

Subsection 3.7.1 describes checking messages against signatures, and subsection 3.7.2 describes
checking signatures against implementing methods.

3.7.1 Checking Messages Against Signatures

Given a message of the formname(expr1, ..., exprN) , where eachexpri type-checks and has static
typeTi, the type checker uses theTi to locate all signatures of the formname(S1, ..., SN): SR where
each typeSi is a supertype of the correspondingTi. If this set of applicable signatures is empty the
checker reports a “message not understood” error. Otherwise, the message send is considered legal.
To determine the type of the result of the message send, the type system calculates the most specific
result type of any applicable signature. This most specific result type is computed as the greatest
lower bound of the result types of all applicable signatures. In the absence of other type errors, this
greatest lower bound will normally correspond to the result type of the most specific signature.

To illustrate, consider the messagecopy(some_list) , where the static type ofsome_list is
list . The following types and signatures are assumed to exist:

type collection;

type list subtypes collection;

type array subtypes collection;

44

signature copy(collection):collection;

signature copy(list):list;

signature copy(array):array;

The signaturecopy(array):array is not applicable, sincelist , the static type of
some_list , is not a subtype ofarray . The dynamic type ofsome_list might turn out to
conform toarray at run-time (e.g., if there were some data structure that was both alist and
anarray), but the static checker cannot assume this and so must ignore that signature. The first
two signatures do apply so thecopy message is considered legal. The type of the result is known
to be both alist and acollection . The greatest lower bound of these two islist , so the
result of thecopy message is of typelist .

3.7.2 Checking Signatures Against Methods

The type checker ensures that, for every signature extracted from the program, all possible run-time
messages declared type-safe by the signature in fact locate a single most specific method with
appropriate argument and result type declarations. As mentioned earlier, this checking ensures that
each signature is implemented completely and consistently. In the presence of multi-methods, it is
not possible to check individual methods in isolation for completeness and consistency, since
interactions among multi-methods can introduce ambiguities where none would exist if the multi-
methods were not jointly defined within one program. Consequently, the Cecil type system is based
in a straightforward but brute-force algorithm to checking implementations of signatures. Of
course, real implementations of Cecil can and should optimize this brute force algorithm.

A signature represents a family of messages that might be sent at run-time. Each distinct kind of
message is represented by amessage pattern, comprised of a name and a sequence of argument
object patterns. Each object pattern represents a family of run-time objects, all with identical
inheritance structures and associated methods. An object pattern is derived from each static
occurrence of an object declaration, an object constructor expression, or a closure constructor
expression, as well as each of the four kinds of literal constants. Abstract objects are excluded from
consideration, because they cannot be manipulated at run-time. Template objects are included,
even though they also cannot be manipulated directly at run-time, because the programmer claimed
that they were complete (with the possible exception of uninitialized fields) and signature checking
will verify this claim. Object patterns are analogous to classes in class-based languages and maps
in SELF.

For each signature, the type checker constructs all message patterns covered by the signature by
enumerating all possible combinations of object patterns that conform to the corresponding
argument types in the signature. For each message pattern, the type checker simulates method
lookup and checks that the simulated message would locate exactly one most specific method. If
no method is found, the type checker reports a “method not implemented” error. If only abstract
methods are found, the type checker reports an “invoking abstract method” error. If multiple
mutually ambiguous methods are found, the type checker reports a “message ambiguous” error.
Otherwise, a single most specific method is found for the message. In this case, the type checker
also verifies that the argument object patterns conform to the declared argument types of the
located method and that the declared result type of the method is a subtype of the signature’s result

45

type. If all these tests succeed, then all run-time messages matching the message pattern are
guaranteed to execute successfully.

For example, consider type-checking the implementation of the following signature:

signature pair_do(collection, collection, &(int,int):void):void;

The type checker would first collect all object patterns that conform tocollection and all those
that conform to&(int,int):void . For a small system, the collection-conforming object
patterns might be the following:

object_pattern nil inherits list;

object_pattern cons inherits list;

object_pattern inherits cons;

object_pattern array inherits collection;

Thelist andcollection objects are not enumerated because they areabstract . The third
pattern is extracted from the object constructor expression in theprepend method. The closure
object patterns are derived from closure constructor expressions in the program with the
appropriate types.

Once the applicable object patterns are collected, the type checker enumerates all possible
combinations of object patterns conforming to the argument types in the signature to construct
message patterns. These message patterns (ignoring the closure argument object patterns) are the
following:

message_pattern pair_do(nil,nil, ...);
message_pattern pair_do(nil,cons, ...);
message_pattern pair_do(nil, object_pattern inherits cons, ...);
message_pattern pair_do(nil,array, ...);
message_pattern pair_do(cons,nil, ...);
message_pattern pair_do(cons,cons, ...);
...

message_pattern pair_do(array, object_pattern inherits cons, ...);
message_pattern pair_do(array,array, ...);

For each message pattern, method lookup is simulated to verify that the message is understood, that
the declared argument types are respected, and that the target method returns a subtype of the
signature’s type.

3.7.3 Comparison with Type Systems for Singly-Dispatched Languages

For singly-dispatched languages, most type systems apply contravariant rules to argument and
result types when checking that the overriding method can safely be invoked in place of the
overridden method: argument types in the overriding method must be supertypes of the
corresponding argument types of the overridden method, while the result type must be a subtype.
Cecil’s type system does not directly compare one method against another to enforce contravariant
redefinition rules, but nevertheless it does enforce the effect of contravariant redefinition for
unspecialized arguments. When type-checking a signature, more than one method could be found
as a result of the simulated method lookups. For each located method, the declared types of the

46

arguments must be supertypes of the types of the argument object patterns in the message pattern.
For an unspecialized argument, the type of the object pattern can be as general as that specified in
the signature. For the method to correctly implement the message pattern, then, its unspecialized
arguments must be declared to be supertypes of the corresponding types in the signature.
Additionally, the result type of any method located by simulated method lookup must be a subtype
of the result type specified in the signature. These constraints are exactly the contravariant rules,
restricted to the unspecialized arguments.

Specialized arguments need not obey contravariant restrictions. The type of a specialized argument
for one method can be a subtype of the type of the corresponding argument for a more general
method. This does not violate type safety because run-time dispatching will guarantee that the
method will only be invoked for arguments that inherit from the argument specializer. As long as
these objects conform to the declared argument type, type safety is preserved; if they do not, the
error will be detected and reported when simulating lookup of that method and comparing declared
argument types against the types of the object patterns. Unspecialized arguments cannot safely be
covariantly redefined, because there is no run-time dispatching on such arguments ensuring that the
method will only be invoked when the type declaration is correct.

Singly-dispatched languages make the same distinction between specialized and unspecialized
arguments implicitly in the way they treat the type of the receiver. For most singly-dispatched
languages, the receiver argument is omitted from the signatures being compared, leaving only
unspecialized arguments and hence the contravariant redefinition rule. If the receiver type were
included, it would be given special treatment and allowed to vary covariantly. (In fact, it must,
since the receiver’s type determines when one method overrides another!) For Cecil, any of the
arguments can be specialized or unspecialized, requiring us to make the distinction explicit. If all
methods in a Cecil program specialized on their first argument only, then Cecil’s type checking
rules would reduce to those found in a traditional singly-dispatched language.

In Cecil, some checks of legal method implementation can be done incrementally, as each method
is defined. For example, a method could be checked against all methods that it overrides, to ensure
that its unspecialized arguments are supertypes of the corresponding types of the overridden
methods and that its result type is a subtype of the result types of the overridden methods, much
like in a singly-dispatched language. However, final checking still is needed once the whole
program is assembled to ensure that no two multi-methods are mutually ambiguous.

3.7.4 Comparison with Type Systems for Multiply-Dispatched Languages

Few multiply-dispatched languages support static type systems. Two that are most relevant are
Polyglot [Agrawalet al. 91] and Kea [Mugridgeet al. 91]. In both of these systems, type checking
of method consistency and completeness requires that all “related” methods (all methods in the
same generic function in Polyglot and all variants of a function in Kea) be available to the type
checker, just as does Cecil. Both Polyglot and Kea check individual messages for consistent and
complete implementation, rather than using signatures as does Cecil. This means that some errors
can remain in the implementation of related methods, but they might not be detected because no
message currently encounters the error.

47

3.8 Type Checking Expressions, Statements, and Declarations

Type checking an expression results in both an indication of whether the expression was type-
correct, and if so the type of the result of the expression. Type checking a statement or a declaration
simply checks for type correctness. All constructs are type-checked in a typing context which binds
variable names to their current types and an indication of whether the variable is assignable or
constant, and which binds object names to object patterns; a separate name-space binds type names
to types. Declarations introduce new bindings into the typing context.

The type checking rules for expressions are as follows:

• A literal constant is always type-correct. The type of the result of a literal constant is the
corresponding predefined type.

• A variable referencename is type-correct if and only ifname is defined in the typing context
(i.e., if there exists a declaration of that name earlier in the same scope or in a lexically-
enclosing scope) as either a variable or an object, and if an object then the bound object pattern
is not anabstract or template object. The type of the result of a variable reference is the
associated type in the typing context (i.e., the type specified in the variable’s declaration).

• An object constructor expression of the general form
role-annotation object inherits parent1, ..., parentK

subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct if and only if:

• eachparenti name is bound to a non-abstract object in the typing context;

• eachsupertypei is type-correct in the current typing context and notvoid ;

• eachparent-and-supertypej name is bound to a non-abstract object in the typing context;

• if @obji is present, thenobji names an ancestor of the newly created object (if absent, it is
considered to be the same as the newly created object);

• eachfieldi names a fieldFi specialized on or inherited unambiguously byobji, ignoring any
overriding methods, andFi is neithershared nor read_only ;

• eachexpri is type-correct, returning an object of static typeTi, andTi is a subtype of the type
of the contents of the fieldFi;

• no fieldFi is initialized more than once;

• if role-annotation is concrete , then there do not exist any fields specialized on or
inherited by the newly created object that do not have a default initial value and are not
initialized as part of the object creation expression; and

• role-annotation is neitherabstract nor template .

The= symbol may be used in place of the:= symbol in a field initialization clause without
effect. The type of the result of an object constructor expression is the type extracted from the
object constructor expression, as described in section 3.4.1.

• A closure constructor expression of the general form
&(x1@obj1: type1, ..., xN@objN: typeN): typeR { body }

is type-correct if and only if:

48

• thexi, when provided, are distinct;
• each of thetypei are type-correct in the current typing context and notvoid , with the extra

allowance that if@obji is provided thentypei may name an internal type (a type extracted
from anobject declaration as opposed to atype declaration);

• if @obji is present, thenobji conforms totypei;
• typeR is type-correct;
• body is type-correct, checked in a typing context constructed by extending the current

typing context with constant variable bindings for each of thexi to the corresponding type
typei; and

• the type of the result ofbody is a subtype oftypeR, if provided; if : typeR is omitted, then
typeR is inferred to be the type of the result ofbody.

The type of the result of a closure constructor expression of the above form is
&(type1, ..., typeN): typeR.

Closure constructor expressions also generate correspondingeval signatures.

• An array constructor expression of the general form[expr1, ..., exprN] type-correct if and
only if each of theexpri is type-correct. If the static type of eachexpri is Ti, then the type of the
result of an array constructor expression is the predefinedarray parameterized type
instantiated with the least upper bound of theTi.

• A message expression of the general formname(expr1, ..., exprN) is type-correct if and only
if:

• each of theexpri is type-correct, with static typeTi, andTi is notvoid ;* and
• the maximal setS = {S1, ...,SM} of applicable signatures is non-empty, whereS is drawn

from the set of signatures extracted from method declarations, field declarations, and
closure types and constructor expressions, and each signature has the formSi =
signature name(ti1, ..., tiN): tiR whereTi is a subtype ofti.

The type of the result of a message is the greatest lower bound of each of result typestiR of the
applicable signatures. Correctness of the implementation of signatures is checked separately.

• A resend expression of the general form
resend(..., xi@parenti, ..., exprj, ...)

is type-correct if and only if:

• each of the argumentsxi or expri is type-correct, with static typeTi, andTi is notvoid ;
• the resend is nested textually in the body of a methodM;
• M takes the same number of arguments,N, as does the resend;
• for each specialized formal parameterformali of M, specialized onobjecti, theith argument

to the resend isformali, possibly suffixed with@parenti, andformali is not shadowed with
a local variable of the same name;

• for each unspecialized formal parameterformalj of M, thejth argument to the resend is not
be suffixed with@parentj;

• when method lookup is simulated with a message name the same asM and with N
arguments, where argumenti is either the top object (ifformali of M is unspecialized),

* The check that the argument type is notvoid is not strictly necessary, since no signature will have an argument type
that is a supertype ofvoid .

49

parenti (if the argument of the resend is directed using the@parenti suffix notation), or
objecti (otherwise), and where the resending methodM is removed from the set of
applicable methods, exactly one most specific target methodR is located, and the argument
type declarations of this target methodSi are supertypes of the correspondingTi.

The type of the result of a resend expression is the declared result type of the target methodR.

• A parenthetical expression of the form(body) is type-correct if and only ifbody is type-
correct. The type of the result of a parenthetical expression is the type of the result ofbody.

The following rules define type-correctness of statements:

• An assignment statement of the formname:= expr is type-correct if and only if:

• expr is type-correct, with static typeTexpr;
• name is bound to an assignable variable of typeTname in the current typing context; and
• Texpr is a subtype ofTname.

• A declaration block is type-correct if and only if its declarations are type-correct, when
evaluated in a typing context where all names in the declaration block are available throughout
the declaration block.

• An expression statement is type-correct if and only if the expression is type-correct. The type
of the result of the expression is ignored.

Result expressions, the optional last part of a method, closure, or parenthetical expression, are type-
checked as follows:

• If no result expression is provided, then the result expression is type-correct and of typevoid .

• A normal result expression of the formexpr is type-correct if and only ifexpr is type-correct,
with static typeT. The type of the result of a normal result expression isT.

• A non-local void return, of the form̂ or ^; , is type-correct if and only if:

• the expression is nested textually inside the body of a methodM; and
• the declared result type ofM is void .

The type of the (local) result of a non-local void return isno_return .

• A non-local return, of the form̂ expr, is type-correct if and only if:

• expr is type-correct, with static typeT;
• the expression is nested textually inside the body of a methodM; and
• T is a subtype of the declared result type ofM.

The type of the (local) result of a non-local return isno_return .

A normal body of a method, closure, or parenthetical expression is type-correct if and only if its
statements are type-correct and its result expression is type-correct, with static typeT. The type of
the result of a body is the typeT. An abstract body of a method is always type-correct.

The following rules define type-correctness of declarations:

• A variable declaration of the formvar name: type equal-sym expr is type-correct if and only
if:

• name is not otherwise defined in the same scope;

50

• type is type-correct and notvoid ; and

• expr is type-correct in a typing context wherename is unbound, with static typeT, andT is
a subtype oftype.

Subsequent constructs are evaluated in a typing context wherename is bound to the typetype
and is assignable ifequal-sym is := and is constant otherwise.

• An object declaration of the form

role-annotation object name inherits parent1, ..., parentK
subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct under the same conditions as the analogous object constructor expression, with
the following changes:

• abstract objects are allowed ininherits andisa clauses;

• theabstract andtemplate role annotations are allowed; and

• no cycles are allowed in the inheritance and subtyping graphs.

Subsequent constructs are evaluated in a typing context wherename is bound in the variable
name space to an object pattern extracted from the object declaration, andname is bound in the
type name space to the associated type generated from the object declaration.

• An object extension declaration of the form

name inherits parent1, ..., parentK
subtypes supertype1, ..., supertypeL
isa parent-and-supertype1, ..., parent-and-supertypeM
{ field1@obj1 := expr1, ..., fieldN@objN := exprN }

is type-correct if and only if:

• name is bound in the typing context to an object pattern;

• the object declaration created by extending the named object pattern with the parents, types,
and field initializations in theinherits , subtypes , isa , and field initialization
clauses would be type-correct; and

• none of thefieldi@obji initialize fields already specialized on or inherited by the object
pattern.

Subsequent constructs are evaluated in a typing context wherename is bound in the variable
name space to the extended object pattern andname is bound in the type name space to the
associated type generated from the extended object declaration.

• A method declaration of the general form

method name(x1@obj1: type1, ..., xN@objN: typeN): typeR { body }

is type-correct if and only if:

• thexi, when provided, are distinct;

• each of thetypei are type-correct in the current typing context and notvoid , with the extra
allowance that if@obji is provided thentypei may name an internal type;

• if @obji is present, thenobji conforms totypei;

• typeR is type-correct;

51

• body is type-correct, checked in a typing context constructed by extending the current
typing context with constant variable bindings for each of thexi to the corresponding type
typei; and

• the type of the result ofbody is a subtype oftypeR.

Method declarations also generate corresponding signatures.

• A field declaration of the general form
kind field name(x@obj: type): typeR := expr;

is type-correct if and only if:

• type is type-correct in the current typing context and notvoid , with the extra allowance
that if @obj is provided thentype may name an internal type;

• if @obj is present, thenobj conforms totype;

• typeR is type-correct;

• if := expr is provided, thenexpr is type-correct, with static typeT, andT is a subtype of
typeR; and

• if kind is shared or read_only , then:= expr is provided.

The= symbol may be used in place of the:= symbol without effect. Field declarations also
generate corresponding signatures.

A type expression is type-correct if and only if all of the types referenced by name are bound in the
type name space of the typing context, and none of these names references an internal type. In the
above descriptions, a type expression is often used in place of a type, with the implication that the
type used is the one constructed by computing the type specified by the type expression. Closure
types also generate correspondingeval signatures.

3.9 Type Checking Subtyping Declarations

When the programmer declares that an object conforms to a type (via asubtypes or isa clause),
the type system trusts this declaration and uses it when checking conformance and subtyping.
However, it is possible that the programmer’s claim is wrong, and that the object in fact does not
faithfully implement the interface of the types to which it supposedly conforms. In this case, the
signature implementation checking, described in section 3.7.2, is sufficient to detect and report the
error, so no additional checking is required. When enumerating and checking message patterns
matching a signature defined on the supertype, the object in question, if not abstract, will be
enumerated, and the error will be detected because some signature will not be implemented
properly for that object. If the object is abstract, no type error will be reported. This will not affect
running programs since the abstract object cannot be used in a message. Also, since abstract objects
are allowed to be incomplete, it is unclear whether a type error really exists.

3.10 Type Checking Encapsulation

The type system needs to check statically whether a message might invoke a private method, and
if so, whether this access is allowed. Several extensions to the described type-checking rules are
required to accomplish this. The type of an object is divided into two halves: a public type and a
private type. An object declaration conforms to its private type, and the private type is a subtype

52

of its public type. Publicly-accessible operations will be part of the public type, while private
operations will be restricted to the private type.

References to types by name resolve to the public version. In two cases, references to objects by
name also correspond to analogous references to types, and in these two cases the private type can
be used. The private version of a type is used when extracting the corresponding type from an
object reference in anisa clause. This implies that one private type is a subtype of another private
type exactly when the object declaration defining the first private type references the object
declaration defining the second private type in itsisa clause. For example, consider the following
object declarations:

object point;

object color_point isa point;

object polar_point subtypes point;

Each of thepoint , color_point , andpolar_point declarations define an object, a public
type, and a private type. Each object conforms to its private type, and each private type is a subtype
of the corresponding public type. The publiccolor_point and polar_point types are
subtypes of the publicpoint type, as expected. Additionally, the privatecolor_point type is
a subtype of the privatepoint type (because the declaration was part of anisa clause). The
privatepolar_point type is not a subtype of the privatepoint type, however, since it only
uses thesubtypes clause and does not inherit any code frompoint .

The private type also comes into play when a private method has a@: formal parameter specializer.
In this case, the signature extracted from the private method uses the private type for any
parameters specialized with the@: notation, and uses the public type for all other formal
parameters. For example, the following method:

private method set_x(p@:point, new_x:int):void { ... }

generates the following signature:

signature set_x(point private , int public):void public ;

When type-checking the body of a method, the type of a formal argument declared using the@:
specializer notation is the private version of its type; other variables use the public version of the
named type as before. Because a private type is a subtype of the corresponding public type, a
formal parameter specialized using@: has access to all the public methods of the type, but it also
has access to the private methods of its type. For example, in the following method, theset_x
message locates the above signature and so is type-correct:

method move_right(p@:point, delta:int):void {
set_x(p, p.x + delta);

}

The variablep has typepoint private and the expressionp.x+delta has typeint public ,
which are subtypes of the argument types in the signature.

To complete type-checking of encapsulation, type-checking of the implementations of signatures
must be extended to handle the distinction between private and public types and to handle the case
when a private method is located during simulated method lookup. Enumerating object patterns

53

that conform to a type, whether public or private, is no different than before, given than an object
conforms to its corresponding private type, which is a subtype of the corresponding public type.

More interesting is what to do if simulated method lookup determines that a message pattern would
invoke a private method. In this case, the system needs to verify that the calling method is part of
the same implementation as the target method, as described in section 2.4. The implementation that
the target method is part of is simply the union of its argument specializers. The signature itself
contains a lower bound on the set of implementations that the sending method is a part of,
computed from the set of private types used as arguments in the signature. For each private
argument typeTprivate of the signature, a type-correct sender must be passing an argument known
to be a subtype ofTprivate. The only expressions that would have this type are formal parameters
specialized using the@: notation to an objectO whose private type is a subtype ofTprivate. The
only such objects are the objectOTprivate from whichTprivate is derived and objects which inherit
via isa clauses fromOTprivate. Consequently, the sender can be considered to be a member of the
implementation defined by the set ofOTprivate objects. Access to a private method is then checked
by verifying that the set ofOTprivate objects includes ancestors or descendants of each of the
argument specializers of the private target method.

3.11 Parameterized Objects, Types, and Methods

Practical statically-typed languages need some mechanism for parameterizing objects and methods
by types. This is particularly important for “container classes” likelist andarray .

3.11.1 Explicit Parameterization

Cecil allows both object, method, and field declarations to be parameterized by a sequence of types,
as the following examples illustrate:

abstract type collection[T];

abstract type list[T] isa collection[T];

concrete object nil[T] isa list[T];

template object cons[T] isa list[T];

field head[T](@:cons[T]):T;

field tail[T](@:cons[T]):list[T] := nil[T];

method prepend[T](h:T, t:list[T]):list[T] {
object isa cons[T] { head := h, tail := t } }

abstract type table[Key,Value] isa collection[Value];

template type array[T] isa table[int,T];

method new_array[T](size:int, initial_value:T):array[T] {
object isa array[T] { size := size, initial_value := initial_value } }

template type printable_array[T <= printable] isa array[T];

The syntax of object, method, and field declarations is extended to allow explicit parameterization
as follows:

54

object_decl ::= [role] object_or_type name [formal_params]
{relation} [field_inits] “;”

method_decl ::= [privacy] “method” method_name [formal_params]
function [“;”]

field_decl ::= [field_privacy] field_kind “field” name [formal_params]
“(” formal “)” [type_decl] field_body

formal_params ::= “[” formal_param { “,” formal_param } “]”

formal_param ::= [“‘”] name [“<=” type]

The formal type parameter of the form‘ name is universally quantified over all non-void types,
while a formal type parameter of the form‘ name<= type is quantified over all types that are
subtypes oftype; type must be a non-void type. The upper bound of a formal type parameter is
type, if the<= type suffix is provided, orany , otherwise. Similar facilities appear under the name
of bounded quantification [Cardelli & Wegner 85] and constrained genericity [Meyer 86].

Type parameters are scoped over the whole object, method, or field declaration; type parameters
must have distinct names. Within its scope, a type parameter may be used in a type declaration or
as an instantiating type for some other parameterized type or method; a type parameter cannot be
used in asubtypes clause, as this context requires a statically-known type. When used, a type
parameter is treated as some unknown type that is a subtype of is upper bound type. Cycles are not
allowed in the dependency graph of formal type parameters and their upper bound types, e.g.,[‘A
<= B, ‘B <= A] is illegal, but no other orderings are required, e.g.,[‘A <= B, ‘B <= int] is
legal, and the first occurrence ofB refers to the instantiating value of the second type parameter.

To use a parameterized object or method, the client must first instantiate it with actual types for
each of its parameters, at which point the instantiated object or method can be used as an equivalent
unparameterized object or method. The syntax of object references, type references, messages, and
object extension declarations is extended as follows to allow instantiating parameters to be
provided:

object ::= name [params]

type ::= name [params] | ...

message ::= name [params] “(” [exprs] “)” | ...

obj_extension ::= name [params] {relation} “;”

params ::= “[” types “]”

Legal instantiating type parameters must be subtypes of the upper bounds of the corresponding
formal type parameters.

3.11.2 Implicit Parameterization

While explicit parameterization and instantiation is sufficient for programming parameterized
objects and types, it is often inconvenient. For example, consider the implementation of an
explicitly-parameterizedpair_do method:

method pair_do[T1,T2](c1@:cons[T1], c2@:cons[T2],
closure:&(T1,T2):void):void {

eval(closure, head[T1](c1), head[T2](c2));
pair_do(tail[T1](c1), tail[T2](c2), closure);

}

55

Singly-dispatched languages do not face this verbosity, because methods are defined within a class
and within the scope of the parameterized class’s type parameters. Additionally, invocations of
methods on a parameterized object, such as thehead message above, would not need to specify
an instantiating parameter because the it can be derived from the instantiating parameter of the
distinguished receiver object.

To regain much of the conciseness of singly-dispatched methods in a parameterized class while still
supporting multi-methods, Cecil allowsimplicit type parameter bindings to be present in the type
declarations of formal arguments of a method or field. These implicit type parameters are
instantiated automatically with the corresponding type of the actual argument in each call site. The
syntax of types is extended to allow implicit type parameter bindings as follows:

type ::= ... | “‘” name [“<=” type]

The operations on parameterizedcons objects can be rewritten with implicit type parameters as
follows:

template object cons[T] isa list[T];

field head(@:cons[‘T]):T;

field tail(@:cons[‘T]):list[T] := nil[T];

method pair_do(c1@:cons[‘T1], c2@:cons[‘T2],
closure:&(T1,T2):void):void {

eval(closure, head(c1), head(c2));
pair_do(tail(c1), tail(c2), closure);

}

method prepend(h:T, t:list[‘T]):list[T] {
object isa cons[T] { head := h, tail := t } }

Implicit type parameter bindings can only appear as the declared type of a formal parameter or
variable, as the upper bound type of another type parameter, or as the instantiating type of a
parameterized type; all other occurrences of implicit type parameter bindings are illegal. Like
explicit formal type parameters, an implicit formal type parameter may be bounded from above by
some type using the<= type notation, and implicit formal parameters are quantified over all types
that are subtypes of its upper bound (whereany is used as the default upper bound). Like explicit
type parameters, implicit type parameters are scoped over the entire declaration. Implicit type
parameters must have names distinct from any explicit type parameters. Like explicit type
parameters, implicit type parameters may be used in the type declarations of earlier formal
arguments, as in theprepend method above, as long as no cyclic dependencies result. Implicit
type parameters are akin to polymorphic type variables in languages like ML [Milneret al. 90].

Implicit type parameters are useful not only for parameterized types but also for performing simple
calculations on argument types to compute appropriate result types. For example, the following
method describes its result type in terms of its argument types:*

method min(x1:‘T1 <= comparable, x2:‘T2 <= comparable):T1|T2 {
if (x1 < x2, { x1 }, { x2 }) }

* Section 3.13.4 will mention F-bounded polymorphism as an area of future work needed to make a general-purpose
comparable type work well.

56

User-defined control structures often compute the types of their results from the types of their
arguments:

method if(condition:bool, true_case:&():‘T1, false_case:&():‘T2):T1|T2 {
abstract }

method if(condition@:true, true_case:&():‘T1, false_case:&():‘T2):T1|T2 {
eval(true_case) }

method if(condition@:false, true_case:&():‘T1, false_case:&():‘T2):T1|T2 {
eval(false_case) }

As illustrated by the above example, least-upper-bound types over implicit type parameters are
relatively common. To avoid the need for many of these disjunctions, Cecil allows multiple
implicit type parameter bindings of the same type name. This is semantically identical to multiple
distinctly named implicit type parameter bindings and replacing all occurrences of the original type
name with the disjunction of all the new type names. This mechanism allows themin example to
be rewritten as follows:

method min(x1:‘T <= comparable, x2:‘T):T {
if (x1 < x2, { x1 }, { x2 })}

The system automatically supplies the instantiating type for an invocation of an implicitly
parameterized method. This instantiating type is derived at run-time for each call from the dynamic
type of the corresponding argument. The declared formal parameter is treated as a form of type
pattern that needs to be matched against the dynamic type of the actual parameter to bind the
implicit type parameters. The most general form of the type declaration for a formal parameter is
the following:

‘ S <= type[‘ T1 <= type1, ..., ‘ TN <= typeN]

If the ‘ S<= prefix is omitted, then a fresh type variable is supplied to represent the dynamic type
of the argument. If thetype[...] is omitted, it defaults toany . Zero or more parameters may be
provided fortype. If any of the<= typei suffixes are omitted, they default toany . None of thetype
or typei can contain an implicit type parameter binding (i.e., no‘ in them). Any of the‘ Ti <=
prefixes may also be omitted.

3.11.3 Instantiating Implicit Type Parameters

When invoking a method with a formal parameter declared with a type of the above general form,
theS type variable is bound to the dynamic type of the corresponding actual argument object. To
bind anyTi type parameters, the dynamic type of the actual is matched against the type pattern of
the form type[‘ T1 <= type1, ...,‘ TN <= typeN] . This matching is performed by searching the
supertype lattice of the dynamic type for the single most specific type of the formtype[t1, ..., tN] ,
where eachti matches the corresponding‘ Ti <= typei pattern using the following rules:

• if the ‘ Ti <= prefix is omitted, thenti must be the same astypei;

• if the ‘ Ti <= prefix is included, thenti must be a subtype oftypei, andTi is bound toti.

For example, consider the following code:

abstract type printable;

method print(@:printable):void { abstract; }

57

abstract type number isa printable;

abstract type collection[T];

method do(c@:collection[‘T], closure:&(T):void):void { abstract; }

method print(c@:collection[‘T <= printable]):void {
"[".print;
do(c, &(x:T){ x.print; " ".print; });
"]".print;

}

method expand_tabs(c@:‘T <= collection[char]):T {
-- return a copy ofc, where tab characters have been replaced with spaces

}

abstract type list[T] isa collection[T];

concrete object nil[T] isa list[T];

template object cons[T] isa list[T];

abstract type table[Key,Value] isa collection[Value];

abstract type indexed[T] isa table[int,T];

template type array[T] isa indexed[T];

template type string isa indexed[char];

If the messageprint is sent to an object of dynamic typecons[number] , then theprint
method defined oncollection will be found. Then the dynamic typecons[number] will be
matched against the patterncollection[‘T <= printable] to bind the implicit type
parameterT. The supertype graph ofcons[number] will be searched for a type of the form
collection [something], wheresomething is a subtype ofprintable . This search will locate
the typecollection[number] , andT will be bound to the typenumber for the duration of
the execution of theprint method.

If, on the other hand, the messageexpand_tabs is sent to an object of dynamic typestring ,
the method defined forcollection[char] will be found. The dynamic typestring will be
matched against the static formal argument type‘T <= collection[char] . This match will
succeed, sincestring is declared as a subtype ofcollection[char] , and the implicit type
parameterT will be bound tostring .

Note that the type declarationcollection[char] is different than the type declaration
collection[‘T <= char] . The former will match any collection that is declared to be a
subtype of a collection of characters, i.e., that supports all the operations of collections of
characters and is substitutable wherever a collection of characters appears. The latter type
declaration matches any collection of items which are subtypes of characters. The type
collection[letter_char] would match this latter type declaration, assuming that
letter_char was a subtype ofchar restricted to letters, but it would not match the former type
declaration, since a collection of letters is not a subtype of a collection of generic characters; in
particular, the store operation for a collection of letters takes a more specific argument than does
the store operation for collections of generic characters. Deciding the exact form of a

58

parameterized type declaration can be rather subtle, and we need to gather experience with the
language to assess how well programmers are able to pick an appropriate type declaration.

The dynamic type of the actual argument is used to compute the instantiation of any implicitly-
bound type parameters. The static type is not used because, with mixed statically- and dynamically-
typed code as described in section 3.12, the caller may not have a static type available to provide
as the instantiating value. Usually, the distinction between the dynamic and the static type is
unimportant. For example, with the simplemin method defined above, the caller will know that
the type of the result is a subtype of the least-upper-bound of the dynamic types of the two
arguments. Given the static knowledge that both arguments are of some dynamic type that is a
subtype of a particular static type, the caller can infer the static knowledge that the result is some
subtype of that static type. Static type information already implies only that the dynamic type of
some expression is some subtype of the static type, so calculating static approximations to
implicitly-bound type variables is what the type checker has been doing all along.

In two circumstances, however, the distinction between instantiating a type parameter with a
dynamic type versus a static type is important. If a implicitly-bound type parameter is used as a
normal type for another declaration, i.e., as an upper bound type, then legal actual parameters must
be known to be equal to or subtypes of the implicitly bound type variable. For example, ifmin
were rewritten as follows:

method min(x1:‘T <= comparable, x2:T):T {
if (x1 < x2, { x1 }, { x2 })}

the second argument would be required to be a subtype of thedynamic type of the first argument.
This requirement could be quite difficult to guarantee statically and is probably not what the
programmer meant. Type parameters are usually used directly as type declarations when they are
bound to the instantiating parameter of a parameterized type, as in the following method:

method store(a:array[‘T], index:int, value:T):void {
-- storevalue as theindexth element of the arraya

}

Here,T will be bound to the type of the elements of the array, and typically thevalue argument
will be known to be a subtype of that type at the call site.

The distinction between dynamic types and static types for instantiation also appears when
instantiating a parameterized object. For example, one way to write thenew_array method
might be the following:

method new_array(size:int, initial_value:‘T):array[T] {
object isa array[T] { size := size, initial_value := initial_value } }

Given an initial value of dynamic typeT, an array is returned with the typeT as the instantiating
value. Because of the fetch and store operations defined on arrays, this array will only be able to
contain elements that are subtypes of thedynamic type of its initial value. Usually, this would be
too restrictive. Accordingly, the real method to create a new array is explicitly parameterized with
the type of the elements:

method new_array[T](size:int, initial_value:T):array[T] {
object isa array[T] { size := size, initial_value := initial_value } }

59

Instantiations of parameterized objects record their instantiating types as part of their dynamic run-
time state. The instantiating types are used to determine the subtyping relation of the object and
when matching the parameterized object’s type against a type declaration of the form
type[...,‘ Ti <= typei, ...] .

The process for matching a dynamic type against a static type declaration containing implicit type
parameter bindings depends on locating a single most specific binding type. This may not always
be possible without additional constraints. For example, in the following declaration:

concrete object strange isa collection[int], collection[string];

if thestrange object is sent thedo message, its type will be matched against the type declaration
collection[T] . Both collection[int] andcollection[string] will match, but
neither is a subtype of the other. BindingT to int&string might seem reasonable, but then a
type error will result, becausestrange is not a subtype ofcollection[int&string] (such
a relationship would have to be explicitly declared). To avoid this sort of problem at method
invocation time, objects likestrange are disallowed. For an object declaration to be legal, there
must be at most one most specific instantiation for any of its parameterized supertypes. This check
is done when type-checking an object declaration.

3.11.4 Method Lookup

Method lookup is extended to include the number of explicit parameters of candidate methods as
part of the method selection process. A message of the form
name[type1, ..., typeM](expr1, ..., exprN) , with M and N zero or greater, will only match
methods namedname with M explicit formal type parameters andN formal arguments. Method
lookup does not depend on the constraints placed on legal instantiating types of explicit formal type
parameters. For example,

method foo[T <= integer]():void { ... }

does not override

method foo[T <= number]():void { ... }

In fact, these two methods could not legally be defined in the same system, since they have the
same name, same number of explicit type parameters, same number of arguments, and same
argument constraints.

Once method lookup based on the above pieces of information plus the argument constraints of the
candidate methods has located a single most specific target method, the type variables listed as
explicit formal type parameters are bound to the corresponding instantiating types passed in the
message, and implicitly bound type parameters are bound to the corresponding types derived from
the dynamic types of the corresponding actual arguments. Then the constraints expressed by the
upper bound type declarations of the formal type parameters and the argument type declarations
are checked for consistency.

3.11.5 Parameterized Types and Signatures

When extracting the type of a parameterized object, a parameterized type with the same formal
type parameters is created. Similarly, when extracting the signature from a method with explicit

60

and/or implicit type parameters, the signature created has the same explicit type parameters and the
same argument type declarations as the method, including implicit type parameter binding
information. For example, the declarations

abstract type collection[T];

method do(c@:collection[‘T], closure:&(T):void):void { abstract; }

method print(c@:collection[‘T <= printable]):void {
"[".print;
do(c, &(x:T){ x.print; " ".print; });
"]".print;

}

method expand_tabs(c@:‘T <= collection[char]):T {
-- return a copy ofc, where tab characters have been replaced with spaces

}

abstract type table[Key,Value] isa collection[Value];

abstract type indexed[T] isa table[int,T];

template type array[T] isa indexed[T];

method new_array[T](size:int, initial_value:T):array[T] {
object isa array[T] { size := size, initial_value := initial_value } }

generates the following types and signatures:

type collection[T];

signature do(collection[‘T], &(T):void):void;

signature print(collection[‘T <= printable]):void;

signature expand_tabs(‘T <= collection[char]):T;

type table[Key,Value] subtypes collection[Value];

type indexed[T] subtypes table[int,T];

type array[T] subtypes indexed[T];

signature new_array[T](int, T):array[T];

A message send is type-correct if and only if a signature has been extracted that has the same name,
number of formal type parameters, and number of actual arguments as the message and whose
upper-bound type constraints on actual explicit type parameters and on actual argument objects are
obeyed. As before, the type of the result of a message is the greatest lower bound of the result types
of matching signatures.

When type-checking the implementation of signatures, message patterns are extended to have the
same number of actual type parameters as the signature. Actual type parameters are enumerated in
the same manner as are actual object patterns. As before, the upper bound types associated with the
formal argument type declarations are used to locate object patterns to enumerate. Only those
message patterns whose argument type parameters and argument objects obey the appropriate
upper bound type constraints are considered. When simulating method lookup, after finding a
target method, the type checker verifies that any properties of and relationships between the explicit
and implicit type parameters are satisfied by the message pattern.

61

3.12 Mixed Statically- and Dynamically-Typed Code

One of Cecil’s major design goals is to support both exploratory programming and production
programming and in particular to support the gradual evolution from programs written in an
exploratory style to programs written in a production programming style. Both styles benefit from
object-oriented programming, a pure object model, user-defined control structures using closures,
and a flexible, interactive development environment. The primary distinction between the two
programming styles relates to how much effort programmers want to put into polishing their
systems. Programmers in the exploratory style want the system to allow them to experiment with
partially-implemented and partially-conceived systems, with a minimum of work to construct and
subsequently revamp systems; rapid feedback on incomplete and potentially inconsistent designs
is crucial. The production programmer, on the other hand, is concerned with building reliable,
high-quality systems, and wants as much help from the system as possible in checking and
polishing systems.

To partially support these two programming styles within the same language, type declarations and
type checking are optional. Type declarations may be omitted for any argument, result, or local
variable; all uses of an undeclared variable will be checked for consistency dynamically. Programs
without explicit type declarations are thus smaller and less redundant, maximizing the exploratory
programmer’s ability to rapidly construct and modify programs. Later, as a program (or part of a
program) matures, the programmer may add type declarations incrementally to evolve the system
into a more polished and reliable production form. Where type declarations are present, the system
verifies (either statically or dynamically) that only objects that conform to the declared type of a
variable are assigned to the variable. Where one statically-typed expression is assigned to a
statically-typed variable, formal parameter, or method result, the system signals the user if the type-
correctness of the assignment cannot be verified at program-definition time.

The type system models the types of undeclared variables with a special typedynamic ;
dynamic may also be specified explicitly as the type of some variable. An expression of type
dynamic may legally be passed as an argument, returned as a result, or assigned to a variable of
any type.

Cecil supports the view that static type checking is a useful tool for programmers willing to add
extra annotations to their programs, but that all static efficiently-decidable checking techniques are
ultimately limited in power; programmers should not be constrained by the inherent limitations of
static type checking. The Cecil type system has been designed to be as flexible and expressive as
we knew how to reasonably make it (in particular by supporting multi-methods, separating the
subtype and code inheritance graphs and by supporting explicit and implicit parameterization) so
that as many reasonable programs as possible will successfully type-check statically, but we
recognize that there may still be reasonable programs that either will be awkward to write in a
statically-checkable way or will be difficult if not impossible to statically type-check in any form.
Accordingly, error reports do not prevent the user from executing the suspect code; users are free
to ignore any type checking errors reported by the system, relying instead of dynamic type checks.
Static type checking is a useful tool, not a complete solution.

62

One complication arises when combining dynamic typing with parameterized types. In Cecil, a
parameterized object such asarray can be used without explicit instantiation to indicate a
dynamically type-checked version of the parameterized object, as if the parameterized type had
been implicitly instantiated with the typedynamic . Assignments of an object ofdynamic type
into a statically-declared variable must be dynamically checked to see if the object conforms to the
statically-declared type. With scalar objects, this checking is relatively easy, but with
parameterized types, the checking may take a significant amount of time. For example, if a
dynamically-typed array were assigned to a variable declared to be an array of numbers, then each
element of the array object must be checked to verify that the element is a number. Furthermore,
after the assignment, the array object can never be mutated to hold objects that are not numbers,
since there may still be a reference to the array object (an alias) that is statically declared to be an
array of numbers. Since manipulating parameterized types in a dynamically type-checked manner
is crucial for exploratory programming, this feature cannot be sacrificed.

When building a new object in exploratory programming mode, declaring the new object’s
immediate supertypes should not be required. After all, the interface to the object is likely to be in
flux. However, if the object is passed as an argument to some method with a static type declaration,
then the supertypes of the object are needed to verify that the new object is a subtype of the declared
type of the formal parameter. We imagine that a programming environment tool that infers the
supertypes of objects given their current interfaces might help in this case. Alternatively, we may
change the semantics of mixed statically- and dynamically-typed code so that assigning a
dynamically-typed expression to a statically-typed variable does not cause an immediate run-time
type check. Only run-time checks for method lookup errors would be included (and these function
fine for exploratory objects without well-defined types). This approach also would eliminate the
need to compute the types of parameterized objects implicitly instantiated with typedynamic .
However, it does have the disadvantage that statically-typed code could fail at run-time with a
message lookup error, if an erroneous dynamically-typed value was passed into the statically-typed
code. In any case, programming environment support to identify where dynamically-typed code
remains in an application would be helpful for verifying that no type errors could occur at run-time.

3.13 Open Issues and Future Work

This section discusses some issues relating to the Cecil type system and describes some areas of
current and future work.

3.13.1 Efficient Implementation of Type Checking

While simple and accurate, the brute-force enumeration-based signature implementation checking
algorithm described in section 3.7.2 is too inefficient to use directly in a practical implementation.
Fortunately, the type checking algorithm can be optimized in several ways:

• For many signatures, some argument positions will not be specialized by any implementing
method. This was the case for the closure argument of thedo andpair_do methods, for
example. For such argument positions, no enumeration of concrete implementing objects is
necessary. The type checking algorithm simply checks that the argument types of the
unspecialized formals are supertypes of the corresponding types in the signature.

63

• An object pattern may have the same behavior as another with respect to simulated method
lookup. For example, if an object pattern defines no methods of its own (or at least none that
are covered by the signature in question) and has only a single parent, then simulating method
lookup with the child as the argument will give the same result as those with the parent as the
argument, so the child does not need to be checked in addition to the parent. Nearly all object
patterns derived from object constructor expressions will have this property.

• The type checking algorithm could be incremental. If a new method is defined, only its
covering signatures need be rechecked. If a new object is defined, only those signatures with
argument types to which the new object conforms need be rechecked. The previous two
optimizations can reduce the set of signatures needing checking greatly; we expect that for
most object definitions very few signatures will need rechecking.

In general, the structure of the method specificity graphs and the object inheritance graphs should
be used to guide an efficient and direct type checking algorithm. Pursuing these and other
optimizations is an important area of current work.

3.13.2 Incremental Type Checking and Modules

The Cecil type checker assumes that the whole program is available for type checking. In some
environments, particularly those using external code libraries, this assumption may seem
infeasible. However, all code is not strictly necessary for type checking. Instead, only the interfaces
to methods are required at final whole-program checking time. The bodies of methods can be
checked against a database of signatures incrementally and independently.

A related potential problem is that some errors may not be detectable until the whole program is
combined together at what traditionally would be called link-time. These errors occur when two
multi-methods are legal separately but become mutually ambiguous when combined. This problem
can only appear in the presence of multi-methods, however, and so is qualitatively different than
the kind of link-time type errors that can arise with system-level type-checking in Eiffel [Meyer
92].

Extending Cecil with a module facility might solve both of these problems. With modules,
programs could be broken up into components which could be completely type-checked and
partially compiled in isolation. Combining separate modules together at link-time would not
introduce new type errors if they did not interact directly, because the previously ambiguous
methods would be in unrelated modules and so invisible to each other. Whole program checking
would be reduced to whole module checking, where “whole module” includes imported and
textually-enclosing modules.

3.13.3 Dynamic Inheritance

Cecil can be statically type-checked despite its classless object model. This is because Cecil’s
object model is restricted compared to some other prototype-based languages such as SELF and
Actra where an object can inherit from some other run-time-computed object. Additionally, in
SELF, an object can change its parents at run-time. Type-checking such constructs would require
program declarations about the implementations of these parent objects in addition to their
interfaces. Cecil avoids the need for such new kinds of types by restricting parents and supertypes

64

of object declarations and object constructor expressions to be statically-known, named objects.
This allows the type checker to reason about the inheritance graph statically. One could argue that
it is desirable for programmers to be able to reason statically about the inheritance graph as well.

However, it is sometimes convenient to be able to compute the kind of object that should be
created, passing in as a run-time value the template object to be instantiated. In current Cecil, such
an operation could be emulated at user level, passing around explicit “factory” objects. A factory
object would implement anew message which creates an object of a particular statically-known
kind.

3.13.4 F-Bounded Polymorphism

In section 3.11.2, themin method was defined as follows:

method min(x1:‘T <= comparable, x2:‘T):T {
if (x1 < x2, { x1 }, { x2 })}

The typecomparable might be defined as follows:

abstract type comparable;

method = (x@:comparable, y@:comparable):bool { abstract }

method !=(x@:comparable, y@:comparable):bool { not(x = y) }

method < (x@:comparable, y@:comparable):bool { abstract }

method <=(x@:comparable, y@:comparable):bool { x = y | x < y }

method >=(x@:comparable, y@:comparable):bool { x = y | x > y }

method > (x@:comparable, y@:comparable):bool { y < x }

Numbers could be declared to be comparable as follows:

number isa comparable;

With this declaration, any pair of numbers could be used as arguments to themin method. We
would also like to state that collections of comparable things are also comparable:

collection[‘T <= comparable] isa comparable;

Unfortunately, both these declarations cannot both appear in the same Cecil program, because this
would require that numbers could be compared against collections of numbers. Subtyping as used
in the declaration‘T <= comparable in themin method only constrains a single object. What
we need to do for this case is to be able to describe that two objects come from related types, e.g.,
that both arguments tomin are subtypes ofnumber or that both are subtypes of the collection type
instantiated with related types.

F-bounded polymorphism [Canninget al. 89, Cooket al. 90] is a different kind of subtyping
relation that can describe that two objects come from the same type. One way of describing F-
bounded polymorphism, adapted from Black and Hutchinson’s version of F-bounded
polymorphism in Emerald [Black & Hutchinson 90] is that a type definition is treated as atype
generator, a function from a type to a type. The result type of the generator is the type being
defined, with the change that what would be self-references in the type are replaced with references
to the argument type of the generator. To convert the type generator into the real type, its fixpoint
is taken. Type generators can be further extended in “subtypes” with new operations. When the
fixpoint is taken of the extended type, what would have been references to the original type are in

65

fact references to the extended type. Unlike a normal subtype, the extended type is not necessarily
substitutable wherever its base type might appear. Alternative versions of this idea arise in the
categories of Axiom (formerly Scratchpad II) [Wattet al., Jenks & Sutor 92] and the metaclasses
of k-bench [Santas 93].

To illustrate these ideas, we will rewrite the abovemin example with some language extensions
under consideration. The main extensions support a new kind of subtyping and inheritance
relationship, notated by suffixing theisa , subtypes , or inherits keywords with_pattern
to indicate F-bounded subtyping and/or inheritance rather than normal subtyping and/or
inheritance, and a new kind of upper-bound type constraint, notated with<~ in place of<=. Using
these features, themin example could be written as follows:

method min(x1:‘T <~ comparable, x2:‘T):T {
if (x1 < x2, { x1 }, { x2 })}

number isa_pattern comparable;

collection[‘T <~ comparable] isa_pattern comparable;

The definition of thecomparable type would stay the same. Theisa_pattern clause in the
number andcollection object extension declarations reuse the signatures and the methods of
the comparable type and object, but with all references tocomparable replaced with
number orcollection[T] . Neithernumber norcollection[T] is a (normal) subtype of
comparable . Whenmin is invoked, the arguments must be subtypes of some type that is
comparable or has been declared to be patterned aftercomparable with anisa_pattern
or subtypes_pattern clause. Consequently,min may be invoked on a pair of numbers or on
a pair of collections of numbers, but without requiring a number to be comparable to a collection
of numbers.

66

4 Related Work

Cecil builds upon much of the work done with the SELF programming language [Ungar & Smith
87, Hölzleet al. 91a]. SELF offers a simple, pure, classless object model with state accessed via
message passing just like methods. Cecil extends SELF with multi-methods, copy-down and
initialize-only data slots, lexically-scoped local methods and fields, object extensions, and static
typing. Cecil has simpler method lookup and encapsulation rules, at least when considering only
the single dispatching case. Cecil’s model of object creation is different than SELF’s. However,
Cecil has yet to incorporate dynamic inheritance, one of the most interesting features of SELF.
Freeman-Benson independently developed a proposal for adding multi-methods to SELF

[Freeman-Benson 89].

Common Loops [Bobrowet al. 86] and CLOS [Bobrowet al. 88, Gabrielet al. 91] incorporate
multi-methods in dynamically-typed class-based object-oriented extensions to Lisp. Method
specializations (at least in CLOS) can be either on the class of the argument object or on its value.
One significant difference between Cecil’s design philosophy and that in CLOS and its
predecessors is that Cecil’s multiple inheritance and multiple dispatching rules are unordered and
report any ambiguities in the source program as message errors, while in CLOS left-to-right
linearization of the inheritance graph and left-to-right ordering of the argument dispatching serves
to resolve all message ambiguities automatically, potentially masking real programming errors. We
feel strongly that the programmer should be made aware of potential ambiguities since automatic
resolution of these ambiguities can easily lead to obscure errors in programs. Cecil offers a simpler,
purer object model, optional static type checking, and encapsulation. CLOS and its predecessors
include extensive support for method combination rules and reflective operations [Kiczaleset al.
91] not present in Cecil.

Dylan [Apple 92] is a new language which can be viewed as a slimmed-down CLOS, based in a
Scheme-like language instead of Common Lisp. Dylan is similar to CLOS in most of the respects
described above, except that Dylan always accesses state through messages. Dylan supports a form
of type declarations, but these are not checked statically, cannot be parameterized, and are treated
both as argument specializers and type declarations, unlike Cecil where argument specializers and
argument type declarations are distinct.

Polyglot is a CLOS-like language with a static type system [Agrawalet al. 91]. However, the type
system for Polyglot does not distinguish subtyping from code inheritance (classes are the same as
types in Polyglot), does not support parameterized or parametrically polymorphic classes or
methods, and does not address abstract methods. To check consistency among multi-methods
within a generic function, at least the interfaces to all multi-methods of a generic function must be
available at type-check-time. This requirement is similar to that of Cecil that the whole program be
available at type-check-time to guarantee that two multi-methods are not mutually ambiguous for
some set of argument objects.

Kea is a higher-order polymorphic functional language supporting multi-methods [Mugridgeet al.
91]. Like Polyglot (and most other object-oriented languages), inheritance and subtyping in Kea

67

are unified. Kea’s type checking of multi-methods is similar to Cecil’s in that multi-methods must
be both complete and consistent. It appears that Kea has a notion of abstract methods as well.

Leavens describes a statically-typed applicative language NOAL that supports multi-methods
using run-time overloading on the declared argument types of methods [Leavens 89, Leavens &
Weihl 90]. NOAL was designed primarily as a vehicle for research on formal verification of
programs with subtyping using behavioral specifications, and consequently omits theoretically
unnecessary features that are important for practical programming, such as inheritance of
implementation, mixed static and dynamic type checking, and mutable state. Other theoretical
treatments of multi-methods have been pursued by Rouaix [Rouaix 90], Ghelli [Ghelli 91,
Castagnaet al. 92], and Pierce and Turner [Pierce & Turner 92, Pierce & Turner 93].

The RPDE3 environment supportssubdivided methodswhere the value of a parameter to the
method or of a global variable helps select among alternative method implementations [Harrison
& Ossher 90]. However, a method can be subdivided only for particular values of a parameter or
global variable, not its class; this is much like supporting only CLOS’seql specializers.

A number of languages, including C++ [Stroustrup 86, Ellis & Stroustrup 90] and Haskell [Hudak
et al. 90], support static overloading on function arguments, but all overloading is resolved at
compile-time based on the static types of the arguments rather than on their dynamic types as
would be required for true multiple dispatching.

Trellis* supports an expressive, safe static type system [Schaffertet al. 85, Schaffertet al. 86].
Cecil’s parameterized type system includes features not present in Trellis, such as implicitly-bound
type variables and uniform treatment of constrained type variables. Trellis restricts the inheritance
hierarchy to conform to the subtype hierarchy; it only supportsisa -style superclasses.

POOL is a statically-typed object-oriented language that distinguishes inheritance of
implementation from inheritance of interface [America & van der Linden 90]. POOL generates
types automatically from all class declarations (Cecil allows the programmer to restrict which
objects may be used as types) and also allows the programmer to define explicit types separate from
class declarations (a feature Cecil does not provide). Subtyping is implicit (structural) in POOL:
all possible legal subtype relationships are assumed to be in force. Programmers may add explicit
subtype declarations as a documentation aid and to verify their expectations. One unusual aspect
of POOL is that types and classes may be annotated withproperties, which are simple identifiers
that may be used to capture distinctions in behavior that would not otherwise be expressed by a
purely syntactic interface. This ameliorates some of the drawbacks of implicit subtyping.

The only other classless object-oriented language with a static type system of which we are aware
is Emerald [Blacket al. 86, Hutchinson 87, Hutchinsonet al. 87]. Emerald is not based on multiple
dispatching and in fact does not include support for inheritance of implementation. Types in
Emerald are arranged in a subtype lattice, however.

* Formerly known as Owl and Trellis/Owl.

68

Rapide [Mitchellet al. 91] is an extension of Standard ML modules [Milneret al. 90] with
subtyping and inheritance. Although Rapide does not support multi-methods and relies on implicit
subtyping, many other design goals for Rapide are similar to those for Cecil.

Several languages support some form of mixed static and dynamic type checking. For example,
CLU [Liskov et al. 77, Liskovet al. 81] allows variables to be declared to be of typeany . Any
expression may be assigned to a variable of typeany , but any assignments of an expression of type
any to an expression of another type must be explicitly coerced using the parameterizedforce
procedure. Cedar supports a similar mechanism through itsREF ANY type [Teitelman 84]. Modula-
3 retains theREFANY type and includes several operations includingNARROW andTYPECASE
that can produce a more precisely-typed value from aREFANY type [Nelson 91, Harbison 92].
Cecil provides better support for exploratory programming than these other languages since there
is no source code “overhead” for using dynamic typing: variable type declarations are simply
omitted, and coercions between dynamically-typed expressions and statically-typed variables are
implicit. On the other hand, in Cecil it sometimes can be subtle whether some expression is
statically-typed or dynamically-typed.

69

5 Conclusion

Cecil is a new object-oriented language intended to support the rapid construction of reliable,
extensible systems. It incorporates a relatively simple object model which is based on multiple
dispatching but still supports a form of encapsulation and an abstract-data-type-based
programming style. Cecil compliments this object model with a static type system that describes
the interfaces to objects instead of their representation. Cecil’s type system distinguishes subtyping
from code inheritance, but uses notation that strives to minimize the burden on the programmer of
maintaining these separate object and type relationships. The type system supports explicitly and
implicitly parameterized types and methods to precisely capture the relationships among argument
types and result types in a convenient and concise way. Cecil supports both an exploratory
programming style and a production programming style, in part by allowing a program to mature
incrementally from a dynamically-typed system to a statically-typed system. Some areas of Cecil
merit further work, including the semantics of field initialization, the details of the encapsulation
mechanism, and future extensions to support modules, predicate objects, and F-bounded
polymorphism.

Acknowledgments

The Cecil language design and the presentation in this document have benefitted greatly from
discussions with members of the SELF group including David Ungar, Urs Hölzle, Bay-Wei Chang,
Ole Agesen, Randy Smith, John Maloney, and Lars Bak, with members of the Kaleidoscope group
including Alan Borning, Bjorn Freeman-Benson, Michael Sannella, Gus Lopez, and Denise
Draper, with the Cecil group including Claudia Chiang and Stuart Williams, and others including
Peter Deutsch, Eliot Moss, John Mitchell, Jens Palsberg, Doug Lea, Rick Mugridge, John Chapin,
Barbara Lerner, and Christine Ahrens. Claudia Chiang implemented the first version of the Cecil
interpreter, in SELF. Stuart Williams implemented the type checker for the monomorphic subset of
the Cecil type system. A conversation with Danny Bobrow and David Ungar at OOPSLA ’89
provided the original inspiration for this work.

This research has been generously supported by a National Science Foundation Research Initiation
Award (contract number CCR-9210990), a University of Washington Graduate School Research
Fund grant, and several gifts from Sun Microsystems, Inc.

70

References

[Agrawalet al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type Checking of
Multi-Methods. InOOPSLA ’91 Conference Proceedings, pp. 113-128, Phoenix, AZ, October, 1991.
Published asSIGPLAN Notices 26(11), November, 1991.

[America & van der Linden 90] Pierre America and Frank van der Linden. A Parallel Object-Oriented
Language with Inheritance and Subtyping. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 161-
168, Ottawa, Canada, October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Apple 92]Dylan, an Object-Oriented Dynamic Language. Apple Computer, April, 1992.

[Black et al. 86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Structure in the
Emerald System. InOOPSLA ’86 Conference Proceedings, pp. 78-86, Portland, OR, September, 1986.
Published asSIGPLAN Notices 21(11), November, 1986.

[Black & Hutchinson 90] Andrew P. Black and Norman C. Hutchinson. Typechecking Polymorphism in
Emerald. Technical report TR 90-34, Department of Computer Science, University of Arizona,
December, 1990.

[Bobrow et al. 86] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel. CommonLoops: Merging Lisp and Object-Oriented Programming. InOOPSLA ’86
Conference Proceedings, pp. 17-29, Portland, OR, September, 1986. Published asSIGPLAN Notices
21(11), November, 1986.

[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon.
Common Lisp Object System Specification X3J13. InSIGPLAN Notices 23(Special Issue), September,
1988.

[Borning 86] A. H. Borning. Classes Versus Prototypes in Object-Oriented Languages. InProceedings of
the 1986 Fall Joint Computer Conference, pp. 36-40, Dallas, TX, November, 1986.

[Canninget al. 89] Peter S. Canning, William R. Cook, Walter L. Hill, John C. Mitchell, and William
Olthoff. F-Bounded Quantification for Object-Oriented Programming. InProceedings of the
Conference on Functional Programming Languages and Computer Architecture, 1989.

[Cardelli & Wegner 85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. InComputing Surveys 17(4), pp. 471-522, December, 1985.

[Castagnaet al. 92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded
Functions with Subtyping. InProceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pp. 182-192, San Francisco, June, 1992. Published asLisp Pointers 5(1), January-
March, 1992.

[Chamberset al. 89] Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of SELF,
a Dynamically-Typed Object-Oriented Language Based on Prototypes. InOOPSLA ’89 Conference
Proceedings, pp. 49-70, New Orleans, LA, October, 1989. Published asSIGPLAN Notices 24(10),
October, 1989. Also published inLisp and Symbolic Computation 4(3), Kluwer Academic Publishers,
June, 1991.

[Chamberset al. 91] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle. Parents are Shared
Parts: Inheritance and Encapsulation in SELF. In Lisp and Symbolic Computation 4(3), Kluwer
Academic Publishers, June, 1991.

[Chambers & Ungar 91] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages
Practical. InOOPSLA ’91 Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991. Published
asSIGPLAN Notices 26(10), October, 1991.

[Chambers 92a] Craig Chambers.The Design and Implementation of the SELF Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. Ph.D. thesis, Department of Computer
Science, Stanford University, March, 1992.

71

[Chambers 92b] Craig Chambers. Object-Oriented Multi-Methods in Cecil. InECOOP ’92 Conference
Proceedings, Utrecht, The Netherlands, July, 1992.

[Chambers 93] Craig Chambers. Predicate Classes. To appear inECOOP ’93 Conference Proceedings,
Kaiserslautern, Germany, July, 1993.

[Chang & Ungar 90] Bay-Wei Chang and David Ungar. Experiencing SELF Objects: An Object-Based
Artificial Reality. Unpublished manuscript, 1990.

[Cook 89] W. R. Cook. A Proposal for Making Eiffel Type-Safe. InECOOP ’89 Conference Proceedings,
pp. 57-70, Cambridge University Press, July, 1989.

[Cooket al. 90] William Cook, Walter Hill, and Peter Canning. Inheritance is not Subtyping. InConference
Record of the 17th Annual ACM Symposium on Principles of Programming Languages, San Francisco,
CA, January, 1990.

[Cook 92] William R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. In In
OOPSLA ’92 Conference Proceedings, pp. 1-15, Vancouver, Canada, October, 1992. Published as
SIGPLAN Notices 27(10), October, 1992.

[Ellis & Stroustrup 90] Margaret A. Ellis and Bjarne Stroustrup.The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA, 1990.

[Freeman-Benson 89] Bjorn N. Freeman-Benson. A Proposal for Multi-Methods in SELF. Unpublished
manuscript, December, 1989.

[Gabriel et al. 91] Richard P. Gabriel, Jon L White, and Daniel G. Bobrow. CLOS: Integrating Object-
Oriented and Functional Programming. InCommunications of the ACM 34(9), pp. 28-38, September,
1991.

[Ghelli 91] Giorgio Ghelli. A Static Type System for Message Passing. InOOPSLA ’91 Conference
Proceedings, pp. 129-145, Phoenix, AZ, October, 1991. Published asSIGPLAN Notices 26(11),
November, 1991.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading, MA, 1983.

[Goldberg 84] Adele Goldberg.Smalltalk-80: The Interactive Programming Environment. Addison-Wesley,
Reading, MA, 1984.

[Halbert & O’Brien 86] Daniel C. Halbert and Patrick D. O’Brien. Using Types and Inheritance in Object-
Oriented Languages. Technical report DEC-TR-437, Digital Equipment Corp., April, 1986.

[Harbison 92] Samuel P. Harbison.Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1992.

[Harrison & Ossher 90] William Harrison and Harold Ossher. Subdivided Procedures: A Language
Extension Supporting Extensible Programming. InProceedings of the 1990 International Conference
on Computer Languages, pp. 190-197, New Orleans, LA, March, 1990.

[Hölzle et al. 91a] Urs Hölzle, Bay-Wei Chang, Craig Chambers, Ole Agesen, and David Ungar.The SELF
Manual, Version 1.1. Unpublished manual, February, 1991.

[Hölzle et al. 91b] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed Object-
Oriented Programming Languages with Polymorphic Inline Caches. InECOOP ’91 Conference
Proceedings, pp. 21-38, Geneva, Switzerland, July, 1991.

[Hölzleet al. 92] Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized Code with Dynamic
Deoptimization. To appear inProceedings of the SIGPLAN ’92 Conference on Programming Language
Design and Implementation, San Francisco, CA, June, 1992.

[Hudak et al. 90] Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph Fasel, Kevin
Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Simon Peyton Jones,
Mike Reeve, David Wise, Jonathan Young.Report on the Programming Language Haskell, Version 1.0.
Unpublished manual, April, 1990.

72

[Hutchinson 87] Norman C. Hutchinson.Emerald: An Object-Based Language for Distributed
Programming. Ph.D. thesis, University of Washington, January, 1987.

[Hutchinsonet al. 87] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy, and Eric
Jul. The Emerald Programming Language Report. Technical Report 87-10-07, Department of
Computer Science, University of Washington, October, 1987.

[Ingalls 86] Daniel H. H. Ingalls. A Simple Technique for Handling Multiple Polymorphism. InOOPSLA
’86 Conference Proceedings, pp. 347-349, Portland, OR, September, 1986. Published asSIGPLAN
Notices 21(11), November, 1986.

[Jenks & Sutor 92] Richard D. Jenks and Robert S. Sutor.Axiom: the Scientific Computing System. Springer-
Verlag. 1992.

[Kiczaleset al. 91] Gregor Kiczales, James des Rivières, and Daniel G. Bobrow.The Art of the Meta-Object
Protocol. MIT Press, Cambridge, MA, 1991.

[Kristensenet al. 87] B. B. Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen
Nygaard. The BETA Programming Language. InResearch Directions in Object-Oriented
Programming, MIT Press, Cambridge, MA, 1987.

[LaLondeet al. 86] Wilf R. LaLonde, Dave A. Thomas, and John R. Pugh. An Exemplar Based Smalltalk.
In OOPSLA ’86 Conference Proceedings,pp. 322-330, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Leavens 89] Gary Todd Leavens.Verifying Object-Oriented Programs that use Subtypes. Ph.D. thesis,
MIT, 1989.

[Leavens & Weihl 90] Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented Programs
that use Subtypes. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 212-223, Ottawa, Canada,
October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Lieberman 86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems. InOOPSLA ’86 Conference Proceedings, pp. 214-223, Portland, OR, September,
1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Liebermanet al. 87] Henry Lieberman, Lynn Andrea Stein, and David Ungar. The Treaty of Orlando. In
Addendum to the OOPSLA ’87 Conference Proceedings, pp. 43-44, Orlando, FL, October, 1987.
Published asSIGPLAN Notices 23(5), May, 1988.

[Liskov et al. 77] Barbara Liskov, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. Abstraction
Mechanisms in CLU. InCommunications of the ACM 20(8), pp. 564-576, August, 1977.

[Liskov et al. 81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert
Scheifler, and Alan Snyder.CLU Reference Manual. Springer-Verlag, Berlin, 1981.

[Meyer 86] Bertrand Meyer. Genericity versus Inheritance. InOOPSLA ’86 Conference Proceedings, pp.
391-405, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Meyer 88] Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall, New York, 1988.

[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.

[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

[Mitchell et al. 91] John Mitchell, Sigurd Meldal, and Neel Hadhav. An Extension of Standard ML Modules
with Subtyping and Inheritance. InConference Record of the ACM Symposium on Principles of
Programming Languages, Williamsburg, VA, January, 1991.

[Moon 86] David A. Moon. Object-Oriented Programming with Flavors. InOOPSLA ’86 Conference
Proceedings,pp. 1-8, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11),
November, 1986.

73

[Mugridgeet al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-Typed
Programming Language. Technical report #50, Department of Computer Science, University of
Auckland, 1991. Also inECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991.

[Nelson 91] Greg Nelson, editor.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs,
NJ, 1991.

[Pierce & Turner 92] Benjamin C. Pierce and David N. Turner. Statically Typed Multi-Methods via Partially
Abstract Types. Unpublished manuscript, October, 1992.

[Pierce & Turner 93] Benjamin C. Pierce and David N. Turner. Object-Oriented Programming Without
Recursive Types. InConference Record of the 20th Annual ACM Symposium on Principles of
Programming Languages, January, 1993.

[Rees & Clinger 86] Jonathan Rees and William Clinger, editors.Revised3 Report on the Algorithmic
Language Scheme. In SIGPLAN Notices 21(12), December, 1986.

[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. InConference Record of the 17th Annual ACM
Symposium on Principles of Programming Languages, pp. 355-366, San Francisco, CA, January, 1990.

[Santas 93] Philip S. Santas. A Type System for Computer Algebra. InInternational Symposium on
Symbolic and Algebraic Computation. 1993.

[Schaffertet al. 85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis Object-Based Environment,
Language Reference Manual. Technical report DEC-TR-372, November, 1985.

[Schaffertet al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An
Introduction to Trellis/Owl. InOOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR,
September, 1986. Published asSIGPLAN Notices 21(11), November, 1986.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. In
OOPSLA ’86 Conference Proceedings, pp. 38-45, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Steele 84] Guy L. Steele Jr.Common LISP. Digital Press, 1984.

[Stroustrup 86] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, Reading, MA,
1986.

[Teitelman 84] Warren Teitelman.The Cedar Programming Environment: A Midterm Report and
Examination. Xerox PARC technical report CSL-83-11, June, 1984.

[Touretzky 86] D. Touretzky.The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.

[Ungar & Smith 87] David Ungar and Randall B. Smith. SELF: The Power of Simplicity. InOOPSLA ’87
Conference Proceedings, pp. 227-241, Orlando, FL, October, 1987. Published asSIGPLAN Notices
22(12), December, 1987. Also published inLisp and Symbolic Computation 4(3), Kluwer Academic
Publishers, June, 1991.

[Ungar et al. 91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing Programs
without Classes. InLisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June, 1991.

[Watt et al. 88] Steven M. Watt, Richard D. Jenks, Robert S. Sutor, and Barry M. Trager. The Scratchpad II
Type System: Domains and Subdomains. InProceedings of the International Workshop on Scientific
Computation, Capri, Italy, 1988. Published inComputing Tools for Scientific Problem Solving, A. M.
Miola, ed., Academic Press, 1990.

74

Appendix A Annotated Cecil Syntax

A.1 Grammar
a program is a set of declarations and an expression to evaluate

program ::= [decl_block] expr [“;”]

a declaration block is an unbroken sequence of declarations where names are available throughout

decl_block ::= decl { decl }

a declaration is a variable, a field, or a method declaration

decl ::= var_decl
| object_decl
| obj_extension
| field_decl
| method_decl

variable declarations bind names to objects

var_decl ::= “var” name [type_decl] initializer “;”

initializer ::= “=” expr the initialized thing is constant
| “:=” expr the initialized thing is assignable

object declarations create new objects and sometimes new types

object_decl ::= [role] object_or_type name [formal_params]
{relation} [field_inits] “;”

object_or_type ::= “object” builds an object and a private type
| “type” builds an object and a public type

role ::= “abstract” only inherited from by non-concrete objects
| “template” only inherited from, but no abstract methods

allowed
| “concrete” completely usable, but no abstract methods or

uninitialized fields allowed

relation ::= “isa” parents
| “inherits” parents
| “subtypes” types

parents ::= object { “,” object }

field_inits ::= “{” field_init { “,” field_init } “}”

field_init ::= name [location] initializer

location ::= “@” object

object extensions adjust the declaration of an existing object

obj_extension ::= name [params] {relation} “;”

field declarations define methods manipulating shared state

field_decl ::= [field_privacy] field_kind “field” name [formal_params]
“(” formal “)” [type_decl] field_body

field_privacy ::= privacy [(“get” | “put”) [privacy (“get” | “put”)]]

field_kind ::= empty copy-down, mutable field, like an instance var
| “shared” a single memory location, like a class variable
| “read_only” implicitly shared, noset_
| “init_only” implicitly unshared, noset_

75

field_body ::= initializer “;” the field is initialized
| “;” the field is uninitialized
| “{” “abstract” “}” [“;”] field decl is sugar for a pair of abstract methods

method declarations define new methods

method_decl ::= [privacy] “method” method_name [formal_params]
function [“;”]

method_name ::= name | infix_name

privacy ::= “public” | “private”

same form used for methods and closures; body is lexically-scoped within enclosing module, method, or closure body

function ::= “(” [formals] “)” [type_decl] function_body

formals ::= formal { “,” formal }

formal ::= [name] specializer

specializer ::= location [type_decl] specialized formal
| [type_decl] unspecialized formal
| “@” “:” object sugar for@object :object

function_body ::= “{” body “}”
| “{” “abstract” [“;”] “}”

body ::= {stmt} result

result ::= empty do not return a result
| expr return a result
| “^” [“;”] do a non-local return, but do not return a result
| “^” expr do a non-local return, returning a result

result of a statementt is ignored, so don’t allow expressions w/o side-effects

stmt ::= decl_block
| assignment “;”
| effect_expr “;”

assignment only allowed if name is assignable

assignment ::= name “:=” expr
| expr “.” name “:=” expr sugar forset_name(expr,expr)
| expr infix_name expr “:=” expr set_infix_name(expr,expr,expr)

three classes of expression

expr ::= literal
| simple_expr
| effect_expr

literal ::= integer
| float
| character
| string

simple_expr ::= name reference a local or global variable
| object reference a named object
| array_expr construct an array
| closure_expr construct a closure
| object_expr construct an anonymous object

76

effect_expr ::= message
| resend
| “(” body “)” introduces a nested scope

build an array
array_expr ::= “[” [exprs] “]”

build a closure
closure_expr ::= “&” function

| function_body shortcut for zero-arg closure

build a new object
object_expr ::= [role] object_or_type {relation} [field_inits]

send a message
message ::= name [params] “(” [exprs] “)”

| expr infix_name expr
| expr “.” name sugar forname(expr)

exprs ::= expr { “,” expr }

resend the message
resend ::= “resend” [“(” resend_args “)”]
resend_args ::= resend_arg { “,” resend_arg }
resend_arg ::= expr corresponding formal of sender must be

 unspecialized
| name undirected resend (name is a specialized formal)
| name location directed resend (name is a specialized formal)

name an object
object ::= name [params]

syntax of types
type ::= name [params]

| “&” “(” [types] “)” [type_decl] type of closure
| type “|” type anonymous least-upper-bound type
| type “&” type anonymous greatest-lower-bound type
| “‘” name [“<=” type] also bind a name to the type
| “(” type “)”

types ::= type { “,” type }

type_decl ::= “:” type

formal parameters for objects and methods
formal_params ::= “[” formal_param { “,” formal_param } “]”
formal_param ::= [“‘”] name [“<=” type]

actual parameters for objects and methods
params ::= “[” types “]”

A.2 Tokens
name ::= letter {letter | digit} [id_cont]
infix_name ::= punct {punct} [id_cont] | id_cont

77

id_cont ::= “_” (name | infix_name)

integer ::= [“-”] [radix] hex_digits
radix ::= digits “#”
hex_digits ::= hex_digit {hex_digit}
hex_digit ::= digit | one of “a..fA..F”

float ::= integer “.” hex_digits [exponent]
| integer exponent

exponent ::= “^” [“+” | “-”] digits
digits ::= digit {digit}

character ::= “‘” char “‘”
string ::= “““ { char | line_break } “““
char ::= any | “\” escape_char
escape_char ::= one of “\”’nrtvba”

| [“o”] digit [digit [digit]]
| “x” hex_digit [hex_digit]

line_break ::= “\” {whitespace} new_line {whitespace} “\”

letter ::= one of “a..zA..Z”
digit ::= one of “0..9”
punct ::= one of “!#$%^&*-+=<>/?‘~\|”

A.3 White Space
whitespace ::= space | tab | new_line | comment
comment ::= “--” {any} new_line comment to end of line

| “(--” {any} “--)” bracketed comment, can be nested

