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ABSTRACT

Several problems require the estimation of discrete random variables whoseaalbesput
in a one-to-onerdered correspondence with a finiteubset ofthe natural numbers. This
happens whenever quantitiese involved that represent integer items, or haween
guantized on a fixed number of levels, or correspond to "graded” linguistic vilkereswe
propose a correct probabilistic approach to skiod of problemsthat fully exploits all the
available prioknowledge aboutheir own structure. In spite of theery stringent constraints
induced in output space, the methodn bedirectly applied tostandardfeed-forward
networks while keeping local computation of both outpand error signalsAccording to
these guidelines, we devisednaural implementation of aomplex image pre-processing
algorithm by using very poor resolution on the computing elements in the network.

1) Introduction

In training Feed-Forward Networks (FFNs) to solve various kinds of supervised estimation
problems, most often the component of tbeerall cost function depending on the
experimental evidence is modelgdough the populameansquare error. However, it is a
well known fact that from a Ba&gianstandpoint, such choice can psstified only when
dealing with Gaussian, independently distributed random variableantaxt of multiple
homoscedastic regression (a review of this issue and additional references can be found in
[COS95),

Pattern recognitioties indeed far outside thisarrow range: ithis pioneeringvork(BRI89]

J. S. Bridlepointedout that inthis casethe likelihood function reliesupon amultinomial
distribution, so that measquare erroshould be accordingly replaced the entropic loss.
Sincethe newcostfunction directly involves probabilities of clagscurrencesBridle set up a
one-to-one correspondence between tlaesketheoutputneurons of a FFthrough aspecial
activation functiorn(the SoftMax)designed so as to satidfye normalization constraint on the
total probability.

While there are reasons that suggest SoftMaxvhich is essentially a normalized
exponential- as the "best suited" choice, nonethelasg positive definite"raw" activation
function could be used in placetbk exponential and thepost-processed inamilar way so
that allthe contributionssum up toone. Anyway, whether one wants to provide the FFN
outputswith an immediate probabilistic meaning or nibte constraintemains and prevents
the computation of errasignals atthe outputlevel in a local fashion. lether words since
outputunits compete amonipemselvegor a finite resource, each one must be prelamig
made aware of the raw responses provided by its competitors.



From a practical point of view, this featursy give rise to undesirable side effects. For
instance, some of the advantagesiving fromthe employment of modulaarchitectures are
lost: in particular, one cannot separately train each modulediifeeent processor without
broadcasting its rawoutput every time aninput/target pair is presented to thetwork.
Moreover, in mostigital or mixed analog/digitahardwareimplementationsvithout on-chip
learnindgFAB96], only a limitedresolution,fixed point version ofthe raw outputs iasily
accessible. Ohe one hand, these quantities can be asedtly to seelfor the "winner"
neuron. On the othdrand, winner neurons hawet been trainedto go high", but rather "to
go higher than theicompetitors”. The lack of a unique referenedue makes little difference
only as long as floatingoint numbersare concerned: in the present situatidoepending on
the actual amount ajutputbits, onemight reject patterns th&ill-fledged FFNwould have
correctlyclassified with a high confidence. In princigidly analog hardwaremplementations
do notsuffer from this limitation, since normalization can be performed in a collective way by
means of very simple circui€T89]. However, in so doingyutputneurons can no more be
multiplexed to account for a higher number of classes.

In summary,entropic lossminimization seems slightly less promisitigan one could
expect when it isapplied to neurahetwork classifiers.Some authof8EN91] evenclaim to
have "discovered numeroutfficulties” and developed an alternative approach. didenot
notice asmany difficulties, and indeed westill consider Bridle's original idea a real
breakthroughAnyway, fromthe foregoingdiscussion, it clearly emerges that FFi¥e better
suited for those situations where one is able to imposdardy constraintdo their outputs.

As a matter of fact, identification of the probabilistic structure underlying the output space
- in brief, the noise model has nothing to depecifically with neuralnetworks: itsimply
makes any kind oparametric estimatiomeaningful. Onthe otherhand, some of theasic
principles peculiar téhe connectionigbaradigmare of greavalue, so that they shoufwt be
altered beyond a certagxtent. This is especialltrue for anyonewho recognizes that the
prospects ofneural networks will ultimately depend on theefficient exploitation of their
massive parallelisnthrough dedicated hardware. So the questdses if, besideshose
involving only independentandom variableshere are otherelevant applications where a
correctand soungrobabilisticapproach can be pursuetiile keepinghe essential feature of
local computation.

The answer isaffirmative: estimation of discrete random variables taking on values in
finite, ordered sets constitutescasp example. Problems of this kitid in a sense between
function estimation and classification. Thagt only arise wheneveinteger quantities are
concerned, but also in case "gradédguistic values such as {vetgw, low, medium, high,
very high} have to be handledithout resort toany ad hoc numerical conversionthus
entering thaypical domain of fuzzy logic from &atherdifferent perspective. Thegre also
strictly related withthe task of counting up to a guessedue. The rest of thisvork is
devoted to show that standard FFNs are able to do that very well in a natural fashion.

In section 2) we show how theint prediction of constrained concurrent events can be
conveniently turned into a classificatitéisk defined on a suitablepace through what we
called "partitiveapproach”. Such technique hasaten worth in that iteads to something as
simple as a Karnaugh map. However, the drawbacks we mentioned before are not yet avoided.

In section 3) the problem of interest is expressed in terms of constrained concurrent events
and the partitive approach is used to derive the appropriate entropic loss. Local computation is
then restored by means of simple variable substitutions.

In section 4) theeffectiveness othe proposed method is checkedtiaining a standard
fully connected FFN to gather into a sindgl® mapping a sequence of pre-processing
operations applied to binary images of handwritten digits.



2) Prediction of Constrained Concurrent Events

2.1) General Case: the Partitive Approach
Let:
* Q be a set oh elementary events;
* g (j=1,..,n) be a boolean random variable indicating the occurrence ptthevent;
* P(g=1)= P; be the associated probability;
* Y= (Y,-. ) {0,1}" be a realization of the-ple (ey,..,,).

In a context ofsupervised prediction, oneishes to inferthe joint probability of
concurrent events iQ through a structural mod# (for instance, given FFNarchitecture)
equipped with aset of parametergV, in response to a patted belonging to some input
space. In seeking for "optimal" parameter valweg has to repeatedly evaluatékalihood
function whosebuilding block — the chanceL(Y|X,W,M)of generating a "targetsampleY
givenX , WandM - can be conveniently expressed as follows:

LOYIX W, M= Re= v, =yl X W ME
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to highlightthe equivalence betweethe statedoroblem and a classificatidiask where the
elements of X Q ) (the set of subsets @ ) are viewed as2" mutually exclusive and
exhaustive composite events. In faitte product at the exponent in thest member of
equality (1) simply evaluates theruth of the predicatékj=y; U jO {1,..,n}". It therefore
selects the occurence ofuaique composite event from amoaly the possibleones. As a
consequence, only the corresponding joint probability contributes to the likelihood kernel.

Given asetD of p training sample$(X1,Yy),..,(%, Yp)}, thelearning phas¢éhusinvolves
minimization of the following entropic loss:

-3 Tog[L (Y| X, W, M)

perhaps along with additional regularization terms embeddgdwhich are related with prior
knowledge about the parameters. As a reswigry unknown inpupattern getseventually
"assigned" to tha posteriorimost probable composite event.

In principle (but hardly in practice) a FFN could perform a direct mapping:

F E(fO..O""fl.l):Rm - [oa]-]2n

from the input space to th#" joint probabilities by setting up @ne-to-one correspondence
between these and itutputs. Of course, auitable output activation function(e.g. the
SoftMax) must be chosen so as to satisfy the normalization constraint on the total probability:
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If something more is known in advanabout theprobabilisticstructure ofQ , then two
main kinds of additional constraints can be established. That is:

* Independence among elementary evdntsconditioned probabilitiegyet reduced to
elementary ones;
» Forbidden realizations of tireple (e, .., §) LI corresponding joint probabilities vanish.

As we will soon see, in both casespressior(1) getssimplified and at thesame time the
number of FFNoutputscan be decreasethile keeping asoundprobabilisticinterpretation.
Since weare interested in putting such constraints into the structooalel as "built-in"
features, for the sake sfmplicity, anydependence oX, W andM will be omitted in the
ensuing formulas unless otherwise stated.

Before proceeding it is worth pointing out that insertion of prior knowledge &bounto
the partitive approach doe®t byitself lead to a uniquenterpretation of thé=-FN outputs.
What onedirectly obtains is a formal expressiontbé likelihood kernel that depends on a set
of "external" parameters, like th@nt probabilities in equality (1). In general such parameters
are notallowed to vary independently on an unlimited rangethencontrarythey mustobey
both local and globatonstraints. Everyime an inputpatternX is presented to the network,
their own desiredaluesare the ones that in compliance witlthe constraints- jointly give
rise tothe target vectol¥ with probability 1.The designer is then free tefine any suitable
functional relation between FFbutputsand external parameters, thus providihg former
ones with a sharprobabilistic meaning. Depending dne actual choice he makesjtput
neurons also inherthe constraints through theverse mapping. Thigestricts the repertoire
of admissible raw activation functions in the output layer. As a result of the whole process, the
conceptitself of "desiredoutput values" often becomes ambiguous if directly applied to the
FEN: for instance, in thesual Bridle's scheme ontgtios of raw outputailtimately affect the
costfunction. Anyway,provided that the forwarthapping is differentiablegrror signals can
always becomputed through thehain that linksentropic loss tautputneuronsvia external
parameters.

2.2) Independent Boolean Random Variables
If all the events i) are independent from each other:

(0 )00, R§= ¥ 6= V=[] Pe= 3

then thewell known binomial distribution can be derived fror(l) through some minor
algebra:

L(Y) = Ij Fj>yj (1_ Fj,)l—Yj

Now just n FFN outputs are requiredgeach oneidentified with a different elementary
probability andthereforelocally constrained tdie in the range[0,1]. Not only the usual

logistic activation functiorworks well, but in somesense it constitutes the "best suited”
choicdBRI89],



2.3) Constraints on Allowed Concurrences

The existence dfmitationsabout theadmissiblerealizations othen-ple (ey, .., §,) can be
conveniently handled by introducing a boolean funcBog0,1}"- {0,1} taking on the value
1 (0) if its inputs are related with the occurrence ofalawed (forbidden) composite event in
I»Q ). Upon translation of the booledunction into a Karnaugh mapghe correct
expression for thékelihood can then beomputed by simply gatherireyery”1" in the map
with the highest possible number obntiguous'0s". In fact, every boolean functicexdmits
thetrivial "sum of products” representation obtained by or-glighe entries in it$ruth table
where it evaluatedrue. Of course,;such entries areealizations of mutually exclusive
composite events. lrour case, since the remaining ones are forbiddenthey are also
exhaustive, so that one cdirectly write down the correspondingrultinomial distribution.
The resulting expressiogets thensimplified through the gathering process, tlegsentially
rulesout from each entnall those components that can be reconstructed the remaining
ones by virtue of the constrairitsemselves, while keepirtpe essentiaproperty ofmutual
exclusion among different reduced entries.

For instance, len=3. Giventhe booleardunctionB= (y;00 yo)O (yoO y3)O (v yy), it
admits the following trivial representation:

B=(% 0y, 0y)O(%0%0 wWO( yd yOYO( yJ ¥ y
Therefore:

L(Y)=P(g=0,g=1 =)W pe=1 g Q & YP2%Q
P(eg=1e=1¢g= O)ylyz(l-yg) Re=1 g=1 g Ji%»

Let us now consider the corresponding Karnaugh map:

Y1Ya
00 01 11 10

y, 0] 0 0 1 0
1

0 1 1 1
One immediately recognizes that the set:
{(=0.(6=0.(g=0.(g=1e=1¢}

defines four allowed, mutually exclusiveand exhaustivereduced) composite events in
I»Q ), thus inducing the following multinomial distribution:

L(Y) :(1_ Pl)(l_yl)(l_ Fz))(l')’z)(l_ B)(l'ys) F\u e= 1 e= 1 e= :DY1Yzy3
that can be re-expressed as:

L(Y) - (1_ Pl)(l_yl)(l_ Fz))(l'yz)(l_ Fg)(l')é)( F1)+ F2)+ B_ a()ﬁ* Y%t %-2)



by virtue of the additional normalization constraint on the total probability:
(1-R)+(1-R)+(-R)+ Rg=1g=1¢=)=1

Whereas the former expression of likelihood kernel naturally leads thbe usual Bridle's
schemethe latter one needs principle one less outpuheuron. At a first sight this ight
seem quitebeneficial, but in setting up the corresponderfce P; (j=1,..,3) one has to
guarantee that the non-lodaéquality2< f;+f,+f3 holdsonto thewhole input space for any
weight values. There is obviously no chance to use a standard FFN to do that.

3) Estimation of Random Variables Taking on Values in Finite, Ordered
Sets

3.1) Implication Constraints on Concurrent Events

Let V be a set oh+1 elements:V={v;} (j=1,..,n+1), sortedaccording to an abstract
relation of strictorder">" so that:U jkO {1,..,n+1}, j>kO v;>vy. Moreover letz be a
random variable taking on values\in Relation">" induces asetQ of n elementary events
definedas:{(z>vj)} (j=1,..,n). Notsurprisingly,Q is ordered through theflexive and anti-
symmetric logic relatiort 1 " (implication). In fact:l k< j, (z>v)U (z>vy). In its turn,
“00 ” induces a boolean functidd that identifiesthe allowed occurrences of composite
events inB®Q ). Thesen+1 configurations are summarized in the following table along with
the corresponding values taken orzby

e & .. el z
0O 0 .0. OV
1 0 .0. 0| v
1 1 .0. 0 v,
1 1 .. O

1 1 .1. 0}y,
1 1 .1. 1|v,

As it is apparent, thegtefine a thermometricode onV, where each intermediate entry is then
completely characterized lihe location of thel— O transition. Therefore, evewithout
explicitly resorting to a more expressive Karnaugh map, it turns out that the set:

(6=0,(6=16=0,..(¢,=1p=0.(p=

defines n+1 allowed, mutually exclusiveand exhaustivereduced) composite events in
I»Q ), thus inducing the following multinomial distribution:

LN =A- R[] Res=1 g= 0" p (2

Of course,since wepursued the partitive approach, tbeginal problem tmed into a
classificationtask amongn+1 quantities.All things considered, this is quitetravial result:



from a practical point of viewthe mostaivestrategy anyone can conceive is justreat the
elements ofV as if they were conventionédbels. As aconsequence, the prior knowledge
embedded intdhe orderrelation gets completelylost. The point is thatalthough trivial,
equality (2) is written in such a way to make us able to go much further on.

3.2) The Recursive Thermometric Code

By exploiting one more time the order relatiorCin, L(Y) can be fruitfully re-expressed in
terms of elementary probabilities alone.fatt, the booleariunction that identifiesall the
forbidden realizations of theple (e, .., §,) admits the following canonical representation:

B= j:ﬁz (V. OYy)
Since it must always be false (i.e.®o 1 transition is allowed), one has:
0j{2...n, Heg,=08=3=0-(ky)y=0
Therefore:

Oj{2...,nt, Re,=1e=0=Re,=1e=0+ Pe=1,ec)l- Peg=1 e )=
:Pj—l‘P(Q—Fl?:l): P.- F\Djelzlje:])_ Pjelije: )= i R— P

Oj 2.0k Y (1=y) =Y -yYHI-y)y=y.,—y

LN =A- R[] (Ra- B B (3

J

It seems weare on the right track: in fact, waight think of equippingour structural
model with n outputs (f,..,f)), each one ordinately corresponding to elementary
probability. However, there is no chance to use a standard FFN to doetteise we have to
guarantee that the inequalities:

Oj2..,n, f,-f>0
hold onto thewhole input space foany weight values. Roughly speaking, this happens
becauseall the burdencoming fromthe constraintsdirectly weighs onthe outputunits,

whereas it should be better handled by means of a suteglet coding. Such a coding
naturally emerges from the following variable substitutions in (3):

Q=R 0j{Z..,.1, Q=Re=1e,=1
that lead to:
Uj{2..,nt, P=He,=1e=3+Re,=0pe=)= Pe=1,&]1=,QR

0) 42,1, (Pa= R P = PE7(1- QY ¢ Bi= By @(1- QU



Upon recursive insertion diie lastformula into (3), starting fron=n and going downwards,
one finally obtains:

L(Y) = Q (- Q)l_Y1ﬁ Q" (1- Q)y,-_l-y,-

As it can be seen, thikelihood kernel isnow expressed in terms of conditioned
probabilities alone. It becamessentially a binomiabdistribution, theonly (interesting)
difference being thatow thegeneric ternQ; actuallydropsout from L(Y) whenevery,=0 for
somek<j. In fact,since0- 1 transitions are forbidden, both exponeyjtsaindy;- 1~ ;

mustvanishO jO {k+1,..,n}. Thereforeall the fancy features related with thestimation of
independently distributed quantities are preserved; in particular, a standard FFN egtipped
n outputs,each oneidentified with a different conditioned probability, caow be used
without any additional worry.

The following table may help to clarify what we justsaid in that it summarizes the
correspondence between thaluestaken on byz and thetargets(ty,..,t;) to be directly
applied to the output units:

t ot t | z
0 - .—. = |V
1 0 .—.. - |V,
1 1 -
1 1 .1. 0] v,
1 1 .1 1|v,
Here thesymbol "— " indicates a'does notcare" condition where, whatever tloaitput
response, no errorgsial isgenerated. Therefore, during th@ining phasethose output
neuronswhich are assigned'— " as theirtargetvalue neednot beactivated atall. As a

consequence, idealing with modulaarchitectures, each module is invokady onits own
relevant patterns!

During the production phase, tpeobabilistic meaning we assignedth@ FFN outputs is
exploited to rank the elementsVfaccording to the following formulas:

P(z>vy)={, Rz y=1- f
Oj2...nt, Rz>v)={Rz yv), Pz y=(1- ¥ P2,y
P(z=v..)=R2Z Y
Notice that for the sole purpose of determining the most probable value often only some of
the outputdhave to be actuallgomputedpreciselythose up to the smallesidexj suchthat

the inequalityP(z=\i)>P(z>V;) holds for the "temporary winnevjsy;.

In case{vy,..,\h+1} are reahumbers, it could also weorth determiningthe mean value of
z



n+

<Z>EZVJ.F{Z: Y): Y'*' 1f( Y- y+ X ' y+-"+ n( A\ n\))) (4)

J=1

and then choosing the most clogember inV. The procedure tends tinimize the variance
of the estimate, given by:

n+l

Var= 3 YRz y-< 2%= I {3 (3 Bt (- Bl < 7
©)

3.3) Thermometric Recursion vs. Least Squares Fitting

The ability to providenot only a meregguess, but also an associated uncertamakes the
proposed method gfractical interest also whesfealing with function estimation problems.
Indeedanyguess is uselessahe cannofigure out inany way, at least roughly, by homuch
the error idikely to belarge. The same holds whenettee required accuragyhich depends
on the application itself) isnot specified in advancetherefore, inall meaningful cases
involving bounded functions, one should alwaysale to assedhe proper- perhaps non-
uniform — quantization steps iorder todefinethe setV. If its cardinality isnot exceedingly
large, then thermometric recursion can be profitably applied through formulas (4) and (5).

Information about uncertainty can in principle also ecovered by pursuing ®efined
version ofthe traditional least squares approach. Strictly speaking, dietliening of the
estimation phas@nly the modelM and theexperimental evidend@ aregiven. Therefore, the
ultimate purpose of theestimation process is to compuemething like<z|X,D,M>. As
regards the FFN, fanyset ofweightsW it directly outputs thequantity <z|X,W,M>, that is
related with the former one by:

<z|X,D,M>=IdW< FXWM gWDN  6)

beingp(W|D,M)the posterioprobability density othe weightsNow, let us restrict ourselves
to the very special (and very rare) case where the value of the homoscedatic Gaussign noise
is known in advance: then, in absence of any prigas(z|X,D,M)can be written as:

Vaf(ZIXD,M)=02+IdW< EXW M pWDM< gXDMW
(7)

where p(W|D,M) is proportional to thdikelihood, so thatone can correctly seek for a
minimum of the mean square error. Now, do formulas (4) and (5) provide the analogous of (6)
and (7) once has been quantized\dt atalll There the quantities of interest are evaluated on

a preciseset of "best-fit" weightsW which are therefore taken for granted as if it were
p(W|D,M)=d (W- W). On the othehand, thecorrect approacitarries an overwhelming
complexity, so thatmost often it is mandatory to come to a compromis®.instance, the
solution proposed ifPEN91] js essentiallpased on a second-order Tayéxpansion of the

log likelihood aroundW. Once theHessian matrix ifomputed once foall, for each pattern

one hasonly" to determinghe gradient of theutputswith respect to the weightéinyway,

the simplifications madare so crude (and, abosak, the necessary hypothesis of knowaise



level is often so unrealistic) thdte choice betweethis technique and thermometric recursion
should bemainly based on practical considerations. Moreover, in the next sectionllvay
with a strict approximation problem where the function of interest can be congxaiety up

to machine precision. In thisaseVar(z|X,D,M) substantially vanishetogetherwith the
quadratic loss or, alternatively, with the evidence of the model itself.

4) Neural Implementation of a Pre-Processing Algorithm Applied to
Handwritten Digits

4.1) NIST Form-Based Handprint Recognition System
In 1994 the U. S. National Institute of Standards and Technology (NIST) freely distributed
both documentation and source code of its standard references3@RICARY4], Here we
focus our attention on a small but importpatt of theoverall processing flow: that ithe set
of transformations performed on every segmented binargge containing asingle
handwritten character prior tdassification. Such transformatioase briefly summarized in
the following list:
1) Character data inside the segmented image are bound with a box;
2) That box isscaled to fit exactly in 82-row by20-columnpixel region, and then centered
within a 32 by 32 square grid to keep space for further operations;
3) Morphological erosion or dilation is applied to normalize the stroke width;
4) Rows are shift left or right to remove slant;
5) A Karhunen-Loeve (KL) expansiti¥K72] is performed along therincipal 64 out of
1024 eigenvectors of the covariance matrix.
The covariance matrix of handwrittehgits is computed from a&et of 61094samples
extracted from NIST Special Databade”R92],

4.2) Neural Network Architecture and Operation
The classification engine chosen DbMIST is based on a Probabilistic Neural

NetworkKSPE90] (PNN) where KL coefficients ofall the "training" samplesare stored to

compute the degree of match with an unkngattern. As a consequence, the computational

load due to the pre-processing stage albmes not constitute r@al bottleneck for the entire
system. Howevetrthings change considerably when classification relsn a fast FFN. So,

in view of a flexible hardware implementation, itemsS))above can bdivided intotwo main

groups:

* Bounding box detection arstalingare mandatory foall thoseclassifiers requirindixed
input space dimension. This favors a dedicated digital solution.

» Strokewidth normalization, slant removal and KL expansare rathermeculiar to the
OCR system ware presently considering (although quitedely used, of course): one
might choose to perforrotherkinds of transformations, such as skeletonization, blurring,
edge detection, and so on. This favors a general purpose device.

We therefore trained a standard FFN to perform 2@ all atonce on each of thiest
50000 samplesdrawn from the set of handwritterdigits provided byNIST, while the
remaining 11094 ones have been put aside for testing purposes.

Although estimation of KL coefficients is in fact a lple function approximation
problem and could iprinciple betreated as such, thesmve been boundedithin their
empiricalranges and quantized beforehand to leapsythe proposed method. To takteesir
relative importance intaccount, each onleas been represented omwmber of levelsy+1
(i=1,..,64) which is roughly poportional to thesize of itsown empiricalrange. Moreover,

10



they have beetreated asndependentliscrete random variables, so that were allowed to
factor thejoint likelihood kernel interms of theindividual ones, orelsethe problem would
have become practically unmanageable. This choice is also partially justifibe bgct that
the KL transformitself tends to make coefficients, ifot really independent, at least
uncorrelated. A total amount &in;=256 output units have therefore beefivided into 64
groups to account fdx;(nj+1)=320levels onthe whole. A®xplained irthe previous section,
the ij-th (j=1,..,n;) output unitthus provides th@robability thatthe i-th KL coefficient be
greater than thg-th level, once it is assumed to lggeater than th&j— 1)-th one. Two
reasons make thigrocedure quiteviable: firstly, unlike what happens ipatternrecognition
problems, here "wrong" predictions dot constitute &erious problem as long as thgiye
rise to small distortions lying well withimtra-classvariability; secondly, it gives uke chance
to check theeffectiveness of thermometric recursion agaif& traditional least squares
approach in an adverse situation. As wié soon see, the quantization erroc@npensated
by the extremely low resolution requirements we attainedboth memory and computing
elements in the network.

From the input side, 640 unitirectly receive pixel values of 32 by 20 scal@dary
images. A single hidden layer made of 64 neufolhs connected in both directions completes
the FFN architecture. Entropic lossinimizationhas been carriedut according to the vant
of back-propagation proposed by VI¥§IG88], that makes use of global adaptivdearning
rate; howeverany other generalpurposetraining algorithm can be used agll. During the
production phasegvery KL coefficient is then estimateth a simplifiedversion of(4) that
exploits the fact we chose equally spaced levels.

Although the network is notvery large, nonetheless almost nothing is gained in
computational terms with respect to tleiginal processing flow as long asoftware
implementationsare concerned. We therefore decided to quantize each weight
(=1,..,dim(W))according to the following formula:

w,=£2% 27 (9

beingbotha andb; signed 7 bit integers. In this way, dependinghow activationfunctions
are actually computed, floating point stuff is partially or even entirely replaced by very fast and
highly parallelizable shift & add operations.

4.3) Experimental Results
To make things morevisual, we considered it worthwhile to summates overall

performance achieved by thetwork on the test set logconstructing inary images from the
predicted values of the 64 KL coefficients and computing the percentage of wrong bits.
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In Fig. 1 different versions dhree patterns extractéebm the test set arghownonly to
exemplify some typicalbutcomes; theensuingerror measures are takemto thewhole test
set. From left to right we have:

a) 32 by 20 scaled binary images: the FFN input patterns;

b) 32 by 32 binary images: the same patterns immediately before KL expansion;

c) What results fronthe reconstruction through tipeincipal 64"true" KL coefficients. Such
imagesare in fact thosahich we have taake as aeference when computirtge amount
of wrong bits, because quantizationomtputspace ionly an artifice we iserted for our
convenience;

d) Same as c) once Ktoefficientsare quantized as described befdre:3.01% of wrong
bits;

e) Same asd), but now thevalues provided bythe full-fledged FFN are used for
reconstructiont] 5.73% of wrong bits

f) Same as e) once weights are quantized according td (8)77% of wrong bits

g) Same as f)put now floating point stuff is totally removed by representing the
activation functions of hidden neurons on only 2 bits and those of output neurons on
3 levels alongso that (4becomes a sequence{set to zero | pass-througlshift left}
operations followed by an incremehft: 6.46% of wrong bits
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Resolution of Weighs/Hidden Neurons/Output Neurons
[f -> floating point; g -> quantized according to(8)]
[4 -> 4 Levels; 3 -> 3 Levels]

Fig. 2

To compare thermometric recursion with the traditional least squares approach we trained
a fully connected 640-82-6BFN onthe samepatterns withouperforming anyquantization
on the targevalues. The higher number of hidden units makestotal amount of eights
nearly equal to that ofhe previous network. Thhistogram in Fig. 2 shows theverall
performance achieved by both methods on tdst setunder thevery same conditions,
identified by the labels immediately underneath the horizontal axis.

Results are igoodagreement with what coultive been expected in advance. As far as
floating point resolution is used dioth memory and computing elementise availability of
the "true" KL coefficients makeshe least squares-based network superior. In baties
overall performancesare loosely affected by weight quantization. Ontige activation
functions ofthe hidden neurongre represented onlfits thenthe robustnessnplied in the
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distributed nature of the recursive thermometaodeprevails. Subsequent quantization of the
outputs on 3 levels prevents any meaningful comparison.

We now turn to consider the role tacertainty as given bgs) can play in function
estimation problems. To illustrate this point, and ttoe sake ofsimplicity, let us take the
prediction of thefirst KL coefficient out of context. Sincethe chosemumber of levels is
obviously related with the desired accuracy, it is reasonable to assert thBNtfals to give
the correct responsehenever theleviation ofthe estimatdrom the truevalue is larger than
the quantizatiorstep. Information aboutuncertainty can then be used tgnsil if a failure
event islikely to occur. Byimposing differentacceptance thresholds dar(z) one obtains
"Error versus Rejection” curves like the one shown in Fig. 3, hatbeemproduced by the
full-fledged version ofthe same FFN we used befordere the reference linadicates the
expected percentage f#ilure events ircase patterns are rejected in a randashion. Not
surprisingly,the maximumgain occurswhenthe acceptance threshold fdar(z)]1/2 is set to
abouthalf the quantization step: tHienit beyond whichthe quality of the estimatéegins to
become questionable.
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5) Conclusions

Todaywell established linksvith advanced statistical methods exist that alloleranally
correct approach tanany important aspects of neuraktwork design. On thesther hand,
some of thebasic principles peculiar tthe connectionisparadigmare of greatvalue and
should not be altered beyond a certaiextent. We showed how standard feed-forward
networks can beappliedwithout any theoretical compromise to a wide application domain:
that is,the supervise@stimation of discrete random variablgsose values can haut in a
one-to-oneorderedcorrespondence with fanite subset of the naturaumbers. Tgrove the
effectiveness othe proposed method, waiccessfully embedded into a singletwork a
complex pre-processing algorithm that veaiginally developed by th&).S. National Institute
of Standards and Technology for optical character recognition purpasiesxploitation of
all the availableprior knowledge madéhe networkextremelyrobustagainst thevery severe
limitations we imposed othe processing units, thehhancinghe advantages offered by a
hardware implementation.
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