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ABSTRACT

Several problems require the estimation of discrete random variables whose values can be put
in a one-to-one ordered correspondence with a finite subset of the natural numbers. This
happens whenever quantities are involved that represent integer items, or have been
quantized on a fixed number of levels, or correspond to "graded" linguistic values. Here we
propose a correct probabilistic approach to such kind of problems that fully exploits all the
available prior knowledge about their own structure. In spite of the very stringent constraints
induced in output space, the method can be directly applied to standard feed-forward
networks while keeping local computation of both outputs and error signals. According to
these guidelines, we devised a neural implementation of a complex image pre-processing
algorithm by using very poor resolution on the computing elements in the network.

1) Introduction

In training Feed-Forward Networks (FFNs) to solve various kinds of supervised estimation
problems, most often the component of the overall cost function depending on the
experimental evidence is modeled through the popular mean square error. However, it is a
well known fact that from a Bayesian standpoint, such choice can be justified only when
dealing with Gaussian, independently distributed random variables in a context of multiple
homoscedastic regression (a review of this issue and additional references can be found in
[COS95]).

Pattern recognition lies indeed far outside this narrow range: in his pioneering work[BRI89]

J. S. Bridle pointed out that in this case, the likelihood function relies upon a multinomial
distribution, so that mean square error should be accordingly replaced by the entropic loss.
Since the new cost function directly involves probabilities of class occurrences, Bridle set up a
one-to-one correspondence between these and the output neurons of a FFN through a special
activation function (the SoftMax) designed so as to satisfy the normalization constraint on the
total probability.

While there are reasons that suggest SoftMax − which is essentially a normalized
exponential − as the "best suited" choice, nonetheless any positive definite "raw" activation
function could be used in place of the exponential and then post-processed in a similar way so
that all the contributions sum up to one. Anyway, whether one wants to provide the FFN
outputs with an immediate probabilistic meaning or not, the constraint remains and prevents
the computation of error signals at the output level in a local fashion. In other words, since
output units compete among themselves for a finite resource, each one must be preliminarily
made aware of the raw responses provided by its competitors.
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From a practical point of view, this feature may give rise to undesirable side effects. For
instance, some of the advantages deriving from the employment of modular architectures are
lost: in particular, one cannot separately train each module on a different processor without
broadcasting its raw output every time an input/target pair is presented to the network.
Moreover, in most digital or mixed analog/digital hardware implementations without on-chip
learning[FAB96], only a limited resolution, fixed point version of the raw outputs is easily
accessible. On the one hand, these quantities can be used directly to seek for the "winner"
neuron. On the other hand, winner neurons have not been trained "to go high", but rather "to
go higher than their competitors". The lack of a unique reference value makes little difference
only as long as floating point numbers are concerned: in the present situation, depending on
the actual amount of output bits, one might reject patterns the full-fledged FFN would have
correctly classified with a high confidence. In principle fully analog hardware implementations
do not suffer from this limitation, since normalization can be performed in a collective way by
means of very simple circuits[VIT89]. However, in so doing, output neurons can no more be
multiplexed to account for a higher number of classes.

In summary, entropic loss minimization seems slightly less promising than one could
expect when it is applied to neural network classifiers. Some authors[DEN91] even claim to
have "discovered numerous difficulties" and developed an alternative approach. We did not
notice as many difficulties, and indeed we still consider Bridle's original idea a real
breakthrough. Anyway, from the foregoing discussion, it clearly emerges that FFNs are better
suited for those situations where one is able to impose only local constraints to their outputs.

As a matter of fact, identification of the probabilistic structure underlying the output space 
− in brief, the noise model − has nothing to do specifically with neural networks: it simply
makes any kind of parametric estimation meaningful. On the other hand, some of the basic
principles peculiar to the connectionist paradigm are of great value, so that they should not be
altered beyond a certain extent. This is especially true for anyone who recognizes that the
prospects of neural networks will ultimately depend on the efficient exploitation of their
massive parallelism through dedicated hardware. So the question arises if, besides those
involving only independent random variables, there are other relevant applications where a
correct and sound probabilistic approach can be pursued while keeping the essential feature of
local computation.

The answer is affirmative: estimation of discrete random variables taking on values in
finite, ordered sets constitutes a crisp example. Problems of this kind lie in a sense between
function estimation and classification. They not only arise whenever integer quantities are
concerned, but also in case "graded" linguistic values such as {very low, low, medium, high,
very high} have to be handled without resort to any ad hoc numerical conversion, thus
entering the typical domain of fuzzy logic from a rather different perspective. They are also
strictly related with the task of counting up to a guessed value. The rest of this work is
devoted to show that standard FFNs are able to do that very well in a natural fashion.

In section 2) we show how the joint prediction of constrained concurrent events can be
conveniently turned into a classification task defined on a suitable space through what we
called "partitive approach". Such technique has its own worth in that it leads to something as
simple as a Karnaugh map. However, the drawbacks we mentioned before are not yet avoided.

In section 3) the problem of interest is expressed in terms of constrained concurrent events
and the partitive approach is used to derive the appropriate entropic loss. Local computation is
then restored by means of simple variable substitutions.

In section 4) the effectiveness of the proposed method is checked by training a standard
fully connected FFN to gather into a single I/O mapping a sequence of pre-processing
operations applied to binary images of handwritten digits.
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2) Prediction of Constrained Concurrent Events

2.1) General Case: the Partitive Approach
Let:

• Ω  be a set of n elementary events;
• ej (j=1,..,n) be a boolean random variable indicating the occurrence of the j-th event;
• P(ej=1)≡ Pj be the associated probability;
• Y≡ (y1,..,yn)∈ {0,1}n be a realization of the n-ple (e1,..,en).

In a context of supervised prediction, one wishes to infer the joint probability of
concurrent events in Ω  through a structural model M (for instance, a given FFN architecture)
equipped with a set of parameters W, in response to a pattern X belonging to some input
space. In seeking for "optimal" parameter values, one has to repeatedly evaluate a likelihood
function whose building block − the chance L(Y|X,W,M) of generating a "target" sample Y
given X , W and M − can be conveniently expressed as follows:

L Y X W M P e y e y X W Mn n( | , , ) ( ,..., | , , )≡ = = =1 1

= = =
∏ + − −

=
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to highlight the equivalence between the stated problem and a classification task where the
elements of P(Ω ) (the set of subsets of Ω ) are viewed as 2n mutually exclusive and
exhaustive composite events. In fact, the product at the exponent in the last member of
equality (1) simply evaluates the truth of the predicate "kj=yj ∀ j∈ {1,..,n}". It therefore
selects the occurence of a unique composite event from among all the possible ones. As a
consequence, only the corresponding joint probability contributes to the likelihood kernel.

Given a set D of p training samples {(X1,Y1),..,(Xp,Yp)}, the learning phase thus involves
minimization of the following entropic loss:

−
=
∑ log[ ( | , , )]L Y X W Mi i
i

p

1

perhaps along with additional regularization terms embedded in M which are related with prior
knowledge about the parameters. As a result, every unknown input pattern gets eventually
"assigned" to the a posteriori most probable composite event.

In principle (but hardly in practice) a FFN could perform a direct mapping:

F f f Rm n

≡ →( ,.., ): [ , ].. ..0 0 1 1
20 1

from the input space to the 2n joint probabilities by setting up a one-to-one correspondence
between these and its outputs. Of course, a suitable output activation function (e.g. the
SoftMax) must be chosen so as to satisfy the normalization constraint on the total probability:
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If something more is known in advance about the probabilistic structure of Ω , then two
main kinds of additional constraints can be established. That is:
• Independence among elementary events ⇒ conditioned probabilities get reduced to

elementary ones;
• Forbidden realizations of the n-ple (e1, .., en) ⇒ corresponding joint probabilities vanish.

As we will soon see, in both cases expression (1) gets simplified and at the same time the
number of FFN outputs can be decreased while keeping a sound probabilistic interpretation.
Since we are interested in putting such constraints into the structural model as "built-in"
features, for the sake of simplicity, any dependence on X, W and M will be omitted in the
ensuing formulas unless otherwise stated.

Before proceeding it is worth pointing out that insertion of prior knowledge about Ω  into
the partitive approach does not by itself lead to a unique interpretation of the FFN outputs.
What one directly obtains is a formal expression of the likelihood kernel that depends on a set
of "external" parameters, like the joint probabilities in equality (1). In general such parameters
are not allowed to vary independently on an unlimited range: on the contrary, they must obey
both local and global constraints. Every time an input pattern X is presented to the network,
their own desired values are the ones that − in compliance with the constraints − jointly give
rise to the target vector Y with probability 1. The designer is then free to define any suitable
functional relation between FFN outputs and external parameters, thus providing the former
ones with a sharp probabilistic meaning. Depending on the actual choice he makes, output
neurons also inherit the constraints through the inverse mapping. This restricts the repertoire
of admissible raw activation functions in the output layer. As a result of the whole process, the
concept itself of "desired output values" often becomes ambiguous if directly applied to the
FFN: for instance, in the usual Bridle's scheme only ratios of raw outputs ultimately affect the
cost function. Anyway, provided that the forward mapping is differentiable, error signals can
always be computed through the chain that links entropic loss to output neurons via external
parameters.

2.2) Independent Boolean Random Variables
If all the events in Ω  are independent from each other:

∀ ∈ = = = =
=

∏( ,.., ) { , } , ( ,.., ) ( )y y P e y e y P e yn
n

n n
j

n

j j1 1 1
1

0 1

then the well known binomial distribution can be derived from (1) through some minor
algebra:

L Y P Pj

y

j

y

j

n
j j( ) ( )= − −

=
∏ 1 1

1

Now just n FFN outputs are required, each one identified with a different elementary
probability and therefore locally constrained to lie in the range [0,1]. Not only the usual
logistic activation function works well, but in some sense it constitutes the "best suited"
choice[BRI89].
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2.3) Constraints on Allowed Concurrences
The existence of limitations about the admissible realizations of the n-ple (e1, .., en) can be

conveniently handled by introducing a boolean function B: {0,1}n→ {0,1} taking on the value
1 (0) if its inputs are related with the occurrence of an allowed (forbidden) composite event in
P(Ω ). Upon translation of the boolean function into a Karnaugh map, the correct
expression for the likelihood can then be computed by simply gathering every "1" in the map
with the highest possible number of contiguous "0s". In fact, every boolean function admits
the trivial "sum of products" representation obtained by or-ing all the entries in its truth table
where it evaluates true. Of course, such entries are realizations of mutually exclusive
composite events. In our case, since the remaining ones are forbidden, they are also
exhaustive, so that one can directly write down the corresponding multinomial distribution.
The resulting expression gets then simplified through the gathering process, that essentially
rules out from each entry all those components that can be reconstructed from the remaining
ones by virtue of the constraints themselves, while keeping the essential property of mutual
exclusion among different reduced entries.

For instance, let n=3. Given the boolean function B≡ (y1∧ y2)∨ (y2∧ y3)∨ (y3∧ y1), it
admits the following trivial representation:

B y y y y y y y y y y y y= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 1 2 3

Therefore:

L Y P e e e P e e ey y y y y y( ) ( , , ) ( , , )(1 ) (1 )= = = = = = = ⋅− −
1 2 3 1 2 30 1 1 1 0 11 2 3 1 2 3

⋅ = = = = = =−P e e e P e e ey y y y y y( , , ) ( , , )(1 )
1 2 3 1 2 31 1 0 1 1 11 2 3 1 2 3

Let us now consider the corresponding Karnaugh map:

y y

y

1 2

3

00 01 11 10

0 0 0 1 0

1 0 1 1 1

One immediately recognizes that the set:

{( ),( ),( ), ( , , )}e e e e e e1 2 3 1 2 30 0 0 1 1 1= = = = = =

defines four allowed, mutually exclusive and exhaustive (reduced) composite events in
P(Ω ), thus inducing the following multinomial distribution:

L Y P P P P e e ey y y y y y( ) ( ) ( ) ( ) ( , , )(1 ) (1 ) (1 )= − − − = = =− − −1 1 1 1 1 11 2 3 1 2 3
1 2 3 1 2 3

that can be re-expressed as:

L Y P P P P P Py y y y y y( ) ( ) ( ) ( ) ( )(1 ) (1 ) (1 ) ( )= − − − + + −− − − + + −1 1 1 21 2 3 1 2 3
21 2 3 1 2 3
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by virtue of the additional normalization constraint on the total probability:

( ) ( ) ( ) ( , , )1 1 1 1 1 1 11 2 3 1 2 3− + − + − + = = = =P P P P e e e

Whereas the former expression of the likelihood kernel naturally leads to the usual Bridle's
scheme, the latter one needs in principle one less output neuron. At a first sight this might
seem quite beneficial, but in setting up the correspondence fj↔ Pj (j=1,..,3) one has to
guarantee that the non-local inequality 2≤ f1+f2+f3 holds onto the whole input space for any
weight values. There is obviously no chance to use a standard FFN to do that.

3) Estimation of Random Variables Taking on Values in Finite, Ordered
Sets

3.1) Implication Constraints on Concurrent Events
Let V be a set of n+1 elements: V={vj} (j=1,..,n+1), sorted according to an abstract

relation of strict order ">"  so that: ∀ j,k∈ {1,..,n+1}, j>k⇒ vj>vk. Moreover let z be a
random variable taking on values in V. Relation ">"  induces a set Ω  of n elementary events
defined as: {(z>vj)} (j=1,..,n). Not surprisingly, Ω  is ordered through the reflexive and anti-
symmetric logic relation “ ⇒ ”  (implication). In fact: ∀ k≤ j, (z>vj)⇒ (z>vk). In its turn,
“ ⇒ ”  induces a boolean function B that identifies the allowed occurrences of composite
events in P(Ω ). These n+1 configurations are summarized in the following table along with
the corresponding values taken on by z:

e e e

v

v
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n

n

n

1 2

1
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0 0 0 0

1 0 0 0

1 1 0 0

1 1 0
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... ...

.. ..

.. ..
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+

As it is apparent, they define a thermometric code on V, where each intermediate entry is then
completely characterized by the location of the 1→ 0 transition. Therefore, even without
explicitly resorting to a more expressive Karnaugh map, it turns out that the set:

{( ),( , ),..,( , ), ( )}e e e e e en n n1 1 2 10 1 0 1 0 1= = = = = =−

defines n+1 allowed, mutually exclusive and exhaustive (reduced) composite events in
P(Ω ), thus inducing the following multinomial distribution:

L Y P P e e Py
j j

y y

n
y

j

n
j j n( ) ( ) ( , ) ( )(1 )= − = =−

−
−

=

−∏1 1 0 21
1

1
2

1 1

Of course, since we pursued the partitive approach, the original problem turned into a
classification task among n+1 quantities. All things considered, this is quite a trivial result:
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from a practical point of view, the most naïve strategy anyone can conceive is just to treat the
elements of V as if they were conventional labels. As a consequence, the prior knowledge
embedded into the order relation gets completely lost. The point is that, although trivial,
equality (2) is written in such a way to make us able to go much further on.

3.2) The Recursive Thermometric Code
By exploiting one more time the order relation in Ω , L(Y) can be fruitfully re-expressed in

terms of elementary probabilities alone. In fact, the boolean function that identifies all the
forbidden realizations of the n-ple (e1, .., en) admits the following canonical representation:

B y y
j

n

j j= ∨ ∧
= −2 1( )

Since it must always be false (i.e. no 0→ 1 transition is allowed), one has:
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It seems we are on the right track: in fact, we might think of equipping our structural
model with n outputs (f1,..,fn), each one ordinately corresponding to an elementary
probability. However, there is no chance to use a standard FFN to do that, because we have to
guarantee that the inequalities:

∀ ∈ − >−j n f fj j{ ,.., },2 01

hold onto the whole input space for any weight values. Roughly speaking, this happens
because all the burden coming from the constraints directly weighs on the output units,
whereas it should be better handled by means of a suitable target coding. Such a coding
naturally emerges from the following variable substitutions in (3):

Q P j n Q P e ej j j1 1 12 1 1≡ ∀ ∈ ≡ = =−; { ,.., }, ( | )

that lead to:

∀ ∈ = = = + = = = = = =− − − −j n P P e e P e e P e e Q Pj j j j j j j j j{ ,.., }, ( , ) ( , ) ( , )2 1 1 0 1 1 11 1 1 1

∀ ∈ − = − = −−
−

−
− −

− −
−− − − − −j n P P P P Q Q P P Q Qj j

y y

j
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y y

j

y y
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y

j

y

j

y

j

y yj j j j j j j j j j j j j{ ,.., }, ( ) ( ) ( )2 1 11 1 1 1
1 1 1 1 1
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Upon recursive insertion of the last formula into (3), starting from j=n  and going downwards,
one finally obtains:

L Y Q Q Q Qy y
j

y

j

y y

j

n
j j j( ) ( ) ( )= − −− −

=

−∏1 1
1

2

1 1 11 1

As it can be seen, the likelihood kernel is now expressed in terms of conditioned
probabilities alone. It became essentially a binomial distribution, the only (interesting)
difference being that now the generic term Qj actually drops out from L(Y) whenever yk=0 for
some k<j . In fact, since 0→ 1 transitions are forbidden, both exponents yj and yj− 1− yj

must vanish ∀ j∈ {k+1,..,n}. Therefore all the fancy features related with the estimation of
independently distributed quantities are preserved; in particular, a standard FFN equipped with
n outputs, each one identified with a different conditioned probability, can now be used
without any additional worry.

The following table may help to clarify what we just said in that it summarizes the
correspondence between the values taken on by z and the targets (t1,..,tn) to be directly
applied to the output units:

t t t z
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v

v

v

n

n

n

1 2

1

2

1

0

1 0

1 1

1 1 1 0

1 1 1 1

...
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.. ..

− − −
− −

−

+

Here the symbol "− " indicates a "does not care" condition where, whatever the output
response, no error signal is generated. Therefore, during the training phase, those output
neurons which are assigned "− " as their target value need not be activated at all. As a
consequence, in dealing with modular architectures, each module is invoked only on its own
relevant patterns!

During the production phase, the probabilistic meaning we assigned to the FFN outputs is
exploited to rank the elements of V according to the following formulas:

P z v f P z v f( ) ; ( )> = = = −1 1 1 11

∀ ∈ > = > = = − >− −j n P z v f P z v P z v f P z vj j j j j j{ ,.., }, ( ) ( ); ( ) ( ) ( )2 11 1

P z v P z vn n( ) ( )= = >+1

Notice that for the sole purpose of determining the most probable value often only some of
the outputs have to be actually computed: precisely those up to the smallest index j such that
the inequality: P(z=vk)>P(z>vj) holds for the "temporary winner" vk≤vj.

In case {v1,..,vn+1} are real numbers, it could also be worth determining the mean value of
z:
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< >≡ = = + − + − + + −
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and then choosing the most close number in V. The procedure tends to minimize the variance
of the estimate, given by:
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=
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3.3) Thermometric Recursion vs. Least Squares Fitting
The ability to provide not only a mere guess, but also an associated uncertainty, makes the

proposed method of practical interest also when dealing with function estimation problems.
Indeed any guess is useless if one cannot figure out in any way, at least roughly, by how much
the error is likely to be large. The same holds whenever the required accuracy (which depends
on the application itself) is not specified in advance: therefore, in all meaningful cases
involving bounded functions, one should always be able to assess the proper − perhaps non-
uniform − quantization steps in order to define the set V. If its cardinality is not exceedingly
large, then thermometric recursion can be profitably applied through formulas (4) and (5).

Information about uncertainty can in principle also be recovered by pursuing a refined
version of the traditional least squares approach. Strictly speaking, at the beginning of the
estimation phase, only the model M and the experimental evidence D are given. Therefore, the
ultimate purpose of the estimation process is to compute something like <z|X,D,M>. As
regards the FFN, for any set of weights W it directly outputs the quantity <z|X,W,M>, that is
related with the former one by:

< >= < >∫z X D M dW z X W M p W D M| , , | , , ( | , ) ( )6

being p(W|D,M) the posterior probability density of the weights. Now, let us restrict ourselves
to the very special (and very rare) case where the value of the homoscedatic Gaussian noise σ2

is known in advance: then, in absence of any priors, Var(z|X,D,M) can be written as:

Var z X D M dW z X W M p W D M z X D M( | , , ) | , , ( | , ) | , ,= + < > − < >∫σ 2 2 2

( )7

where p(W|D,M) is proportional to the likelihood, so that one can correctly seek for a
minimum of the mean square error. Now, do formulas (4) and (5) provide the analogous of (6)
and (7) once z has been quantized? Not at all! There the quantities of interest are evaluated on
a precise set of "best-fit" weights W which are therefore taken for granted as if it were
p(W|D,M)=δ (W− W). On the other hand, the correct approach carries an overwhelming
complexity, so that most often it is mandatory to come to a compromise. For instance, the
solution proposed in [DEN91] is essentially based on a second-order Taylor expansion of the
log likelihood around W. Once the Hessian matrix is computed once for all, for each pattern
one has "only" to determine the gradient of the outputs with respect to the weights. Anyway,
the simplifications made are so crude (and, above all, the necessary hypothesis of known noise
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level is often so unrealistic) that the choice between this technique and thermometric recursion
should be mainly based on practical considerations. Moreover, in the next section we will deal
with a strict approximation problem where the function of interest can be computed exactly up
to machine precision. In this case Var(z|X,D,M) substantially vanishes together with the
quadratic loss or, alternatively, with the evidence of the model itself.

4) Neural Implementation of a Pre-Processing Algorithm Applied to
Handwritten Digits

4.1) NIST Form-Based Handprint Recognition System
In 1994 the U. S. National Institute of Standards and Technology (NIST) freely distributed

both documentation and source code of its standard reference OCR system[GAR94]. Here we
focus our attention on a small but important part of the overall processing flow: that is, the set
of transformations performed on every segmented binary image containing a single
handwritten character prior to classification. Such transformations are briefly summarized in
the following list:
1) Character data inside the segmented image are bound with a box;
2) That box is scaled to fit exactly in a 32-row by 20-column pixel region, and then centered

within a 32 by 32 square grid to keep space for further operations;
3) Morphological erosion or dilation is applied to normalize the stroke width;
4) Rows are shift left or right to remove slant;
5) A Karhunen-Loeve (KL) expansion[FUK72] is performed along the principal 64 out of

1024 eigenvectors of the covariance matrix.
The covariance matrix of handwritten digits is computed from a set of 61094 samples

extracted from NIST Special Database 3[GAR92].

4.2) Neural Network Architecture and Operation
The classification engine chosen by NIST is based on a Probabilistic Neural

Network[SPE90] (PNN) where KL coefficients of all the "training" samples are stored to
compute the degree of match with an unknown pattern. As a consequence, the computational
load due to the pre-processing stage alone does not constitute a real bottleneck for the entire
system. However, things change considerably when classification relies upon a fast FFN. So,
in view of a flexible hardware implementation, items 1)−5) above can be divided into two main
groups:
• Bounding box detection and scaling are mandatory for all those classifiers requiring fixed

input space dimension. This favors a dedicated digital solution.
• Stroke width normalization, slant removal and KL expansion are rather peculiar to the

OCR system we are presently considering (although quite widely used, of course): one
might choose to perform other kinds of transformations, such as skeletonization, blurring,
edge detection, and so on. This favors a general purpose device.
We therefore trained a standard FFN to perform steps 3)-5) all at once on each of the first

50000 samples drawn from the set of handwritten digits provided by NIST, while the
remaining 11094 ones have been put aside for testing purposes.

Although estimation of KL coefficients is in fact a multiple function approximation
problem and could in principle be treated as such, these have been bounded within their
empirical ranges and quantized beforehand to let us apply the proposed method. To take their
relative importance into account, each one has been represented on a number of levels ni+1
(i=1,..,64) which is roughly proportional to the size of its own empirical range. Moreover,
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they have been treated as independent discrete random variables, so that we were allowed to
factor the joint likelihood kernel in terms of the individual ones, or else the problem would
have become practically unmanageable. This choice is also partially justified by the fact that
the KL transform itself tends to make coefficients, if not really independent, at least
uncorrelated. A total amount of Σini=256 output units have therefore been divided into 64
groups to account for Σi(ni+1)=320 levels on the whole. As explained in the previous section,
the ij-th (j=1,..,ni) output unit thus provides the probability that the i-th KL coefficient be
greater than the ij-th level, once it is assumed to be greater than the i(j− 1)-th one. Two
reasons make this procedure quite viable: firstly, unlike what happens in pattern recognition
problems, here "wrong" predictions do not constitute a serious problem as long as they give
rise to small distortions lying well within intra-class variability; secondly, it gives us the chance
to check the effectiveness of thermometric recursion against the traditional least squares
approach in an adverse situation. As we will soon see, the quantization error is compensated
by the extremely low resolution requirements we attained on both memory and computing
elements in the network.

From the input side, 640 units directly receive pixel values of 32 by 20 scaled binary
images. A single hidden layer made of 64 neurons fully connected in both directions completes
the FFN architecture. Entropic loss minimization has been carried out according to the variant
of back-propagation proposed by Vogl[VOG88], that makes use of a global adaptive learning
rate; however, any other general purpose training algorithm can be used as well. During the
production phase, every KL coefficient is then estimated via a simplified version of (4) that
exploits the fact we chose equally spaced levels.

Although the network is not very large, nonetheless almost nothing is gained in
computational terms with respect to the original processing flow as long as software
implementations are concerned. We therefore decided to quantize each weight wj
(j=1,..,dim(W)) according to the following formula:

wj

a bj j≈ ± ±2 2 8( )

being both aj and bj signed 7 bit integers. In this way, depending on how activation functions
are actually computed, floating point stuff is partially or even entirely replaced by very fast and
highly parallelizable shift & add operations.

4.3) Experimental Results
To make things more visual, we considered it worthwhile to summare the overall

performance achieved by the network on the test set by reconstructing binary images from the
predicted values of the 64 KL coefficients and computing the percentage of wrong bits.

a) b) c) d) e) f) g)

Fig. 1
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In Fig. 1 different versions of three patterns extracted from the test set are shown only to
exemplify some typical outcomes; the ensuing error measures are taken onto the whole test
set. From left to right we have:
a) 32 by 20 scaled binary images: the FFN input patterns;
b) 32 by 32 binary images: the same patterns immediately before KL expansion;
c) What results from the reconstruction through the principal 64 "true" KL coefficients. Such

images are in fact those which we have to take as a reference when computing the amount
of wrong bits, because quantization in output space is only an artifice we inserted for our
convenience;

d) Same as c) once KL coefficients are quantized as described before: ⇒ 3.01% of wrong
bits;

e) Same as d), but now the values provided by the full-fledged FFN are used for
reconstruction: ⇒ 5.73% of wrong bits;

f) Same as e) once weights are quantized according to (8): ⇒ 5.77% of wrong bits;
g) Same as f), but now floating point stuff is totally removed by representing the

activation functions of hidden neurons on only 2 bits and those of output neurons on
3 levels alone, so that (4) becomes a sequence of {set to zero | pass-through | shift left}
operations followed by an increment: ⇒ 6.46% of wrong bits.

Resolution of Weights/Hidden Neurons/Output Neurons
[f -> floating point; q -> quantized according to (8)]

[4 -> 4 Levels; 3 -> 3 Levels]
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Fig. 2

To compare thermometric recursion with the traditional least squares approach we trained
a fully connected 640-82-64 FFN on the same patterns without performing any quantization
on the target values. The higher number of hidden units makes the total amount of weights
nearly equal to that of the previous network. The histogram in Fig. 2 shows the overall
performance achieved by both methods on the test set under the very same conditions,
identified by the labels immediately underneath the horizontal axis.

Results are in good agreement with what could have been expected in advance. As far as
floating point resolution is used on both memory and computing elements, the availability of
the "true" KL coefficients makes the least squares-based network superior. In both cases
overall performances are loosely affected by weight quantization. Once the activation
functions of the hidden neurons are represented on 2 bits then the robustness implied in the

12



distributed nature of the recursive thermometric code prevails. Subsequent quantization of the
outputs on 3 levels prevents any meaningful comparison.

We now turn to consider the role the uncertainty as given by (5) can play in function
estimation problems. To illustrate this point, and for the sake of simplicity, let us take the
prediction of the first KL coefficient out of context. Since the chosen number of levels is
obviously related with the desired accuracy, it is reasonable to assert that the FFN fails to give
the correct response whenever the deviation of the estimate from the true value is larger than
the quantization step. Information about uncertainty can then be used to signal if a failure
event is likely to occur. By imposing different acceptance thresholds on Var(z), one obtains
"Error versus Rejection" curves like the one shown in Fig. 3, that has been produced by the
full-fledged version of the same FFN we used before. Here the reference line indicates the
expected percentage of failure events in case patterns are rejected in a random fashion. Not
surprisingly, the maximum gain occurs when the acceptance threshold for [Var(z)]1/2 is set to
about half the quantization step: the limit beyond which the quality of the estimate begins to
become questionable.
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5) Conclusions

Today well established links with advanced statistical methods exist that allow a formally
correct approach to many important aspects of neural network design. On the other hand,
some of the basic principles peculiar to the connectionist paradigm are of great value and
should not be altered beyond a certain extent. We showed how standard feed-forward
networks can be applied without any theoretical compromise to a wide application domain:
that is, the supervised estimation of discrete random variables whose values can be put in a
one-to-one ordered correspondence with a finite subset of the natural numbers. To prove the
effectiveness of the proposed method, we successfully embedded into a single network a
complex pre-processing algorithm that was originally developed by the U.S. National Institute
of Standards and Technology for optical character recognition purposes. Full exploitation of
all the available prior knowledge made the network extremely robust against the very severe
limitations we imposed on the processing units, thus enhancing the advantages offered by a
hardware implementation.
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