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Abstract: Because of complex sensor networks in smart city management, it is very difficult to optimize the data processing 

from all kinds of sensors. Here a multi-agent system (MAS) is made for data processing and optimization of sensor networks in 

smart city management. First, the sensor network in smart city management is modeled as a self-organized and decentralized 

agent swarm. In the MAS, each agent’s objective value is reckoned on-line and the best agent’s update rule is on the basis of 

proportional control concept. Second, each agent is organized by itself to herd to the prime agent in group. And when it avoids the 

crash between agent and the closest obstruction/agent, it moves to a moving target. Third, to analyze the MAS’s dynamics, the 

eigenvalue of time-varying discrete system’s analysis is made. Besides, a guideline is put forward for application on how to 

adjust the parameters of MAS’s. Finally, the results of the simulation verify that the proposed self-organized swarm system is 

effective in the capability of migration and flocking. 
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1. Introduction 

Recently smart city management gained more and more 

attention. Paganelli (2016) described a web of things 

framework for restful applications and its experimentation in a 

smart city [1] and a cloud-based architecture for emergency 

management and first responders localization in smart city 

environments [2]. Lanza (2016) put forward a model for 

managing large amounts of data generated by a smart city 

Internet of Things deployment [3]. Apparently there are 

complex sensor networks and a large number of data in smart 

city management. Xu (2016) made a research about 

energy-efficient big data storage and retrieval for wireless 

sensor networks with nonuniform node distribution [4]. 

Mohan (2016) made a model about a novel intelligent 

approach for predicting atherosclerotic individuals from big 

data for healthcare [5]. Tan (2016) rethought big data in a 

networked world [6]. Xhafa (2016) reviewed advanced 

knowledge discovery techniques from big data and cloud 

computing [7]. Jose M. (2016) approached the 

burrows-wheeler aligner to big data technologies [8]. As a 

consequence, the computation time is so long and the memory 

it requires is so many, that it becomes impossible to get with 

on-line computation. 

To solve these kinds of complex systems, different 

researchers employed many methods to optimize the big data 

management. Yosuke (2016) gave a molecular phylogenetic 

analysis of the drosophila immigrans species group using big 

sequence data [9]. Goldina (2016) discussed an analysis using 

fuzzy logic and density based clustering towards big data 

paradigm [10]. Alexandru (2016) put forward scalable 

splitting algorithms for big-data interferometric imaging in the 

SKA era [11]. Walker (2016) offered a strep throat risk score 

bringing together patient data and big data to potentially 

reduce unnecessary doctors' visits [12]. Jane (2016) addressed 

big data challenges in neuroscience by creating a new cadre of 

citizen neuroscientists [13]. Nicole (2016) presented optical 

dating of sediments in Wadi Sabra (SW Jordan) [14]. Li (2016) 

indicated a scalable cyber infrastructure solution to support 

big data management and multivariate visualization of 

time-series sensor observation data [15]. Chang (2016) 
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described a ReRAM-Based 4T2R nonvolatile TCAM using 

RC-Filtered stress-decoupled scheme for frequent-off 

Instant-on search engines used in the IoT and big-data 

processing [16]. The data processing performance of the 

sensor networks has an influence on the node individuals. In 

the domain of problem, individuals converge on the best 

points finally. 

The multi-agent system (MAS) has got progressed through 

imitation of models of simplified social, i. e.: fish schooling and 

bird flocking. Moreover, it is on the basis of a simple concept. 

Muin J (2016) put forward a plan for the future of epidemiology 

in the era of big data and precision medicine [17]. Hiroki (2016) 

modeled the unsupervised data mining suitable for evolutionary 

and genomic studies in the era of big data [18]. H. Joel (2016) 

introduced practical applications point of view with future 

broadband access networks scanning our past with edward (Ted) 

[19]. Uwe (2016) evaluated cloud cover diurnal cycles in satellite 

data and regional climate model Simulations [20]. Krishna (2016) 

built materials informatics about how to go about harnessing the 

"Big Data" paradigm [21]. Magnus Orn (2016) conducted 

classification of big data with application to imaging genetics 

[22]. Hsu (2016) studied a novel group key transfer for big data 

security [23]. In the MAS, each agent tries to herd to the optimal 

agent in group and when it avoids the obstructions which may 

show in the way of formation, and then it will migrate to a 

moving target. 

In the dissertation, a framework is put forward for 

self-organizing group agents’ decentralized control and which 

is on the basis of MAS. Thomas (2016) talked about how to 

use 'big data' to validate claims made in the pharmaceutical 

approval process [24]. Takemasa (2016) put forward a "Big 

Data Assimilation" toward post-petascale severe weather 

prediction in an overview and progress [25]. To deal with all 

possible shaping and problems of collision in the 

configurations of self-organization is not the goal, but our 

attention are paid to the proposition of stable self-organizing 

plan and the implementation of distributed group agents. 

The aim of the research is to realize global behaviors 

specifically, i. e.: flocking among agents, and collision 

avoidance which are by using ordinary local individual rules 

in MAS. Besides, our research not only specifically resolves 

the problem of the stability analysis about the MAS’s 

dynamics, but also puts forward a guideline on the solution to 

tune the parameters of MAS. The organization of this paper is 

as following. Section 2 discusses a multi agent model of 

sensor networks and optimization function of big data 

management. In Section 3, initial parameters, stability rule 

and conflicted zone of sensor networks are studied. In Section 

4, an experiment is described and result is analyzed. Finally 

some conclusions are reached in Section 5. 

2. Sensor Networks in Smart City 

Management 

2.1. A Multi Agent Model of Sensor Networks 

Multi-agent system (MAS) is primitively exploited for 

offline nonlinear optimization problem. But these trials have 

many obvious defects. For example, to avoid making direction 

basing on outmoded information, the mechanism to trigger for 

reset is very simple. Moreover, there seems a lack to think 

about the problem of collision and the analysis of stability 

between agents. Inspired by such researches, for the 

dynamical environment, i. e.: self-organization of group 

agents and developing a steady algorithm to guarantee steady 

conditions about its dynamics, our keystone is to use a 

common concept. 

 

Figure 1. Multi agent system of sensor networks in smart city. 

MAS comes from the social behavior’s simulation. The 

initial formulate of MAS regarded each granule as a potential 

way to solve the problem in space of D-dimension. The k-th 

individual is called particle. The population is called swarm. 

And the k-th individual of the population can be shown by a 

vector of D-dimension, θk= [θk1, θk2, · · ·, θkD]
D
. 

In this job, i. e. the colony of insects, for group behavior, 

MAS is progressed in two-dimensional space. Every granule 
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turns to an agent and θk = [θk1, θk2]
D
 becomes the current site 

of agent k. And the site of each agent is signified by θ-ɸ axis 

position and the speed is corrected by MAS. Through the 

information of the velocity and position, the position of the 

agent is modified. Based on the optimization technique, it can 

be described about the above concepts as following: a group of 

insects optimize an objective function. Each agent realizes the 

optimal value and its position so far. And each agent realizes 

the optimal value in the group so among their own optimal 

valve. Furthermore, each agent makes a try to correct its 

position by making use of the above information. 

The distance between the best agent and the target is the 

objective function: 

( ) ( ) ( ) 2min | |
k k

m m mφθ θΖ = −           (1) 

Where θφ=[θφ1,θφ2]
D
 is a destination of the migration. 

The optimal former site (namely, the site corresponding to 

min1≤k≤iZk(λ)) of the k-th agent is signified and recorded as 

fk=[fk1,fk2]
D
. The optimal agent in group (namely, the agent 

with min1≤k≤iZk(m) in which ϒ represents the amount of agents) 

is described as fα=[fα1，fα2]
D
 denoted by index α. 

The site change (namely, velocity) of the k-th agent is 

Lk=[Lk1,Lk2]
D
. The velocity’s concept can represent the 

modification. The following equation can modify each agent‘s 

velocity. 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )3 2 11k k k k kL m x rand f m m x rand f m m x L mα θ θ+ = − + − +                 (2) 

Where, x1 is the inertia weight, which is as following: 

0<x1<1. x3 and x2 are two positive numbers, which are 

respectively called the cognitive parameter and social 

parameter. rand (): a uniform distribution of random numbers 

between 0 and 1.  

By using (2), a certain speed which approaches to fk and fα 

can be reckoned. And the current site is renewed by the 

following equation. 

( ) ( ) ( )1 1
k k k

m L m mθ θ+ = + +         (3) 

Eqs (3) offers the new site about the k-th agent and adds its 

new speed into its current site. 

If any upsilon particle in the group ‘lands’ is within the goal 

solution’s appointed radius, a run of MAS is considered 

successful. The radius depends on the accuracy of the desired 

solution. If the goal value (or position) varies during a MAS 

run’s execution in the dynamic environment, the initial MAS 

algorithm doesn’t have method to deal with the change, and 

the memories of the initial goal site still have influence on the 

particles. In addition, for group agents in the dynamic 

situation, the problem of collision avoidance between the 

agent and closest agent / obstacle may be thought. 

2.2. Optimization Function of Big Data Management 

The velocity concept can represent modification, and the 

following equation can signify the agent’s velocity. 

( ) ( ) ( ) ( ) ( ) ( )( )1 21k k k k kL m m x L m x rand f m mβ θ+ = + + −                            (4) 

Where, 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ){ 4

3

,k kk

k k

m x rand m m if m f m

k m x rand f m m otehrwise
m

φ
φ α

α
α

β θ θ θ
β θβ = − =

= −
=  (5) 

Where x4 is the beacon parameter.  

θφ-θk in βk
φ
(m) is a kind of proportional control concept, 

which makes the optimal group agent fast to better solution 

and it makes it possible to track of the moving target. 

So, the new optimal group agent permits the other group 

agents move quickly in a new direction. On the one hand, In 

the absence of random circumstances, the value for βk
φ
(m) or 

the case is higher, tracking to the moving target is faster 

without obstacles in open space. On the other hand, for each 

sample, if the random value is lower, the swarming behavior is 

higher to keep formation, which makes it possible to track to 

the moving target fast by more changes to the optimal agent 

when there are obstacles. 

fk, fα and θφ are three knowledge forms, and they are mixed 

with the current of each agent velocity vector to make a 

decision of the next location of the agent. The optimal swarm 

agent turn to migration beacon by using βk
α
(m) in (5), and the 

βk
β
(m) in 5 assists other agents flocking to optimal group agent, 

which is a concerted biological act, such as fish schools and 

bird flocks. So, βk(m) makes it possible that group agents 

possess the behavior as presented in Figure 1, which an agent 

follows the shortest path to consume pheromones, and other 

agents follow the optimal agent. 

Depending on the situation, the speed can be restricted to 

the range ωmin to ωmax, which is a strategy to prevent the 

algorithm from becoming unstable. 

min maxk
Lω ω≺ ≺                 (6) 

Where, ωmax and ωmin are respectively the maximum and 

minimum values of velocity Lk. 

3. Modified Multi Agent System in Sensor 

Networks 

3.1. Initial Parameters 

In this part, a swarm plan of self-organization, which is 

controlled by the particle swarm algorithm that is modified, is 

shown for the dynamic situation. To add the penalty value to 

the target function, the problem of obstacle avoidance is 

considered. In order to analyze the MAS’s dynamics, stability 

analysis is conducted basing on the time-varying discrete 
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systems’ eigenvalue analysis. To avoid agents’ collisions, the 

virtual zone got developed. 

To make a choice between fk and fα for the dynamic 

environment, as for a target which is moving, there is an 

assumption that the maximum velocity of the agent moves 

faster than the target. 

A. The selection of fk 

fk is the component of the evolutionary computation that 

occurs essentially. 

－For fixed targets, fk is set to θk, if the current position’s 

target value is greater than the previous best of its own target 

value. 

－For a moving goal, fk is not significant. Because θφ is 

time-varying, the former own best experience is worthless. 

B. The selection of fα 

fα is the component on which the neighborhood has an 

influence, which makes agents do social behaviors. 

－For a fixed goal, fα is chosen as the position of the best 

agent by comparing with each agents’ optimal objective value 

Such as the traditional method of MAS. 

－For a moving goal, fα is chosen as the position of the best 

agent by comparing with each agents’ previous optimal 

objective value. For instance, in Table I(a), assume that in five 

agents θ3(m) is the position of the agent possessing the optimal 

objective value, which is fα=θ3(m). It is gained by comparing 

the other four agents’ objective values θ5(m-1)and θ1(m), θ2(m), 

θ4(m-1). 

Next, θ1(m), θ2(m), θ3(m-1) and θ5(m-1) are made use to 

find the optimal agent’s objective value for θ4(m). In fact, 

because θ5(m-1) and θ1(m), θ2(m) has higher objective value 

than fα, there is a chance to gain the optimal agent for θ4(m), 

by comparing θ4(m) ‘s and the fα’s objective value.  

C. The relationship between the moving target and the 

weighting factors. 

If the target makes moving in the same direction and x4 is 

elected bigger than x3, this approach becomes a sort of 

leader-referenced method. If the target makes moving 

randomly and x3 is elected bigger than x4, the optimal agent fα 

permits more cooperation between the agents and changes 

frequently. 

MAS utilizes proportional control mechanisms and the 

mechanism of MAS. By MAS, the search process depends 

deeply on fα and fk. fk and fα limits the searching area. In 

contrast, the fk’s influence for the optimal group agent is 

vanished gradually by introducing the concept of proportional 

control. Instead, it can achieve fast search. Consequently, 

intensive search on optimal swarm agents in current effective 

areas is realized and for other group agents the dependence on 

the evaluation position is accomplished. 

3.2. Stability Rule 

If the agent is within a certain distance to the obstacle, the 

penalty value is added into the agent's objective function. 

2

k

k k k
f λ

φ
λ γ

θ θ
∈

Ζ = − + ∑             (7) 

Where ϒk signifies obstacles’ labels set and those obstacles 

are neighbors with agent k. fk
λ
 is a penalty value which the 

agent k is granted when the obstacle λ is in the agent’s 

neighborhood. 

1 2

c

k f k ff x xλ
λϕ θ= − +              (8) 

Where ɸλ is obstacle λ‘s position and xf1and xf2 are penalty 

constants. 

In an obstacle’s existence, through the change of the 

function (7), figure 2 indicates the best agent’s change. When 

c = 0, a penalty value which is fixed is put into practice. When 

c = 1, 2, ···, the penalty value is corrected to the distance’s 

difference between the obstacle and the agent.  

 

Figure 2. Simulated results of penalty. 

Figure 2 offers these different forms’ graphical 

representation. On the condition that the penalty value is fixed, 

it is bound to be large to make sure that there is no crash 

between the agent with the obstacle. If the penalty value is 

very large, it can force a search for a target in a feasible area, 

with the result no sufficient probing is performed. Optimal 

penalty function’s selection also relies on the obstacles’ 

formation. Whether the obstacle is densely or loosely 

positioned, the xf1’s value and xf2’s value can be chosen 

becomingly.  

If the agent is outside the conflict zone, the system is 

switched again based on the primary objective function when 

there is no penalty function. Consequently, there is no need for 

an obstacle avoidance’s additional algorithm in the MAS. 

The following equation can describe each agent’s velocity. 

( ) ( ) ( )( )11k k k kL m x L m w mθ+ = + Ν −       (9) 

Where, 

( ) ( )
( ) ( ) ( ){ 2 4

2 3

,

, other

kx rand x rand if m is best agent in swarm

x rand x rand wise
and

θ+
+Ν =  (10) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 4

2 4

2 3

2 3

k
k

k

k

x rand f x rand
if is best agent in group

x rand x rand

k x rand f x rand f
otherwise

x rand f x rand

w

φθ
θ

∂

+
+
+

+

= 


  (11) 

The weighted optimal point wk is thought to be a static value. 

So, the model of simplified MAS is designed to provide only 

some information about how each agent does not interact with 

each agent. However, when the wk’s fluctuation is bounded, 

each agent’s stability can be evaluated exactly on the basis of 
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this model. Because that the feasible region is limited 

generally in the problems of global search, the wk’s fluctuation 

is bounded too. Thus, it can be used in MAS for the evaluation 

of each agent stability. 

By taking βk(m) = wk − θk(m) and by using (3) and (9), it can 

be gotten 

( ) ( ) ( )1
1

k k k
L m N m x L mβ+ = +         (12) 

Where ( ) ( ) ( ) ( )1
1 1

k k k
m x L m N mβ β+ = − + −  

N is a random value which is distributed in 

( )
( ){ 2 4

2 3

0, , group

0, ,

kx x if is best agent in

x x otherwise

θ+
+

.
 

If it is set as x5= max(x3, x4) and x6=x2+x5, , N is a random 

value which is distributed in (0, x6). 

( )
( )

( )
( )1

1

1

11

k k

k k

L m L mx N

x Nm mβ β
+

− −+
    =                (13) 

Make following difference equation describe equation (13)  

( ) ( )( ) ( ) ( ) 01 , 0k km m mΜ + = Ρ Μ Μ = Μ      (14) 

Where k

k

L

k β Μ    and ( ) 1

1 1

x

k xm Ν
− −Ν Ρ =    

Because of Nϵ(0,x6), Pk(m) can be described as an interval 

matrix which is time-varying 

( ) ( )
( )1 6

1 6

0,

1 ,1

x x

k x x
m − −

 Ρ =
                 (15) 

Then, the stability conditions for the time-varying 

perturbation matrices are described as Pk(m), that is keeping 

the perturbed system (14) stable. 

If the discrete system satisfies the condition, as depicted in 

(14), the discrete system is within an interval matrix which is 

time-varying. 

6 1 12 1+ +≺x x x                (16) 

So the system’s equilibrium point 0 is stable asymptotically. 

3.3. Conflicted Zone of Sensor Networks 

Let us study the eigenvalues which is the maximum 

( )( )max kP mΙ . The eigenvalues 

( ){ }2

1 2 1 1 1

1
, 1 1 4

2
Ι Ι x Ν Ν x x= + − ± − − −     (17) 

which comes out as the characteristic equation’s solutions.  

( )2

1 1
1 0.Ι Ν x Ι x+ − − + =               (18) 

As described by (14), the agent’s behavior is stable 

asymptotically, if and only if max(|I1|, |I2|) < 1 in system. The 

eigenvalue will be analyzed in four conditions as following, 

because the eigenvalues I1, I2 are function of parameters x1, x2 

and x6. 

When ( )2

1 1 11 1 1 4 0x and x xΝ + Ν − − + − >≺ , where the 

stability condition ( )1 2max , 1Ι Ι ≺  gives 

( ) ( ){ }2

1 2 1 1 1

1
max | |,| | 1 1 4 1

2
Ι Ι x x x= + − Ν + Ν − − − ≺  (19) 

Thus  

( )2

1 1 1
1 4 1x x xΝ − − − − + Ν≺           (20) 

When (N−c1−1)2 − 4c1 > 0, the following relation can be 

obtained. 

( ) ( )2 2

1 1 11 4 1x x xΝ − − − − + Ν≺           (21) 

From the inequality above, the following relation can be 

gained. 

0 Ν≺                        (22) 

For ( )( )2 3 40, max ,x x xΝ ∈ +  equation (22) meets the 

condition of stability. 

When ( )2

1 1 11 1 4 0x and x xΝ + Ν − − −≺ ≺ , for

( )2

1 11 4 0x xΝ − − − ≺ , 11 xΝ +≺ 1Ι  and 2Ι become 

complicated numbers. So, the following equation can give 

( )1 2max ,Ι Ι . 

( ) ( )2

1 1 1

1 2

1 1 4
max , | |

2

x x x+ − Ν ± Ν − − −
Ι Ι =    (23) 

( )
2

22

1 11
1 41

1
2 2

x xx  − Ν − − ++ − Ν 
 = +      

≺  

From the inequality above, the following relation can be 

gained.  

1
1x ≺                          (24) 

Because in equation (2) x1 is defined as 0 < x1 < 1, equation 

(24) meets the condition of stability. 

When 1 1 11 1 2x x x+ Ν + +≺ ≺ ,

( )2

1 1 11 1 4 0x and x xΝ + Ν − − −≻ ≻ , because 

( )2

1 11 4 0x xΝ − − − ≺  means 1 11 2x xΝ + +≺ , the region 

of Ν  is 1 1 11 1 2x x x+ Ν + +≺ ≺ . 

From the inequality above, the same condition of stability 

with the condition of (b) can be gotten. 

1
1x ≺                         (25) 

So, equation (25) meets the same condition of stability with 

the condition. 

When 
1 11 2x xΝ + +≻ , ( )2

1 1 11 1 4 0x and x xΝ + Ν − − −≻ ≻
 
the 
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region of Ν  is 1 11 2x xΝ + +≻ , since

( )2

1 11 4 0x xΝ − − − ≻  means 1 11 2x xΝ + +≻ , the 

following equation can give ( )1 2max , 1Ι Ι ≺ . 

( ) ( ){ }2

1 2 1 1 1

1
max , 1 1 4 1

2
x x xΙ Ι = + − Ν − Ν − − − ≺  (26) 

From the inequality above, the following relation can be 

gained.  

0Ν ≺                       (27) 

Because, ( )2 3 40, max ,x x xΝ ∈ +   , there is no existence 

of stable solutions. 

Using the parameter x1 and parameter x6 and on the basis of 

the above analysis, stability criterion of ( )1 2max , 1Ι Ι ≺  

can be described as (16). For examples, x4 =1 and x1= 0.67, x2= 

1, x3= 1 are elected. Because x6=2, x6=x2+max(x3, x4), which 

meets constraint. 

Each θk converges to wk which is composed of the position 

of agents that have their own optimal experience, converges to 

the migration’s target position and the position of optimal 

agent. By tuning respectively each weighting factors x2, x3 and 

x4, the above three components get weighted.  

4. Simulation Examples 

4.1. Problem Description 

When an agent and its closest agent migrate, collision 

between them may happen. Therefore, another algorithm is 

additionally required. To avoid the agents’ conflict, the virtual 

zone gets developed. If θk is close to θλ enough to conflict, θk 

maintains a distance nφ as following 

( ) ( )k

k k kn
n

λ
φ λ

θ θ
θ θ θ θ

Φ

−
= + − −          (28) 

Where nφ is the virtual zone’s radius, namely a desired 

distance between two agents’ center, and | |
k

n λθ θΦ = − .  

As the agent responses to fk and βk, the responses’ 

allocations between fk and βk guarantee a variety of responses. 

Agent only changes its behavior’s mode when fk and βk change, 

so adhering to the stability principle. The best agent’s main 

movement in βk follows the proportional control’s concept. 

There is no divergence in agent, because the virtual zone 

prohibits only the agent from bumping against the others in 

group. Therefore, the agent converging to target or not has 

nothing to do with the virtual zone. 

Each agent’s knowledge of the environment and 

capabilities are limited. But, as a group, they can show 

‘outstanding behavior.’ When there are some indirect or direct 

communications among agents, the result of a simple 

individual behavior may be an intelligent behavior in swarm. 

There is the MAS’s flow chart in Figure 3. 

 

Figure 3. The MAS’s flow chart. 

There is lots of flexibility by using MAS to remain a 

formation. There is no command that the individual agent be 

located in any location for alignment, because the proposed 

method does not make use of the alignment of members in 

other group explicitly. In addition, this method’s scalability is 

good, which easily removes or adds any number of agents. 

4.2. Result Analysis 

To look into the βk
φ
(m)’s effectiveness in (5), let us think 

about the MAS without βk
φ
(m), namely the concept of 

traditional MAS which the optimal agent uses βk
φ
(m) similarly 

in (5) in group as other agents. For fixed targets, in (5) if the 

term βk
φ
(m) isn’t put into use, the approach follows the 

concept of conventional model, even if the virtual area is used 

for conflict avoidance between proxies. Figures 4 and 5 

respectively show the group migration of the MAS for five 

agent without and withβk
φ
(m), at t = 1.2.  

 

Figure 4. Radar Chart Truck. 

The optimal agent in group originally placed at (16.78, 

−9.16) where the original distance between fα and θφ is around 

11.4, in order to put the MAS’s example more properly. As for 

the condition of MAS with βk
φ
(m), the optimal agent comes to 

θφ(10, 0) within t = 1 (100 iterations).  
 

 Start

End

Initial Positions Of Each 

Agent

Evaluation Direcotion Selection

Pheromone Update

Minimum

The best objective ? n=n+1
N

Y



 Electrical and Computer Engineering 2017; 1(1): 9-17 15 

 

 

 

Figure 5. Velocity comparison (blue dot: original site of agent, orange dot: final site of agent, and grayer: settled target). 

In a space which is 2-dimensiona, Figure 5 displays that θk 

which is located in (θk1, θk2) can’t be closer than nφ, when it 

flocks to agent θλ which is located in (θλ1, θλ2). 

As for the condition of the MAS without βk
φ
(m), agents 

reach to θφ(10,0) at t = 3. For both conditions, the limited 

velocity (ωmin, ωmax) = (−0.2, 0.2) is put into use and the 

virtual zone is put into use in order to prevent collision from 

happening among agents. In the plan, all agents reach to 

θφ(10,0) at t = 1.2. 

In figure 6, because that the MAS withoutβk
φ
(m) needs 

longer reaching time, MAS with βk
φ
(m) surpasses the MAS 

without βk
φ
(m), and because of which,  term βk

φ
(m) in the 

MAS makes the optimal agent in group to search faster than 

the case that MAS is without βk
φ
(m). 

 

Figure 6. Position Comparison. 

If change rate of the target doesn’t surpass the swarm’s 

maximum velocity, agents that use MAS can get to a moving 

target. Because the migration of group to moving goal is in 

situation of dynamic environment, it should be noted that we 

can’t use the concept of conventional MAS. 

The optimal agent’s fast moving to a target point makes it 

possible for other agents to make faster direction to a target, as 

shown in Table 1. 

Table 1. Comparison Different Agent. 

Original site of the optimal agent a b c d e 

x 25.65 6.69 -7.04 -9.58 17.25 

y -8.96 12.89 -1.45 6.21 -1.66 

The conventional MAS 2.05 0.43 1.13 7.25 3.45 

The proposed MAS 0.23 0.76 0.85 0.24 0.51 

 

In Table I, experiments are gained from results of 20 MAS 

with βk
φ
(m) which is generated randomly, suggesting 

consequently that the results are not made so much change, 

because the parameter values of MAS happen little change.  

4.3. Further Discussion 

The MAS’s formation is flexible when there is obstacle. If 

an agent meets obstacle when it migrates, then it will avoid 

meeting with obstacle and it will rejoin into the optimal agent 

in group. That is the reason why the MAS doesn’t need 

specified formation and according to the given environment 

all agent are self-organized, and the comparison of reference 

[23] is shown in Figure 7 and 8.  
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Figure 7. Results of reference [23]. 

Figures 7 shows the agents’ group migration in model of 

reference [23] to the moving goal in a line. If all agents get 

together, they maintain fixed distance from others by the 

action of virtual area in which nφ= 1.1 is elected. Limited 

speed, (ωmin, ωmax) is (−0.2, 0.2).  

Comparison of different models (t2, t4, t8 reference from 

[3], [5], [23] t6 is proposed model.) are shown in figure 8. 

 

Figure 8. Comparison of different models. (t2, t4, t8 reference from [3], [5],[23] t6 is proposed model.). 

In Figure 8, ten proxy simulation environments are 

randomly initialized at the bottom left and then they are 

forward to the moving target. At original time when the agents’ 

positions are randomly chosen, formation of swarm is loose. 

However, after they moved from (0, 0) to the direction of 

moving target, their formation has tightly changed. 

Apparently the proposed model takes advantages over those 

models in references in migration and flocking.  

5. Conclusions 

This paper presents a MAS-based self-organizing program 

for decentralized group agents. This is the first attempt of the 

MAS concept to adapt to the self-organization problem of 

sensor networks in smart city. In this scenario, MAS is 

proposed and studied that enables the use of conventional 

MAS concepts in dynamic environments. One of the major 

contributions of this method is to analyze the stability of MAS 

model based on the eigenvalue analysis. In addition, this 

method presents a guidance on how to adjust the parameters of 

the MAS. The framework allows the agents in the group to 

remain flexible when they migrate as a group and avoid any 

obstacles. 

In application, the migrating agents’ formation can change 

shape, divide and merge into the optimal swarm agent. In 

future work, the framework is completely scalable for 

distributed control of the size-independent operation of the 

group. Thus, global behavior between agents and recent 

obstructions or agents, such as swarm migration, collision 

avoidance and flocking, should be further studied in future to 

be gained through using simple localized individual 

interaction rules. With these advantages, i. e.: flexible 

formation, stable behavior of groups and scalability, the 

proposed method enables a lot of agents to optimally allocate 

themselves for certain task. Despite the fact that more are 

concerned with the cooperative behavior in the group system 

in 2D environment, the bottom approach can be extended to 

the scene in the 3D setup.  
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